Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Ther ; 27(12): 2123-2133, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31543414

RESUMO

Symptoms of spinal muscular atrophy (SMA) disease typically begin in the late prenatal or the early postnatal period of life. The intrauterine (IU) correction of gene expression, fetal gene therapy, could offer effective gene therapy approach for early onset diseases. Hence, the overall goal of this study was to investigate the efficacy of human survival motor neuron (hSMN) gene expression after IU delivery in SMA mouse embryos. First, we found that IU-intracerebroventricular (i.c.v.) injection of adeno-associated virus serotype-9 (AAV9)-EGFP led to extensive expression of EGFP protein in different parts of the CNS with a great number of transduced neural stem cells. Then, to implement the fetal gene therapy, mouse fetuses received a single i.c.v. injection of a single-stranded (ss) or self-complementary (sc) AAV9-SMN vector that led to a lifespan of 93 (median of 63) or 171 (median 105) days for SMA mice. The muscle pathology and number of the motor neurons also improved in both study groups, with slightly better results coming from scAAV treatment. Consequently, fetal gene therapy may provide an alternative therapeutic approach for treating inherited diseases such as SMA that lead to prenatal death or lifelong irreversible damage.


Assuntos
Dependovirus/genética , Feto/metabolismo , Terapia Genética , Vetores Genéticos/administração & dosagem , Atrofia Muscular Espinal/terapia , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Modelos Animais de Doenças , Feminino , Feto/patologia , Vetores Genéticos/genética , Masculino , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Fenótipo , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
Genes Dev ; 26(16): 1874-84, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895255

RESUMO

Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics.


Assuntos
Técnicas Genéticas , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Animais , Terapia Genética , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Oligonucleotídeos Antissenso , Splicing de RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
3.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397312

RESUMO

Although the genetic architecture of amyotrophic lateral sclerosis (ALS) is incompletely understood, recent findings suggest a complex model of inheritance in ALS, which is consistent with a multistep pathogenetic process. Therefore, the aim of our work is to further explore the architecture of ALS using targeted next generation sequencing (NGS) analysis, enriched in motor neuron diseases (MND)-associated genes which are also implicated in axonal hereditary motor neuropathy (HMN), in order to investigate if disease expression, including the progression rate, could be influenced by the combination of multiple rare gene variants. We analyzed 29 genes in an Italian cohort of 83 patients with both familial and sporadic ALS. Overall, we detected 43 rare variants in 17 different genes and found that 43.4% of the ALS patients harbored a variant in at least one of the investigated genes. Of note, 27.9% of the variants were identified in other MND- and HMN-associated genes. Moreover, multiple gene variants were identified in 17% of the patients. The burden of rare variants is associated with reduced survival and with the time to reach King stage 4, i.e., the time to reach the need for percutaneous endoscopic gastrostomy (PEG) positioning or non-invasive mechanical ventilation (NIMV) initiation, independently of known negative prognostic factors. Our data contribute to a better understanding of the molecular basis of ALS supporting the hypothesis that rare variant burden could play a role in the multistep model of disease and could exert a negative prognostic effect. Moreover, we further extend the genetic landscape of ALS to other MND-associated genes traditionally implicated in degenerative diseases of peripheral axons, such as HMN and CMT2.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Doença dos Neurônios Motores/genética , Atrofia Muscular Espinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/mortalidade , Atrofia Muscular Espinal/mortalidade , Polimorfismo de Nucleotídeo Único , Prognóstico
4.
Biochem Biophys Res Commun ; 514(2): 530-537, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31060774

