RESUMO
Tazemetostat is the first epigenetic therapy to gain FDA approval in a solid tumor. This lysine methyltransferase inhibitor targets EZH2, the enzymatic subunit of the PRC2 transcriptional silencing complex. Tumors with mutations in subunits of the SWI/SNF chromatin remodeling complex, inclusive of most epithelioid sarcomas, are sensitive to EZH2 inhibition.
Assuntos
Benzamidas/uso terapêutico , Epigênese Genética/genética , Piridonas/uso terapêutico , Sarcoma/tratamento farmacológico , Compostos de Bifenilo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Inibidores Enzimáticos/farmacologia , Epigenômica , Terapia Genética/métodos , Humanos , Morfolinas , Proteínas Nucleares/metabolismo , Sarcoma/genética , Fatores de Transcrição/metabolismoRESUMO
Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.
Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/químicaRESUMO
Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide. Epigenetic data generated in localized prostate tumors and benign specimens support the notion that this region is a developmental enhancer. Collectively, these observations underscore the importance of epigenomic profiling in primary specimens and the value of deploying genome editing to functionally characterize noncoding elements. More broadly, this work identifies a therapeutic vulnerability for targeting the AR and emphasizes the importance of regulatory elements as highly recurrent oncogenic drivers.
Assuntos
Elementos Facilitadores Genéticos/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Acetilação , Adulto , Idoso , Antineoplásicos/farmacologia , Benzamidas , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA , Edição de Genes , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genéticaRESUMO
Investigating therapeutic "outliers" that show exceptional responses to anti-cancer treatment can uncover biomarkers of drug sensitivity. We performed preclinical trials investigating primary murine acute myeloid leukemias (AMLs) generated by retroviral insertional mutagenesis in KrasG12D "knockin" mice with the MEK inhibitor PD0325901 (PD901). One outlier AML responded and exhibited intrinsic drug resistance at relapse. Loss of wild-type (WT) Kras enhanced the fitness of the dominant clone and rendered it sensitive to MEK inhibition. Similarly, human colorectal cancer cell lines with increased KRAS mutant allele frequency were more sensitive to MAP kinase inhibition, and CRISPR-Cas9-mediated replacement of WT KRAS with a mutant allele sensitized heterozygous mutant HCT116 cells to treatment. In a prospectively characterized cohort of patients with advanced cancer, 642 of 1,168 (55%) with KRAS mutations exhibited allelic imbalance. These studies demonstrate that serial genetic changes at the Kras/KRAS locus are frequent in cancer and modulate competitive fitness and MEK dependency.
Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Neoplasias Colorretais/genética , Difenilamina/análogos & derivados , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Evolução Clonal , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Difenilamina/farmacologia , Difenilamina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação , RetroviridaeRESUMO
The serum response factor (SRF) binds to coactivators, such as myocardin-related transcription factor-A (MRTF-A), and mediates gene transcription elicited by diverse signaling pathways. SRF/MRTF-A-dependent gene transcription is activated when nuclear MRTF-A levels increase, enabling the formation of transcriptionally active SRF/MRTF-A complexes. The level of nuclear MRTF-A is regulated by nuclear G-actin, which binds to MRTF-A and promotes its nuclear export. However, pathways that regulate nuclear actin levels are poorly understood. Here, we show that MICAL-2, an atypical actin-regulatory protein, mediates SRF/MRTF-A-dependent gene transcription elicited by nerve growth factor and serum. MICAL-2 induces redox-dependent depolymerization of nuclear actin, which decreases nuclear G-actin and increases MRTF-A in the nucleus. Furthermore, we show that MICAL-2 is a target of CCG-1423, a small molecule inhibitor of SRF/MRTF-A-dependent transcription that exhibits efficacy in various preclinical disease models. These data identify redox modification of nuclear actin as a regulatory switch that mediates SRF/MRTF-A-dependent gene transcription.
