RESUMO
Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.
Assuntos
Envelhecimento , Catequina , Senescência Celular , Proantocianidinas , Retina , Animais , Retina/metabolismo , Retina/efeitos dos fármacos , Camundongos , Proantocianidinas/farmacologia , Proantocianidinas/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Senescência Celular/efeitos dos fármacos , Catequina/farmacologia , Catequina/metabolismo , Catequina/química , Biflavonoides/farmacologia , Senoterapia/farmacologia , Camundongos Endogâmicos C57BL , Humanos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Doenças Retinianas/patologiaRESUMO
Excessive apoptosis of intestinal epithelial cells leads to intestinal barrier dysfunction, which is not only one of the pathological features of inflammatory bowel disease (IBD) but also a therapeutic target. A natural plant extract, Ginkgetin (GK), has been reported to have anti-apoptotic activity, but its role in IBD is unknown. This study aimed to explore whether GK has anti-colitis effects and related mechanisms. An experimental colitis model induced by dextran sulfate sodium (DSS) was established, and GK was found to relieve colitis in DSS-induced mice as evidenced by improvements in weight loss, colon shortening, Disease Activity Index (DAI), macroscopic and tissue scores, and proinflammatory mediators. In addition, in DSS mice and TNF-α-induced colonic organoids, GK protected the intestinal barrier and inhibited intestinal epithelial cell apoptosis, by improving permeability and inhibiting the number of apoptotic cells and the expression of key apoptotic regulators (cleaved caspase 3, Bax and Bcl-2). The underlying mechanism of GK's protective effect was explored by bioinformatics, rescue experiments and molecular docking, and it was found that GK might directly target and activate EGFR, thereby interfering with PI3K/AKT signaling to inhibit apoptosis of intestinal epithelial cells in vivo and in vitro. In conclusion, GK inhibited intestinal epithelial apoptosis in mice with experimental colitis, at least in part, by activating EGFR and interfering with PI3K/AKT activation, explaining the underlying mechanism for ameliorating colitis, which may provide new options for the treatment of IBD.
Assuntos
Apoptose , Biflavonoides , Colite , Sulfato de Dextrana , Células Epiteliais , Receptores ErbB , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Receptores ErbB/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Sulfato de Dextrana/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Masculino , HumanosRESUMO
Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.
Assuntos
Bleomicina , Catequina , Senescência Celular , Camundongos Endogâmicos C57BL , Miofibroblastos , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Camundongos , Senescência Celular/efeitos dos fármacos , Catequina/farmacologia , Catequina/análogos & derivados , Proantocianidinas/farmacologia , Apoptose/efeitos dos fármacos , Masculino , Biflavonoides/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Atherosclerosis, a chronic inflammatory disease of aorta, remains the major cause of morbidity and mortality among cardiovascular disease patients. Macrophage foam cell formation and inflammation are critically involved in early stages of atherosclerosis, hence chemopreventive targeting of foam cell formation by nutraceuticals may be a promising approach to curbing the progression of atherosclerosis. However, many nutraceuticals including berberine and ginkgetin have low stability, tissue/cell penetration and bioavailability resulting in inadequate chemotherapeutic effects of these nutraceuticals. We have used avocado-derived extracellular vesicles (EV) isolated from avocado (EVAvo ) as a novel carrier of nutraceuticals, in a strategy to alleviate the build-up of macrophage foam cells and expression of inflammatory genes. Our key findings are: (i) Avocado is a natural source of plant-derived EVs as shown by the results from transmission electron microscopy, dynamic light scattering and NanoBrook Omni analysis and atomic force microscopy; (ii) EVAvo are taken up by macrophages, a critical cell type in atherosclerosis; (iii) EVAvo can be loaded with high amounts of ginkgetin and berberine; (iv) ginkgetin plus berberine-loaded EVAvo (EVAvo(B+G) ) suppress activation of NFκB and NLRP3, and inhibit expression of pro-inflammatory and atherogenic genes, specifically Cd36, Tnfα, Il1ß and Il6; (v) EVAvo(B+G) attenuate oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation and (vi) EVAvo(B+G) inhibit oxLDL uptake but not its cell surface binding during foam cell formation. Overall, our results suggest that using EVAvo as a natural carrier of nutraceuticals may improve strategies to curb the progression of atherosclerosis by limiting inflammation and pro-atherogenic responses.
Assuntos
Aterosclerose , Berberina , Biflavonoides , Persea , Humanos , Células Espumosas , Berberina/farmacologia , Macrófagos , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Lipoproteínas LDLRESUMO
Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.