RESUMO

We report that expression of the α-COP protein rescues disease phenotype in a severe mouse model of Spinal Muscular Atrophy (SMA). Lentiviral particles expressing α-COP were injected directly into the testes of genetically pure mouse strain of interest resulting in infection of the spermatagonial stem cells. α-COP was stably expressed in brain, skeletal muscle, and spinal cord without altering SMN protein levels. SMA mice transgenic for α-COP live significantly longer than their non-transgenic littermates, and showed increased body mass and normal muscle morphology at postnatal day 15. We previously reported that binding between SMN and α-COP is required for restoration of neurite outgrowth in cells lacking SMN, and we report similar finding here. Lentiviral-mediated transgenic expression of SMN where the dilysine domain in exon 2b was mutated was not able to rescue the SMA phenotype despite robust expression of the mutant SMN protein in brain, muscle and spinal cord. These results demonstrate that α-COP is a validated modifier of SMA disease phenotype in a mammalian, vertebrate model and is a potential target for development of future SMN-independent therapeutic interventions.


Assuntos
Proteína Coatomer/genética , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína Coatomer/metabolismo , Modelos Animais de Doenças , Éxons , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/patologia , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/terapia , Mutação , Fenótipo , Ligação Proteica , Transdução de Sinais , Medula Espinal/patologia , Análise de Sobrevida , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
5.
Nat Chem Biol ; 11(7): 511-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26030728

RESUMO

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.


Assuntos
Processamento Alternativo , Atrofia Muscular Espinal/tratamento farmacológico , RNA de Cadeia Dupla/agonistas , Ribonucleoproteína Nuclear Pequena U1/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise , Precursores de RNA/agonistas , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Análise de Sobrevida , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética
6.
Mol Ther ; 24(9): 1592-601, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401142

RESUMO

Loss of Survival Motor Neuron-1 (SMN1) causes Spinal Muscular Atrophy, a devastating neurodegenerative disease. SMN2 is a nearly identical copy gene; however SMN2 cannot prevent disease development in the absence of SMN1 since the majority of SMN2-derived transcripts are alternatively spliced, encoding a truncated, unstable protein lacking exon 7. Nevertheless, SMN2 retains the ability to produce low levels of functional protein. Previously we have described a splice-switching Morpholino antisense oligonucleotide (ASO) sequence that targets a potent intronic repressor, Element1 (E1), located upstream of SMN2 exon 7. In this study, we have assessed a novel panel of Morpholino ASOs with the goal of optimizing E1 ASO activity. Screening for efficacy in the SMNΔ7 mouse model, a single ASO variant was more active in vivo compared with the original E1(MO)-ASO. Sequence variant eleven (E1(MOv11)) consistently showed greater efficacy by increasing the lifespan of severe Spinal Muscular Atrophy mice after a single intracerebroventricular injection in the central nervous system, exhibited a strong dose-response across an order of magnitude, and demonstrated excellent target engagement by partially reversing the pathogenic SMN2 splicing event. We conclude that Morpholino modified ASOs are effective in modifying SMN2 splicing and have the potential for future Spinal Muscular Atrophy clinical applications.


Assuntos
Íntrons , Morfolinos/genética , Atrofia Muscular Espinal/genética , Elementos de Resposta , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Mutação , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transcrição Gênica
7.
Mol Ther ; 23(2): 270-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25369768

RESUMO

Spinal muscular atrophy (SMA) is the second most common genetic cause of death in childhood. However, no effective treatment is available to halt disease progression. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene. We previously reported that PTEN depletion leads to an increase in survival of SMN-deficient motor neurons. Here, we aimed to establish the impact of PTEN modulation in an SMA mouse model in vivo. Initial experiments using intramuscular delivery of adeno-associated vector serotype 6 (AAV6) expressing shRNA against PTEN in an established mouse model of severe SMA (SMNΔ7) demonstrated the ability to ameliorate the severity of neuromuscular junction pathology. Subsequently, we developed self-complementary AAV9 expressing siPTEN (scAAV9-siPTEN) to allow evaluation of the effect of systemic suppression of PTEN on the disease course of SMA in vivo. Treatment with a single injection of scAAV9-siPTEN at postnatal day 1 resulted in a modest threefold extension of the lifespan of SMNΔ7 mice, increasing mean survival to 30 days, compared to 10 days in untreated mice. Our data revealed that systemic PTEN depletion is an important disease modifier in SMNΔ7 mice, and therapies aimed at lowering PTEN expression may therefore offer a potential therapeutic strategy for SMA.