Assuntos
Núcleo Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Actinas/metabolismo , Sequência de Aminoácidos , Anilidas/farmacologia , Animais , Benzamidas/farmacologia , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/genética , Oxigenases de Função Mista/análise , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Fator de Crescimento Neural/metabolismo , Neuritos/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Oxirredução , Oxirredutases/análise , Oxirredutases/genética , Ratos , Alinhamento de Sequência , Transativadores , Transcrição Gênica , Peixe-ZebraRESUMO
The treatment of advanced prostate cancer has been transformed by novel antiandrogen therapies such as enzalutamide. Here, we identify induction of glucocorticoid receptor (GR) expression as a common feature of drug-resistant tumors in a credentialed preclinical model, a finding also confirmed in patient samples. GR substituted for the androgen receptor (AR) to activate a similar but distinguishable set of target genes and was necessary for maintenance of the resistant phenotype. The GR agonist dexamethasone was sufficient to confer enzalutamide resistance, whereas a GR antagonist restored sensitivity. Acute AR inhibition resulted in GR upregulation in a subset of prostate cancer cells due to relief of AR-mediated feedback repression of GR expression. These findings establish a mechanism of escape from AR blockade through expansion of cells primed to drive AR target genes via an alternative nuclear receptor upon drug exposure.
Assuntos
Antagonistas de Androgênios/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Animais , Benzamidas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Nitrilas , Feniltioidantoína/uso terapêutico , Receptores Androgênicos/metabolismo , TranscriptomaRESUMO
The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.
Assuntos
Adenosina Trifosfatases , DNA Helicases , Proteínas Nucleares , Neoplasias da Próstata , Fatores de Transcrição , Adenosina Trifosfatases/metabolismo , Animais , Benzamidas , DNA Helicases/genética , Elementos Facilitadores Genéticos , Genes myc , Fator 3-alfa Nuclear de Hepatócito , Humanos , Masculino , Nitrilas , Proteínas Nucleares/genética , Oncogenes , Feniltioidantoína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos , Fatores de Transcrição/genética , Regulador Transcricional ERG , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Histone Deacetylase 3 (HDAC3) function in vivo is nuanced and directed in a tissue-specific fashion. The importance of HDAC3 in Kras mutant lung tumors has recently been identified, but HDAC3 function in this context remains to be fully elucidated. Here, we identified HDAC3 as a lung tumor cell-intrinsic transcriptional regulator of the tumor immune microenvironment. In Kras mutant lung cancer cells, we found that HDAC3 is a direct transcriptional repressor of a cassette of secreted chemokines, including Cxcl10. Genetic and pharmacological inhibition of HDAC3 robustly up-regulated this gene set in human and mouse Kras, LKB1 (KL) and Kras, p53 (KP) mutant lung cancer cells through an NF-κB/p65-dependent mechanism. Using genetically engineered mouse models, we found that HDAC3 inactivation in vivo induced expression of this gene set selectively in lung tumors and resulted in enhanced T cell recruitment at least in part via Cxcl10. Furthermore, we found that inhibition of HDAC3 in the presence of Kras pathway inhibitors dissociated Cxcl10 expression from that of immunosuppressive chemokines and that combination treatment of entinostat with trametinib enhanced T cell recruitment into lung tumors in vivo. Finally, we showed that T cells contribute to in vivo tumor growth control in the presence of entinostat and trametinib combination treatment. Together, our findings reveal that HDAC3 is a druggable endogenous repressor of T cell recruitment into Kras mutant lung tumors.