Assuntos
Biflavonoides , Nucleotídeos Cíclicos , Fosfolipases , Humanos , Animais , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Fosfolipase C gama/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Fosfolipases/metabolismo , Fosfolipases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Proteína Quinase C/metabolismo , Fosforilação , Colágeno/metabolismoRESUMO
Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.
Assuntos
Apoptose , Biflavonoides , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Biflavonoides/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Biologia Computacional/métodosRESUMO
We have previously developed a bacterial artificial chromosome (BAC)-vectored SARS-CoV-2 replicon, namely BAC-CoV2-Rep, which, upon transfection into host cells, serves as a transcription template for SARS-CoV-2 replicon mRNA to initiate replicon replication and produce nanoluciferase (Nluc) reporter from the subgenomic viral mRNA. However, an inherent issue of such DNA-launched replicon system is that the nascent full-length replicon transcript undergoes process by host RNA splicing machinery, which reduces replicon replication and generates spliced mRNA species expressing NLuc reporter independent of replicon replication. To mitigate this problem, we employed Isoginkgetin, a universal eukaryotic host splicing inhibitor, to treat cells transfected with BAC-CoV2-Rep. Isoginkgetin effectively increased the level of full-length replicon transcripts while concurrently reducing the level of Nluc signal derived from spliced replicon mRNA, making the Nluc reporter signal more correlated with replicon replication, as evidenced by treatment with known SARS-CoV-2 replication inhibitors including Remdesivir, GC376, and EIDD-1931. Thus, our study emphasizes that host RNA splicing is a confounding factor for DNA-launched SARS-CoV-2 replicon systems, which can be mitigated by Isoginkgetin treatment.
Assuntos
Biflavonoides , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Replicon , RNA Mensageiro , Replicação ViralRESUMO
Enterococcus faecalis, an opportunistic pathogen responsible for nosocomial infections, exhibits increased pathogenicity via biofilm formation. Theaflavin-3,3'-digallate (TF3), a theaflavin extracted from black tea, exhibits potent antibacterial effects. In the present study, we investigated the inhibitory effect of TF3 on E. faecalis. Our results indicated that TF3 significantly inhibited E. faecalis ATCC 29212 biofilm formation. This observation was further confirmed via crystal violet staining, confocal laser scanning microscopy, and field emission-scanning electron microscopy. To disclose the underlying mechanisms, RNA-seq was applied. TF3 treatment significantly altered the transcriptomic profile of E. faecalis, as evidenced by identification of 248 differentially expressed genes (DEGs). Through functional annotation of these DEGs, several quorum-sensing pathways were found to be suppressed in TF3-treated cultures. Further, gene expression verification via real-time PCR confirmed the downregulation of gelE, sprE, and secY by TF3. These findings highlighted the ability of TF3 to impede E. faecalis biofilm formation, suggesting a novel preventive strategy against E. faecalis infections.
Assuntos
Antibacterianos , Biflavonoides , Biofilmes , Catequina , Enterococcus faecalis , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Percepção de Quorum/efeitos dos fármacos , Biflavonoides/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia , Catequina/farmacologia , Catequina/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS: HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS: ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION: PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.
Assuntos
Anti-Inflamatórios , Apoptose , Biflavonoides , Catequina , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , NF-kappa B , Estresse Oxidativo , Proantocianidinas , Transdução de Sinais , Humanos , Lipoproteínas LDL/toxicidade , Catequina/farmacologia , Proantocianidinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Biflavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Antioxidantes/farmacologia , Células THP-1 , Quimiotaxia de Leucócito/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genéticaRESUMO
Procyanidins are one of the polyphenols consisting of multiple flavan-3-ols (eg epicatechin). They have a complex chemical structure, with the degree of polymerization and linked position of flavan-3-ols varying among various foods, such as apples and chocolate. Physiological functional studies of procyanidins have investigated their mechanisms in cells and animals based on their antioxidant effects. Recently, the intestinal environment, including the intestinal microflora, has played an important role in the energy metabolism and health status of the host. Regulation of the intestinal environment by dietary polyphenols is becoming a new concept in health functions, and we have begun to investigate the mechanism of apple procyanidins, focusing on the gut microbiota and metabolites in our functional research. In this minireview, we will discuss the effects of procyanidin ingestion on the gut microbiota and metabolites.