Assuntos
Atrofia Muscular Espinal/genética , PTEN Fosfo-Hidrolase/genética , RNA Interferente Pequeno/genética , Animais , Sobrevivência Celular/genética , Dependovirus/classificação , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Injeções Intramusculares , Camundongos , Camundongos Knockout , Atividade Motora/genética , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/fisiopatologia , Atrofia Muscular Espinal/terapia , Miocárdio/metabolismo , Junção Neuromuscular/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Transdução Genética
8.
Hum Mol Genet ; 22(13): 2612-25, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23459934

RESUMO

Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a comprehensive analysis of motoneuron development in vivo under conditions of low SMN will give insight into why the motor unit becomes dysfunctional. We have generated genetic mutants in zebrafish expressing low levels of SMN from the earliest stages of development. Analysis of motoneurons in these mutants revealed motor axons were often shorter and had fewer branches. We also found that motoneurons had significantly fewer dendritic branches and those present were shorter. Analysis of motor axon filopodial dynamics in live embryos revealed that mutants had fewer filopodia and their average half-life was shorter. To determine when SMN was needed to rescue motoneuron development, SMN was conditionally induced in smn mutants during embryonic stages. Only when SMN was added back soon after motoneurons were born, could later motor axon development be rescued. Importantly, analysis of motor behavior revealed that animals with motor axon defects had significant deficits in motor output. We also show that SMN is required earlier for motoneuron development than for survival. These data support that SMN is needed early in development of motoneuron dendrites and axons to develop normally and that this is essential for proper connectivity and movement.


Assuntos
Neurônios Motores/metabolismo , Neurogênese/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Atividade Motora/genética , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Mutação , Peixe-Zebra
9.
Hum Mol Genet ; 20(18): 3667-77, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21693563

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by reduced levels of the survival motor neuron (SMN) protein. Here we show that the proteasome inhibitor, bortezomib, increases SMN in cultured cells and in peripheral tissues of SMA model mice. Bortezomib-treated animals had improved motor function, which was associated with reduced spinal cord and muscle pathology and improved neuromuscular junction size, but no change in survival. Combining bortezomib with the histone deacetylase inhibitor trichostatin A (TSA) resulted in a synergistic increase in SMN protein levels in mouse tissue and extended survival of SMA mice more than TSA alone. Our results demonstrate that a combined regimen of drugs that decrease SMN protein degradation and increase SMN gene transcription synergistically increases SMN levels and improves the lifespan of SMA model mice. Moreover, this study indicates that while increasing SMN levels in the central nervous system may help extend survival, peripheral tissues can also be targeted to improve the SMA disease phenotype.


Assuntos
Regulação para Baixo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Regulação para Cima , Animais , Células Cultivadas , Pré-Escolar , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Fenótipo , Proteólise , Sobrevida
10.
J Pediatr ; 162(1): 155-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22809660

RESUMO

OBJECTIVE: To examine the natural history of spinal muscular atrophy (SMA) to gain further insight into the clinical course and pathogenesis. STUDY DESIGN: Survival pattern, age of onset, and ambulatory status were retrospectively analyzed in 70 patients with SMA with deletions of the survival motor neuron 1 genes that presented to a specialized neuromuscular clinic. The Kaplan-Meier method was used to obtain survival curves. Hammersmith Functional Motor Scale-Expanded and abductor pollicis brevis compound muscle action potential amplitudes were assessed in 25 of the surviving cohort and correlated with survival motor neuron 2 copy number. RESULTS: Survival probabilities at ages 1, 2, 4, 10, 20, and 40 years were 40%, 25%, 6%, and 0%, respectively, for patients with SMA type 1; 100%, 100%, 97%, 93%, 93%, and 52% for patients with SMA type 2 and all patients with SMA type 3 were alive (age range 7-33 years). There were significant associations between age of onset and long-term outcome, specifically survival in SMA type 1 (P < .01) and Hammersmith Functional Motor Scale-Expanded (P < .0001), and compound muscle action potential (P = .001) in SMA types 2 and 3. Motor function in patients with long-standing SMA reduced over prolonged periods or remained stable. Survival motor neuron 2 copy number related to continuing changes in motor function with age. CONCLUSION: The natural history of SMA suggests considerable early loss of motor neurons, with severity related to differences in the number of remaining motor neurons. As the ensuing chronic course in milder phenotypes suggests relative stability of remaining motor neurons, the maximal therapeutic window presents early.