Assuntos
Quimiocina CXCL10 , Histona Desacetilases , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Animais , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Mutação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pirimidinonas/farmacologia , Piridonas/farmacologia , Microambiente Tumoral/imunologia , Transcrição Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Piridinas/farmacologia , BenzamidasRESUMO
Smallpox was the most rampant infectious disease killer of the 20th century, yet much remains unknown about the pathogenesis of the variola virus. Using archived tissue from a study conducted at the Centers for Disease Control and Prevention we characterized pathology in 18 cynomolgus macaques intravenously infected with the Harper strain of variola virus. Six macaques were placebo-treated controls, six were tecovirimat-treated beginning at 2 days post-infection, and six were tecovirimat-treated beginning at 4 days post-infection. All macaques were treated daily until day 17. Archived tissues were interrogated using immunohistochemistry, in situ hybridization, immunofluorescence, and electron microscopy. Gross lesions in three placebo-treated animals that succumbed to infection primarily consisted of cutaneous vesicles, pustules, or crusts with lymphadenopathy. The only gross lesions noted at the conclusion of the study in the three surviving placebo-treated and the Day 4 treated animals consisted of resolving cutaneous pox lesions. No gross lesions attributable to poxviral infection were present in the Day 2 treated macaques. Histologic lesions in three placebo-treated macaques that succumbed to infection consisted of proliferative and necrotizing dermatitis with intracytoplasmic inclusion bodies and lymphoid depletion. The only notable histologic lesion in the Day 4 treated macaques was resolving dermatitis; no notable lesions were seen in the Day 2 treated macaques. Variola virus was detected in all three placebo-treated animals that succumbed to infection prior to the study's conclusion by all utilized methods (IHC, ISH, IFA, EM). None of the three placebo-treated animals that survived to the end of the study nor the animals in the two tecovirimat treatment groups showed evidence of variola virus by these methods. Our findings further characterize variola lesions in the macaque model and describe new molecular methods for variola detection.
Assuntos
Dermatite , Varíola , Vírus da Varíola , Animais , Benzamidas , Isoindóis , Macaca fascicularis , Varíola/tratamento farmacológico , Varíola/patologia , Estados UnidosRESUMO
ABSTRACT: In September 2023, the US Food and Drug Administration approved momelotinib for the treatment of myelofibrosis (MF) with anemia, marking the fourth US regulatory approval of a Janus kinase inhibitor for MF. A positive opinion from the European Medicines Agency followed in November 2023. Momelotinib's ability to address splenomegaly, symptoms, and anemia, including in patients with thrombocytopenia (with platelet counts of ≥25 × 109/L), the ease of switching from ruxolitinib, and good tolerability uniquely position it to substantially impact the MF treatment landscape.
Assuntos
Benzamidas , Mielofibrose Primária , Pirimidinas , Mielofibrose Primária/tratamento farmacológico , Humanos , Pirimidinas/uso terapêutico , Benzamidas/uso terapêutico , Nitrilas/uso terapêutico , Pirazóis/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
ABSTRACT: The phase 2 CLL2-BAAG trial tested the measurable residual disease (MRD)-guided triple combination of acalabrutinib, venetoclax, and obinutuzumab after optional bendamustine debulking in 45 patients with relapsed/refractory chronic lymphocytic leukemia (CLL). MRD was measured by flow cytometry (FCM; undetectable MRD <10-4) in peripheral blood (PB) and circulating tumor DNA (ctDNA) using digital droplet polymerase chain reaction of variable-diversity-joining (VDJ) rearrangements and CLL-related mutations in plasma. The median number of previous treatments was 1 (range, 1-4); 18 patients (40%) had received a Bruton tyrosine kinase inhibitor (BTKi) and/or venetoclax before inclusion, 14 of 44 (31.8%) had TP53 aberrations, and 34 (75.6%) had unmutated immunoglobulin heavy-chain variable region genes. With a median observation time of 36.3 months and all patients off-treatment for a median of 21.9 months, uMRD <10-4 in PB was achieved in 42 of the 45 patients (93.3%) at any time point, including 17 of 18 (94.4%) previously exposed to venetoclax/BTKi and 13 of 14 (92.9%) with TP53 aberrations. The estimated 3-year progression-free and overall survival rates were 85.0% and 93.8%, respectively. Overall, 585 paired FCM/ctDNA samples were analyzed and 18 MRD recurrences (5 with and 13 without clinical progression) occurred after the end of treatment. Twelve samples were first detected by ctDNA, 3 by FCM, and 3 synchronously. In conclusion, time-limited MRD-guided acalabrutinib, venetoclax, and obinutuzumab achieved deep remissions in almost all patients with relapsed/refractory CLL. The addition of ctDNA-based analyses to FCM MRD assessment seems to improve early detection of relapses. This trial was registered at www.clinicaltrials.gov as #NCT03787264.
Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Compostos Bicíclicos Heterocíclicos com Pontes , DNA Tumoral Circulante , Leucemia Linfocítica Crônica de Células B , Neoplasia Residual , Pirazinas , Sulfonamidas , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Pirazinas/administração & dosagem , Pirazinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Benzamidas/administração & dosagem , Benzamidas/uso terapêutico , Adulto , RecidivaRESUMO
ABSTRACT: Chronic lymphocytic leukemia (CLL) progression during Bruton tyrosine kinase (BTK) inhibitor treatment is typically characterized by emergent B-cell receptor pathway mutations. Using peripheral blood samples from patients with relapsed/refractory CLL in ELEVATE-RR (NCT02477696; median 2 prior therapies), we report clonal evolution data for patients progressing on acalabrutinib or ibrutinib (median follow-up, 41 months). Paired (baseline and progression) samples were available for 47 (excluding 1 Richter) acalabrutinib-treated and 30 (excluding 6 Richter) ibrutinib-treated patients. At progression, emergent BTK mutations were observed in 31 acalabrutinib-treated (66%) and 11 ibrutinib-treated patients (37%; median variant allele fraction [VAF], 16.1% vs 15.6%, respectively). BTK C481S mutations were most common in both groups; T474I (n = 9; 8 co-occurring with C481) and the novel E41V mutation within the pleckstrin homology domain of BTK (n = 1) occurred with acalabrutinib, whereas neither mutation occurred with ibrutinib. L528W and A428D comutations presented in 1 ibrutinib-treated patient. Preexisting TP53 mutations were present in 25 acalabrutinib-treated (53.2%) and 16 ibrutinib-treated patients (53.3%) at screening. Emergent TP53 mutations occurred with acalabrutinib and ibrutinib (13% vs 7%; median VAF, 6.0% vs 37.3%, respectively). Six acalabrutinib-treated patients and 1 ibrutinib-treated patient had emergent TP53/BTK comutations. Emergent PLCG2 mutations occurred in 3 acalabrutinib-treated (6%) and 6 ibrutinib-treated patients (20%). One acalabrutinib-treated patient and 4 ibrutinib-treated patients had emergent BTK/PLCG2 comutations. Although common BTK C481 mutations were observed with both treatments, patterns of mutation and comutation frequency, mutation VAF, and uncommon BTK variants varied with acalabrutinib (T474I and E41V) and ibrutinib (L528W and A428D) in this patient population. The trial was registered at www.clinicaltrials.gov as #NCT02477696.
Assuntos
Adenina , Tirosina Quinase da Agamaglobulinemia , Benzamidas , Leucemia Linfocítica Crônica de Células B , Mutação , Piperidinas , Pirazinas , Pirazóis , Pirimidinas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/uso terapêutico , Progressão da Doença , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Pirazinas/uso terapêutico , Pirazinas/administração & dosagem , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinas/administração & dosagemRESUMO
ABSTRACT: Graft-versus-host disease (GVHD) is a major life-threatening complication that occurs after allogeneic hematopoietic cell transplantation (HCT). Although adult tissue stem cells have been identified as targets of GVHD in the skin and gut, their role in hepatic GVHD is yet to be clarified. In the current study, we explored the fate of bile duct stem cells (BDSCs), capable of generating liver organoids in vitro, during hepatic GVHD after allogeneic HCT. We observed a significant expansion of biliary epithelial cells (BECs) on injury early after allogeneic HCT. Organoid-forming efficiency from the bile duct was also significantly increased early after allogeneic HCT. Subsequently, the organoid-forming efficiency from bile ducts was markedly decreased in association with the reduction of BECs and the elevation of plasma concentrations of bilirubin, suggesting that GVHD targets BDSCs and impairs the resilience of BECs. The growth of liver organoids in the presence of liver-infiltrating mononuclear cells from allogeneic recipients, but not from syngeneic recipients, was significantly reduced in a transforming growth factor-ß (TGF-ß)-dependent manner. Administration of SB-431542, an inhibitor of TGF-ß signaling, from day 14 to day 28, protected organoid-forming BDSCs against GVHD and mitigated biliary dysfunction after allogeneic HCT, suggesting that BDSCs are a promising therapeutic target for hepatic GVHD.