Assuntos
Biflavonoides , Catequina , Malus , Proantocianidinas , Animais , Proantocianidinas/química , Polifenóis , Malus/metabolismo , Flavonoides/químicaRESUMO
Liver fibrosis affects approximately 800 million patients worldwide, with over 2 million deaths each year. Nevertheless, there are no approved medications for treating liver fibrosis. In this study, we investigated the impacts of ginkgetin on liver fibrosis and the underlying mechanisms. The impacts of ginkgetin on liver fibrosis were assessed in mouse models induced by thioacetamide or bile duct ligation. Experiments on human LX-2 cells and primary mouse hepatic stellate cells (HSCs) were performed to explore the underlying mechanisms, which were also validated in the mouse models. Ginkgetin significantly decreased hepatic extracellular matrix deposition and HSC activation in the fibrotic models induced by thioacetamide (TAA) and bile duct ligation (BDL). Beneficial effects also existed in inhibiting hepatic inflammation and improving liver function. In vitro experiments showed that ginkgetin markedly inhibited HSC viability and induced HSC apoptosis dose-dependently. Mechanistic studies revealed that the antifibrotic effects of ginkgetin depend on STAT1 activation, as the effects were abolished in vitro after STAT1 silencing and in vivo after inhibiting STAT1 activation by fludarabine. Moreover, we observed a meaningful cross-talk between HSCs and hepatocytes, in which IL-6, released by ginkgetin-induced apoptotic HSCs, enhanced hepatocyte proliferation by activating STAT3 signaling. Ginkgetin exhibits antifibrotic effects by inducing HSC apoptosis via STAT1 activation and enhances hepatocyte proliferation secondary to HSC apoptosis via the IL-6/STAT3 pathway.
Assuntos
Biflavonoides , Células Estreladas do Fígado , Tioacetamida , Camundongos , Animais , Humanos , Tioacetamida/metabolismo , Tioacetamida/farmacologia , Tioacetamida/uso terapêutico , Interleucina-6/metabolismo , Cirrose Hepática/tratamento farmacológico , Modelos Animais de Doenças , Apoptose , Fígado/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/farmacologiaRESUMO
Paraquat (PQ) is a ubiquitous and water-soluble herbicide which has potential to cause systematic poisoning. PQ intoxication is known to be associated with various clinical complications including hepatotoxicity. Amentoflavone (AMF) is an active phenolic compound that exhibits a broad range of biological as well as pharmacological activities. This study was designed to determine the hepato-protective potential of AMF against PQ instigated hepatotoxicity in rats. Forty-eight rats were distributed into four groups such as control group, PQ-treated group (5 mg/kg), PQ (5 mg/kg) + AMF (40 mg/kg) exposed group and AMF (40 mg/kg) only supplemented group. It was revealed that PQ exposure reduced nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidative genes expression whereas increase the expression of Kelch-like ECH-associated protein 1(Keap1). Besides, PQ intoxication reduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSR), glutathione peroxidase (GPx), Heme- oxygenase-1 (HO-1) & glutathione (GSH) content. Furthermore, the levels of reactive oxygen species (ROS) & malondialdehyde (MDA) were increased. In addition, PQ significantly increased the hepatic serum enzymes including alkaline phosphatase (ALP), aspartate transaminase (AST), & alanine transaminase (ALT) along with inflammatory biomarkers levels such as tumor necrosis- α (TNF- α), nuclear factor- κB (NF-κB), interleukin-6 (IL-6), interleukin 1beta (IL-1ß), & cyclooxygenase-2 (COX-2) activity. PQ intoxication increased the expressions of pro-apoptotic markers i.e., Bcl-2-associated X protein (Bax) & Cysteine-aspartic protease-3 (Caspase-3) while reducing the expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Furthermore, PQ intoxication prompted various histopathological impairments. However, the co-administration of AMF significantly improved the abovementioned hepatic damages induced by PQ. The present study indicated that AMF may be an effective therapeutic candidate to mitigate PQ provoked hepatic impairments due to its anti-apoptotic, antioxidant & anti-inflammatory properties.
Assuntos
Biflavonoides , Doença Hepática Induzida por Substâncias e Drogas , Paraquat , Ratos , Animais , Paraquat/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controleRESUMO
MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the ß-amyloid peptide (Aß, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that ß-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-ß, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aß, as well as inflammatory cytokines IL1-ß, IL-6, and NOS2. In cells stimulated with Aß, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.