Assuntos
Neurônios Motores/fisiologia , Atrofia Muscular Espinal/fisiopatologia , Criança , Feminino , Humanos , Lactente , Masculino , Atrofia Muscular Espinal/mortalidade , Estudos Retrospectivos , Taxa de Sobrevida
11.
Mol Ther ; 20(1): 119-26, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031236

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of survival motor neuron-1 (SMN1). A nearly identical copy gene, SMN2, is present in all SMA patients. Although the SMN2 coding sequence has the potential to produce full-length SMN, nearly 90% of SMN2-derived transcripts are alternatively spliced and encode a truncated protein. SMN2, however, is an excellent therapeutic target. Previously, we developed antisense-based oligonucleotides (bifunctional RNAs) that specifically recruit SR/SR-like splicing factors and target a negative regulator of SMN2 exon-7 inclusion within intron-6. As a means to optimize the antisense sequence of the bifunctional RNAs, we chose to target a potent intronic repressor downstream of SMN2 exon 7, called intronic splicing silencer N1 (ISS-N1). We developed RNAs that specifically target ISS-N1 and concurrently recruit the modular SR proteins SF2/ASF or hTra2ß1. RNAs were directly injected in the brains of SMA mice. Bifunctional RNA injections were able to elicit robust induction of SMN protein in the brain and spinal column of neonatal SMA mice. Importantly, hTra2ß1-ISS-N1 and SF2/ASF-ISS-N1 bifunctional RNAs significantly extended lifespan and increased weight in the SMNΔ7 mice. This technology has direct implications for SMA therapy and provides similar therapeutic strategies for other diseases caused by aberrant splicing.


Assuntos
Íntrons , Atrofia Muscular Espinal/terapia , Oligorribonucleotídeos Antissenso/administração & dosagem , Splicing de RNA , Sequências Reguladoras de Ácido Ribonucleico , Proteínas do Complexo SMN/genética , Animais , Sequência de Bases , Modelos Animais de Doenças , Ordem dos Genes , Marcação de Genes , Terapia Genética , Camundongos , Camundongos Knockout , Atividade Motora/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Proteínas do Complexo SMN/metabolismo , Aumento de Peso/genética
12.
Neurobiol Dis ; 45(3): 992-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198571

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease, which is the leading genetic cause of mortality in children. To date no effective treatment exists for SMA. The genetic basis for SMA has been well documented as a mutation in the gene for survival of motor neuron (SMN). Because there is an understanding of which gene needs to be replaced (SMN) and where it needs to be replaced (spinal motor systems), SMA is an ideal target for gene replacement via gene therapy. While a variety of animal models for SMA exist, they are either too fulminant to realistically test most gene delivery strategies, or too mild to provide a robust read out of the therapeutic effect. The field, therefore, requires a robust model with a slower symptomatic progression. A conditional knockout of SMN in neuronal cell types, giving a phenotype of functional motor defects, weight loss and reduced life expectancy partially satisfies this need (Frugier, Tiziano et al. 2000). This Cre/LoxP mediated neuron specific model presents an attractive alternative. In the present manuscript, we characterize the functional motor deficits of the model. We observed a decline in locomotor ability, as assessed by open field testing. The finer functions of motor skills such as righting reflex and grip strength were also observed to degenerate in the SMA mice. The decline in motor function that we observed here correlates with the anatomical decline in motor neurons and motor axons presented in the literature (Ferri, Melki et al. 2004). This work adds to our understanding and knowledge base of this Cre/LoxP model and provides a basis from which functional recovery, following interventions can be assessed.