Assuntos
Ductos Biliares , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Organoides , Fator de Crescimento Transformador beta , Animais , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Ductos Biliares/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Endogâmicos C57BL , Masculino , Fígado/patologia , Fígado/metabolismo , Dioxóis/farmacologia , Benzamidas/farmacologia , Células Epiteliais/metabolismo , Transplante HomólogoRESUMO
Despite use of tecovirimat since the beginning of the 2022 outbreak, few data have been published on its antiviral effect in humans. We here predict tecovirimat efficacy using a unique set of data in nonhuman primates (NHPs) and humans. We analyzed tecovirimat antiviral activity on viral kinetics in NHP to characterize its concentration-effect relationship in vivo. Next, we used a pharmacological model developed in healthy volunteers to project its antiviral efficacy in humans. Finally, a viral dynamic model was applied to characterize mpox kinetics in skin lesions from 54 untreated patients, and we used this modeling framework to predict the impact of tecovirimat on viral clearance in skin lesions. At human-recommended doses, tecovirimat could inhibit viral replication from infected cells by more than 90% after 3 to 5 days of drug administration and achieved over 97% efficacy at drug steady state. With an estimated mpox within-host basic reproduction number, R0, equal to 5.6, tecovirimat could therefore shorten the time to viral clearance if given before viral peak. We predicted that initiating treatment at symptom onset, which on average occurred 2 days before viral peak, could reduce the time to viral clearance by about 6 days. Immediate postexposure prophylaxis could not only reduce time to clearance but also lower peak viral load by more than 1.0 log10 copies/mL and shorten the duration of positive viral culture by about 7 to 10 days. These findings support the early administration of tecovirimat against mpox infection, ideally starting from the infection day as a postexposure prophylaxis.
Assuntos
Antivirais , Mpox , Animais , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzamidas , Isoindóis/efeitos adversosRESUMO
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.
Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Benzamidas , Células Cultivadas , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Isoleucina/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais , Domínios de Homologia de srcRESUMO
Cancer recurrence after surgery remains an unresolved clinical problem1-3. Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites4-6. There are currently no effective interventions that prevent the formation of the premetastatic microenvironment6,7. Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.
Assuntos
Epigênese Genética , Terapia Genética , Células Supressoras Mieloides/fisiologia , Neoplasias/terapia , Microambiente Tumoral , Animais , Azacitidina/farmacologia , Benzamidas/farmacologia , Diferenciação Celular , Movimento Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Camundongos , Células Supressoras Mieloides/citologia , Metástase Neoplásica/terapia , Neoplasias/cirurgia , Piridinas/farmacologia , Receptores CCR2/genética , Receptores de Interleucina-8B/genética , Microambiente Tumoral/efeitos dos fármacosRESUMO
Leucine-rich repeat kinase 2 (LRRK2) is the most commonly mutated gene in familial Parkinson's disease1 and is also linked to its idiopathic form2. LRRK2 has been proposed to function in membrane trafficking3 and colocalizes with microtubules4. Despite the fundamental importance of LRRK2 for understanding and treating Parkinson's disease, structural information on the enzyme is limited. Here we report the structure of the catalytic half of LRRK2, and an atomic model of microtubule-associated LRRK2 built using a reported cryo-electron tomography in situ structure5. We propose that the conformation of the LRRK2 kinase domain regulates its interactions with microtubules, with a closed conformation favouring oligomerization on microtubules. We show that the catalytic half of LRRK2 is sufficient for filament formation and blocks the motility of the microtubule-based motors kinesin 1 and cytoplasmic dynein 1 in vitro. Kinase inhibitors that stabilize an open conformation relieve this interference and reduce the formation of LRRK2 filaments in cells, whereas inhibitors that stabilize a closed conformation do not. Our findings suggest that LRRK2 can act as a roadblock for microtubule-based motors and have implications for the design of therapeutic LRRK2 kinase inhibitors.