Assuntos
Doença de Alzheimer , Biflavonoides , MicroRNAs , Humanos , Biflavonoides/farmacologia , Microglia/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismoRESUMO
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, continues to pose significant global health challenges. The results demonstrated that GB-2 at 200 µg/mL effectively increased the population of 293T-ACE2 cells with low RBD binding for both SARS-CoV-2 Omicron EG.5.1 and HV.1 variants by dual-color flow cytometry, indicating its ability to inhibit virus attachment. Further investigation revealed that (+)-catechin at 25 and 50 µg/mL did not significantly alter the ACE2-RBD interaction for the EG.5.1 variant. In contrast, theaflavin showed inhibitory effects at both 25 and 50 µg/mL for EG.5.1, while only the higher concentration was effective for HV.1. Notably, theaflavin 3-gallate exhibited a potent inhibition of ACE2-RBD binding for both variants at both concentrations tested. Molecular docking studies provided insight into the binding mechanisms of theaflavin and theaflavin 3-gallate with the RBD of EG.5.1 and HV.1 variants. Both compounds showed favorable docking scores, with theaflavin 3-gallate demonstrating slightly lower scores (-8 kcal/mol) compared to theaflavin (-7 kcal/mol) for both variants. These results suggest stable interactions between the compounds and key residues in the RBD, potentially explaining their inhibitory effects on virus attachment. In conclusion, GB-2, theaflavin, and theaflavin 3-gallate demonstrate significant potential as inhibitors of the ACE2-RBD interaction in Omicron variants, highlighting their therapeutic promise against COVID-19. However, these findings are primarily based on computational and in vitro studies, necessitating further in vivo research and clinical trials to confirm their efficacy and safety in humans.
Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Biflavonoides , Catequina , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Biflavonoides/farmacologia , Biflavonoides/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular , Células HEK293 , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Ligação Viral/efeitos dos fármacos , Enterovirus Humano B/efeitos dos fármacos , Ácido Gálico/análogos & derivadosRESUMO
Dimeric forms of flavonoids, known as biflavonoids, are much less studied compared to monomeric forms. It is estimated that nearly 600 different natural biflavonoids have been described to date, containing various subtypes that can be subdivided according to the position of their combinations and the nature of the subunits. The group in which two monomers are linked by a 3'-8â³-C atom includes the first isolated biflavonoid ginkgetin, derivatives of amentoflavone, and several other compounds. 3'-8â³-biflavones recently attracted much attention as potential molecules with biological activity such as antiviral and antimicrobial activity and as effective molecules for the treatment of neurodegenerative and metabolic diseases and in cancer therapies. With the growing interest in them as pharmacologically active molecules, there is also increasing interest in finding new natural sources of 3'-8â³-biflavones and optimizing methods for their extraction and identification. Herein, we have summarized the available data on the structural diversity, natural occurrence, role in plants, extraction, and identification of 3'-8â³-biflavones.
Assuntos
Biflavonoides , Biflavonoides/química , Biflavonoides/farmacologia , Biflavonoides/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Estrutura Molecular , Plantas/químicaRESUMO
Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 µM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage.
Assuntos
Animais Recém-Nascidos , Cerebelo , Flavonoides , Fármacos Neuroprotetores , Animais , Fármacos Neuroprotetores/farmacologia , Camundongos , Cerebelo/metabolismo , Cerebelo/efeitos dos fármacos , Flavonoides/farmacologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Glucose/metabolismo , BiflavonoidesRESUMO
Hawthorn seeds are a by-product of fruit processing and due to the scale of processing of this raw material, they can be an important source of bioactive compounds. This work is the first report on the phenolic composition of hawthorn seeds and their antioxidant, anti-inflammatory, antidiabetic, antiobesity and anticancer activities. In the isolated phenolic fraction of six seed species, 23 phenolic compounds were identified using the UPLC-ESI-TQD-MS/MS method, the key ones of which included the B-type procyanidin dimer. The seeds of the tested species showed high antioxidant activity (mainly by scavenging O2â¢- and OH⢠radicals), anti-inflammatory (mainly through LOX inhibition), anti-diabetic, anti-obesity and anti-cancer, with the highest activity against colon cancer cells (Dld-1 line), showing no activity against healthy colon epithelial cells (CCD841CoN). This activity was significantly dependent on the analyzed hawthorn species and, according to PCA analysis, on the content of flavan-3-ols. These discoveries provided the theoretical basis for the possibility of industrial use of hawthorn seeds.