Assuntos
Modelos Animais de Doenças , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Mutação , Fatores Etários , Animais , Comportamento Exploratório/fisiologia , Lateralidade Funcional/genética , Genótipo , Força da Mão/fisiologia , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Estatística como Assunto , Proteína 2 de Sobrevivência do Neurônio Motor/genética
13.
Hum Mol Genet ; 19(8): 1492-506, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20097677

RESUMO

Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder determined by functional impairment of alpha-motor neurons within the spinal cord. SMA is caused by functional loss of the survival motor neuron gene 1 (SMN1), whereas disease severity is mainly influenced by the number of SMN2 copies. SMN2, which produces only low levels of full-length mRNA/protein, can be modulated by small molecules and drugs, thus offering a unique possibility for SMA therapy. Here, we analysed suberoylanilide hydroxamic acid (SAHA), a FDA-approved histone deacetylase inhibitor, as potential drug in two severe SMA mouse models each carrying two SMN2 transgenes: US-SMA mice with one SMN2 per allele (Smn(-/-);SMN2(tg/tg)) and Taiwanese-SMA mice with two SMN2 per allele (Smn(-/-);SMN2(tg/wt)), both on pure FVB/N background. The US-SMA mice were embryonically lethal with heterozygous males showing significantly reduced fertility. SAHA treatment of pregnant mothers rescued the embryonic lethality giving rise to SMA offspring. By using a novel breeding strategy for the Taiwanese model (Smn(-/-);SMN2(tg/tg) x Smn(-/+) mice), we obtained 50% SMA offspring that survive approximately 10 days and 50% control carriers in each litter. Treatment with 25 mg/kg twice daily SAHA increased lifespan of SMA mice by 30%, significantly improved motor function abilities, reduced degeneration of motor neurons within the spinal cord and increased the size of neuromuscular junctions and muscle fibers compared with vehicle-treated SMA mice. SMN RNA and protein levels were significantly elevated in various tissues including spinal cord and muscle. Hence, SAHA, which lessens the progression of SMA, might be suitable for SMA therapy.


Assuntos
Ácidos Hidroxâmicos/administração & dosagem , Atrofia Muscular Espinal/tratamento farmacológico , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Modelos Animais de Doenças , Feminino , Itália , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/fisiopatologia , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Vorinostat
14.
Hum Mol Genet ; 19(8): 1468-78, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20097679

RESUMO

Spinal muscular atrophy (SMA) is an inherited disease resulting in the highest mortality of children under the age of two. SMA is caused by mutations or deletions in the survival motor neuron 1 (SMN1) gene, leading to aberrant neuromuscular junction (NMJ) development and the loss of spinal cord alpha-motor neurons. Here, we show that Smn depletion leads to increased activation of RhoA, a major regulator of actin dynamics, in the spinal cord of an intermediate SMA mouse model. Treating these mice with Y-27632, which inhibits ROCK, a direct downstream effector of RhoA, dramatically improves their survival. This lifespan rescue is independent of Smn expression and is accompanied by an improvement in the maturation of the NMJs and an increase in muscle fiber size in the SMA mice. Our study presents evidence linking disruption of actin cytoskeletal dynamics to SMA pathogenesis and, for the first time, identifies RhoA effectors as viable targets for therapeutic intervention in the disease.