Assuntos
Microscopia Crioeletrônica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Doença de Parkinson/metabolismo , Benzamidas/farmacologia , Biocatálise/efeitos dos fármacos , Dimerização , Dineínas/antagonistas & inibidores , Dineínas/metabolismo , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/ultraestrutura , Microtúbulos/ultraestrutura , Modelos Moleculares , Movimento/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos/efeitos dos fármacos , Pirazóis/farmacologia , Repetições WD40RESUMO
Exogenous glucocorticoids are frequently used to treat inflammatory disorders and as adjuncts for the treatment of solid cancers. However, their use is associated with severe side effects and therapy resistance. Novel glucocorticoid receptor (GR) ligands with a patient-validated reduced side effect profile have not yet reached the clinic. GR is a member of the nuclear receptor family of transcription factors and heavily relies on interactions with coregulator proteins for its transcriptional activity. To elucidate the role of the GR interactome in the differential transcriptional activity of GR following treatment with the selective GR agonist and modulator dagrocorat compared to classic (ant)agonists, we generated comprehensive interactome maps by high-confidence proximity proteomics in lung epithelial carcinoma cells. We found that dagrocorat and the antagonist RU486 both reduced GR interaction with CREB-binding protein/p300 and the mediator complex compared to the full GR agonist dexamethasone. Chromatin immunoprecipitation assays revealed that these changes in GR interactome were accompanied by reduced GR chromatin occupancy with dagrocorat and RU486. Our data offer new insights into the role of differential coregulator recruitment in shaping ligand-specific GR-mediated transcriptional responses.
Assuntos
Benzamidas , Cromatina , Fenantrenos , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Mifepristona/farmacologia , Complexo Mediador/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Dexametasona/farmacologiaRESUMO
The use of androgen receptor (AR) inhibitors in prostate cancer gives rise to increased cellular lineage plasticity resulting in resistance to AR-targeted therapies. In this study, we examined the chromatin landscape of AR-positive prostate cancer cells post-exposure to the AR inhibitor enzalutamide. We identified a novel regulator of cell plasticity, the homeobox transcription factor SIX2, whose motif is enriched in accessible chromatin regions after treatment. Depletion of SIX2 in androgen-independent PC-3 prostate cancer cells induced a switch from a stem-like to an epithelial state, resulting in reduced cancer-related properties such as proliferation, colony formation, and metastasis both in vitro and in vivo. These effects were mediated through the downregulation of the Wnt/ß-catenin signalling pathway and subsequent reduction of nuclear ß-catenin. Collectively, our findings provide compelling evidence that the depletion of SIX2 may represent a promising strategy for overcoming the cell plasticity mechanisms driving antiandrogen resistance in prostate cancer.
Assuntos
Benzamidas , Plasticidade Celular , Proteínas de Homeodomínio , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Receptores Androgênicos , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , Masculino , Camundongos , Benzamidas/farmacologia , beta Catenina/metabolismo , beta Catenina/genética , Linhagem Celular Tumoral , Plasticidade Celular/genética , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Nitrilas/farmacologia , Células PC-3 , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.