Assuntos
Anti-Inflamatórios , Fármacos Antiobesidade , Antioxidantes , Crataegus , Hipoglicemiantes , Extratos Vegetais , Polifenóis , Sementes , Espectrometria de Massas em Tandem , Crataegus/química , Sementes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Humanos , Anti-Inflamatórios/farmacologia , Polifenóis/farmacologia , Polifenóis/análise , Hipoglicemiantes/farmacologia , Hipoglicemiantes/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/análise , Linhagem Celular Tumoral , Proantocianidinas/farmacologia , Proantocianidinas/análise , Cromatografia Líquida de Alta Pressão , Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Biflavonoides/análise , Catequina , FlavonoidesRESUMO
Hepatitis B virus (HBV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Current therapeutic drugs for chronic HBV infection use IFN and nucleos(t)ide analogs; however, their efficacy is limited. Thus, there is an urgent need to develop new antivirals for HBV therapy. In this study, we identified a plant-derived polyphenolic bioflavonoid, amentoflavone, as a new anti-HBV compound. Amentoflavone treatment dose-dependently inhibited HBV infection in HBV-susceptible cells with HepG2-hNTCP-C4 and primary human hepatocyte PXB-cells. A mode-of-action study showed that amentoflavone inhibits the viral entry step, but not the viral internalization and early replication processes. Attachment of HBV particles as well as HBV preS1 peptide to HepG2-hNTCP-C4 cells was inhibited by amentoflavone. The transporter assay revealed that amentoflavone partly inhibits uptake of sodium taurocholate cotransporting polypeptide (NTCP)-mediated bile acid. Furthermore, effect of various amentoflavone analogs on HBs and HBe production from HBV-infected HepG2-hNTCP-C4 cells was examined. Robustaflavone exhibited comparable anti-HBV activity to that of amentoflavone and an amentoflavone-7,4', 4â´-trimethyl ether derivative (sciadopitysin) with moderate anti-HBV activity. Cupressuflavone or the monomeric flavonoid apigenin did not exhibit the antiviral activity. Amentoflavone and its structurally related biflavonoids may provide a potential drug scaffold in the design of a new anti-HBV drug inhibitor targeting NTCP.
Assuntos
Biflavonoides , Hepatite B , Humanos , Vírus da Hepatite B , Biflavonoides/farmacologia , Biflavonoides/metabolismo , Biflavonoides/uso terapêutico , Hepatite B/tratamento farmacológico , Hepatócitos , Antivirais/uso terapêutico , Internalização do VírusRESUMO
Biflavonoids are naturally occurring compounds consisting of two flavonoid moieties that have received substantial attention from researchers. Although many kinds of biflavonoids are typically distributed in Selaginella uncinata with hypoglycemic effect, their anti-α-glucosidase activities are not yet clear. In this study, a ligand fishing strategy for fast screening of α-glucosidase inhibitors from S. uncinata was proposed. α-Glucosidase was first immobilized on Fe3 O4 magnetic nanoparticles (MNPs) and then the α-glucosidase-functionalized MNPs were incubated with crude extracts of S. uncinata to fish out the ligands. Furthermore, considering the similarity and easy confusion of the structures of biflavonoids, the fragmentation patterns of different types of biflavonoids were studied. Based on this, 11 biflavonoids ligands with α-glucosidase inhibitory activities were accurately and quickly identified from S. uncinata with ultra-high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry. Furthermore, these ligands were confirmed to be potential inhibitors through the in vitro inhibitory assay and molecular docking.
Assuntos
Biflavonoides , Selaginellaceae , Animais , alfa-Glucosidases , Biflavonoides/farmacologia , Biflavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Ligantes , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Selaginellaceae/química , Espectrometria de Massas em Tandem/métodosRESUMO
The aim of this study was to investigate the effect of biflavonoids in Ginkgo biloba leaves on tacrolimus metabolism. First, the inhibitory effects of five main biflavonoids (amentoflavone, sciadopitysin, ginkgetin, isoginkgetin, bilobetin) in G. biloba leaves on tacrolimus metabolism were investigated in vitro in human liver microsomes (HLM), and the concentration-dependent inhibition was further calculated. Then the time-dependent inhibition activities of five biflavonoids were studied and the drug interaction was studied in Sprague-Dawley (SD) rats. Finally, the molecular mechanism of inhibition was explored by molecular docking. The results of in vitro incubation in HLM showed tacrolimus metabolism was strongly inhibited by amentoflavone, ginkgetin, and bilobetin, whose IC50 value was 5.57, 3.16, and 5.03 µM, respectively. The time-dependent inhibition of the three above biflavonoids at 50 µM was 33.47%-50.89%. In the in vivo study in rats, the AUC0-t and Cmax of tacrolimus increased 3.8-fold and 2.5-fold after oral preadministration with amentoflavone. The molecular docking results showed that the inhibitory effect may be related to the formation of hydrogen bonds. The results showed that long-term combination of G. biloba leaves and tacrolimus may cause drug-drug interactions. This study provided theoretical and experimental basis for rational drug use in clinical practice.