Assuntos
Atrofia Muscular Espinal/enzimologia , Atrofia Muscular Espinal/mortalidade , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Amidas/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atrofia Muscular Espinal/genética , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Medula Espinal/enzimologia , Medula Espinal/metabolismo , Sobrevida , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética
15.
Muscle Nerve ; 46(6): 861-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22996383

RESUMO

INTRODUCTION: Amyotrophic lateral sclerosis (ALS), a degenerative disorder of the central nervous system, manifests as progressive weakening of muscles. The diagnosis and prognosis of ALS are often unclear, so useful biomarkers are needed. METHODS: Total proteins were extracted from muscle samples from 36 ALS, 17 spinal muscular atrophy (SMA), and 36 normal individuals. The expression levels of 134 proteins and phosphoproteins were assessed using protein pathway array analysis. RESULTS: Seventeen proteins were differentially expressed between ALS and normal muscle, and 9 proteins were differentially expressed between ALS and SMA muscle. The low-level expression of Akt and Factor XIIIB correlates with unfavorable survival, and the risk score calculated based on these proteins predicts the survival of each individual patient. CONCLUSIONS: Some proteins could be selected as clinically useful biomarkers. Specifically, Akt and Factor XIIIB were found to be promising biomarkers for estimating prognosis in ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas Musculares/metabolismo , Músculos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculos/patologia , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , NAD/metabolismo , Estudos Retrospectivos , Estatística como Assunto , Estatísticas não Paramétricas
16.
J Neurosci ; 30(36): 12005-19, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826664

RESUMO

Spinal muscular atrophy (SMA) is a common (approximately 1:6400) autosomal recessive neuromuscular disorder caused by a paucity of the survival of motor neuron (SMN) protein. Although widely recognized to cause selective spinal motor neuron loss when deficient, the precise cellular site of action of the SMN protein in SMA remains unclear. In this study we sought to determine the consequences of selectively depleting SMN in the motor neurons of model mice. Depleting but not abolishing the protein in motor neuronal progenitors causes an SMA-like phenotype. Neuromuscular weakness in the model mice is accompanied by peripheral as well as central synaptic defects, electrophysiological abnormalities of the neuromuscular junctions, muscle atrophy, and motor neuron degeneration. However, the disease phenotype is more modest than that observed in mice expressing ubiquitously low levels of the SMN protein, and both symptoms as well as early electrophysiological abnormalities that are readily apparent in neonates were attenuated in an age-dependent manner. We conclude that selective knock-down of SMN in motor neurons is sufficient but may not be necessary to cause a disease phenotype and that targeting these cells will be a requirement of any effective therapeutic strategy. This realization is tempered by the relatively mild SMA phenotype in our model mice, one explanation for which is the presence of normal SMN levels in non-neuronal tissue that serves to modulate disease severity.


Assuntos
Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Células-Tronco/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comportamento Animal , Contagem de Células/métodos , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Eletromiografia/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Contração Isométrica/fisiologia , Estimativa de Kaplan-Meier , Proteínas Luminescentes/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/genética , Atividade Motora/genética , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Mutação/genética , Degeneração Neural/genética , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/patologia , Fator de Transcrição 2 de Oligodendrócitos , Técnicas de Patch-Clamp , Receptores Colinérgicos/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Sinapses/patologia , Sinapses/fisiologia , Transmissão Sináptica/genética
17.
Hum Mol Genet ; 18(1): 97-104, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829666

RESUMO

Spinal muscular atrophy is the most common genetic cause of infant mortality and is characterized by degeneration of lower motor neurons leading to muscle wasting. The causative gene has been identified as survival motor neuron (SMN). The invertebrate model organism Caenorhabditis elegans contains smn-1, the ortholog of human SMN. Caenorhabditis elegans smn-1 is expressed in various tissues including the nervous system and body wall muscle, and knockdown of smn-1 by RNA interference is embryonic lethal. Here we show that the smn-1(ok355) deletion, which removes most of smn-1 including the translation start site, produces a pleiotropic phenotype including late larval arrest, reduced lifespan, sterility as well as impaired locomotion and pharyngeal activity. Mutant nematodes develop to late larval stages due to maternal contribution of the smn-1 gene product that allows to study SMN-1 functions beyond embryogenesis. Neuronal, but not muscle-directed, expression of smn-1 partially rescues the smn-1(ok355) phenotype. Thus, the deletion mutant smn-1(ok355) provides a useful platform for functional analysis of an invertebrate ortholog of the human SMN protein.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Deleção de Genes , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Humanos , Longevidade , Atividade Motora , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
18.
Hum Mol Genet ; 18(12): 2215-29, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19329542

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease. Loss of the survival motor neuron (SMN1) gene, in the presence of the SMN2 gene causes SMA. SMN functions in snRNP assembly in all cell types, however, it is unclear how this function results in specifically motor neuron cell death. Lack of endogenous mouse SMN (Smn) in mice results in embryonic lethality. Introduction of two copies of human SMN2 results in a mouse with severe SMA, while one copy of SMN2 is insufficient to overcome embryonic lethality. We show that SMN(A111G), an allele capable of snRNP assembly, can rescue mice that lack Smn and contain either one or two copies of SMN2 (SMA mice). The correction of SMA in these animals was directly correlated with snRNP assembly activity in spinal cord, as was correction of snRNA levels. These data support snRNP assembly as being the critical function affected in SMA and suggests that the levels of snRNPs are critical to motor neurons. Furthermore, SMN(A111G) cannot rescue Smn-/- mice without SMN2 suggesting that both SMN(A111G) and SMN from SMN2 undergo intragenic complementation in vivo to function in heteromeric complexes that have greater function than either allele alone. The oligomer composed of limiting full-length SMN and SMN(A111G) has substantial snRNP assembly activity. Also, the SMN(A2G) and SMN(A111G) alleles in vivo did not complement each other leading to the possibility that these mutations could affect the same function.


Assuntos
Atrofia Muscular Espinal/fisiopatologia , Mutação de Sentido Incorreto , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Ribonucleoproteínas Nucleares Pequenas/genética , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
19.
J Clin Invest ; 118(10): 3316-30, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18769634

RESUMO

Spinal muscular atrophy (SMA), a motor neuron disease (MND) and one of the most common genetic causes of infant mortality, currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study, we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function, increased life span, and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern, including changes in RNA metabolism proteins, cell cycle proteins, and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype, indicating that transplantation of NSCs may be a possible treatment for SMA.


Assuntos
Modelos Animais de Doenças , Células-Tronco Fetais/transplante , Atrofia Muscular Espinal/cirurgia , Neurônios/citologia , Transplante de Células-Tronco , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Neurônios/metabolismo , Fenótipo , Medula Espinal/citologia , Análise de Sobrevida , Redução de Peso
20.
Biochem Biophys Res Commun ; 391(1): 835-40, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19945425

RESUMO

Proximal spinal muscular atrophy (SMA) is a leading genetic cause of infant death. Patients with SMA lose alpha-motor neurons in the ventral horn of the spinal cord which leads to skeletal muscle weakness and atrophy. SMA is the result of reduction in Survival Motor Neuron (SMN) expression. Transgenic mouse models of SMA have been generated and are extremely useful in understanding the mechanisms of motor neuron degeneration in SMA and in developing new therapeutic candidates for SMA patients. Several research groups have reported varying average lifespans of SMNDelta7 SMA mice (SMN2(+/+);SMNDelta7(+/+);mSmn(-/-)), the most commonly used mouse model for preclinical therapeutic candidate testing. One environmental factor that varied between research groups was maternal diet. In this study, we compared the effects of two different commercially available rodent chows (PicoLab20 Mouse diet and Harlan-Teklad 22/5 diet) on the survival and motor phenotype of the SMNDelta7 mouse model of SMA. Specifically, the PicoLab20 diet significantly extends the average lifespan of the SMNDelta7 SMA mice by approximately 25% and improved the motor phenotype as compared to the Harlan diet. These findings indicate that maternal diet alone can have considerable impact on the SMA phenotype.


Assuntos
Atrofia Muscular Espinal/dietoterapia , Atrofia Muscular Espinal/fisiopatologia , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia/análise , Dieta , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/mortalidade , Proteína 1 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA