RESUMO
BACKGROUND AIMS: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, offer groundbreaking therapeutic potential for degenerative diseases and cellular repair. Despite their significance, a comprehensive bibliometric analysis in this field, particularly in relation to age-related macular degeneration (AMD), is yet to be conducted. This study aims to map the foundational and emerging areas in stem cell and AMD research through bibliometric analysis. METHODS: This study analyzed articles and reviews on stem cells and AMD from 2000 to 2022, sourced from the Web of Science Core Collection. We used VOSviewer and CiteSpace for analysis and visualization of data pertaining to countries, institutions, authors, journals, references and key words. Statistical analyses were conducted using R language and Microsoft Excel 365. RESULTS: In total, 539 publications were included, indicating an increase in global literature on stem cells and AMD from 2000 to 2022. The USA was the leading contributor, with 239 papers and the highest H-index, also the USA had the highest average citation rate per article (59.82). Notably, 50% of the top 10 institutions were from the USA, with the University of California system being the most productive. Key authors included Masayo Takahashi, Michiko Mandai, Dennis Clegg, Pete J. Coffey, Boris Stanzel, and Budd A. Tucker. Investigative Ophthalmology & Visual Science published the majority of relevant papers (n = 27). Key words like "clinical trial," "stem cell therapy," "retinal organoid," and "retinal progenitor cells" were predominant. CONCLUSIONS: Research on stem cells and AMD has grown significantly, highlighting the need for increased global cooperation. Current research prioritizes the relationship between "ipsc," "induced pluripotent stem cell," "cell culture," and "human embryonic stem cell." As stem cell culture and safety have advanced, focus has shifted to prognosis and complications post-transplantation, signifying the movement of stem cell research from labs to clinical settings.
Assuntos
Bibliometria , Degeneração Macular , Transplante de Células-Tronco , Humanos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/terapia , Transplante de Células-Tronco/métodosRESUMO
The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.
Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Desenvolvimento Fetal , Células-Tronco Hematopoéticas/metabolismo , Transferência Adotiva , Células-Tronco Adultas/citologia , Células-Tronco Adultas/imunologia , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/imunologia , Células-Tronco Embrionárias/transplante , Feminino , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/imunologia , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas com Domínio LIM , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Ligação Proteica , Elementos Reguladores de Transcrição/genética , Elementos Reguladores de Transcrição/imunologia , Ativação Transcricional/genética , Ativação Transcricional/imunologiaRESUMO
Implantation of the blastocyst is a developmental milestone in mammalian embryonic development. At this time, a coordinated program of lineage diversification, cell-fate specification, and morphogenetic movements establishes the generation of extra-embryonic tissues and the embryo proper, and determines the conditions for successful pregnancy and gastrulation. Despite its basic and clinical importance, this process remains mysterious in humans. Here we report the use of a novel in vitro system to study the post-implantation development of the human embryo. We unveil the self-organizing abilities and autonomy of in vitro attached human embryos. We find human-specific molecular signatures of early cell lineage, timing, and architecture. Embryos display key landmarks of normal development, including epiblast expansion, lineage segregation, bi-laminar disc formation, amniotic and yolk sac cavitation, and trophoblast diversification. Our findings highlight the species-specificity of these developmental events and provide a new understanding of early human embryonic development beyond the blastocyst stage. In addition, our study establishes a new model system relevant to early human pregnancy loss. Finally, our work will also assist in the rational design of differentiation protocols of human embryonic stem cells to specific cell types for disease modelling and cell replacement therapy.
Assuntos
Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Âmnio/citologia , Âmnio/embriologia , Animais , Diferenciação Celular , Linhagem da Célula , Perda do Embrião/patologia , Embrião de Mamíferos/anatomia & histologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/patologia , Células-Tronco Embrionárias/transplante , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Humanos , Técnicas In Vitro , Camundongos , Modelos Biológicos , Especificidade da Espécie , Trofoblastos/citologia , Saco Vitelino/citologia , Saco Vitelino/embriologiaRESUMO
Cardiovascular dysfunction often occurs after high-level spinal cord injury. Disrupting supraspinal vasomotor pathways affects basal hemodynamics and contributes to the development of autonomic dysreflexia (AD). Transplantation of early-stage neurons to the injured cord may reconstruct the descending projections to enhance cardiovascular performance. To determine the specific role of reestablishing serotonergic regulation of hemodynamics, we implanted serotonergic (5-HT+) neuron-enriched embryonic raphe nucleus-derived neural stem cells/progenitors (RN-NSCs) into a complete spinal cord transection lesion site in adult female rats. Grafting embryonic spinal cord-derived NSCs or injury alone served as 2 controls. Ten weeks after injury/grafting, histological analysis revealed well-survived grafts and partial integration with host tissues in the lesion site. Numerous graft-derived serotonergic axons topographically projected to the caudal autonomic regions. Neuronal tracing showed that host supraspinal vasomotor pathways regenerated into the graft, and 5-HT+ neurons within graft and host brainstem neurons were transsynaptically labeled by injecting pseudorabies virus (PRV-614) into the kidney, indicating reconnected serotonergic circuits regulating autonomic activity. Using an implanted telemeter to record cardiovascular parameters, grafting RN-NSCs restored resting mean arterial pressure to normal levels and remarkably alleviated naturally occurring and colorectal distension-induced AD. Subsequent pharmacological blockade of 5-HT2A receptors with ketanserin in RN-NSC-grafted rats reduced resting mean arterial pressure and increased heart rate in all but 2 controls. Furthermore, spinal cord retransection below RN-NSC grafts partially eliminated the recovery in AD. Collectively, these data indicate that RN-NSCs grafted into a spinal cord injury site relay supraspinal control of serotonergic regulation for sympathetic activity to improve cardiovascular function.SIGNIFICANCE STATEMENT Disruption of supraspinal vasomotor pathways results in cardiovascular dysfunction following high-level spinal cord injury. To reestablish the descending regulation of autonomic function, we transplanted serotonergic neuron enriched embryonic raphe nucleus-derived neural stem cells/progenitors into the lesion site of completely transected rat spinal cord. Consequently, grafted raphe nucleus-derived neural stem cells/progenitors acted as a neuronal relay to reconnect supraspinal center and spinal sympathetic neurons below the injury. The reconstituted serotonergic regulation of sympathetic activity led to the improvement of hemodynamic parameters and mitigated autonomic dysreflexia. Based on morphological and physiological results, this study validates the effectiveness of transplanting early-stage serotonergic neurons into the spinal cord for cardiovascular functional recovery after spinal cord injury.
Assuntos
Disreflexia Autonômica/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Hemodinâmica/fisiologia , Células-Tronco Neurais/transplante , Neurônios Serotoninérgicos/transplante , Animais , Células-Tronco Embrionárias/transplante , Feminino , Núcleos da Rafe/citologia , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/fisiopatologia , Transplante de Células-Tronco/métodos , Sistema Nervoso Simpático/fisiopatologiaRESUMO
In the process of exploring new methods for cataract treatment, lens regeneration is an ideal strategy for effectively restoring accommodative vision and avoiding postoperative complications and has great clinical potential. Lens regeneration, which is not a simple repetition of lens development, depends on the complex regulatory network comprising the FGF, BMP/TGF-ß, Notch, and Wnt signaling pathways. Current research mainly focuses on in situ and in vitro lens regeneration. On the one hand, the possibility of the autologous stem cell in situ regeneration of functional lenses has been confirmed; on the other hand, both embryonic stem cells and induced pluripotent stem cells have been induced into lentoid bodies in vitro which are similar to the natural lens to a certain extent. This article will briefly summarize the regulatory mechanisms of lens development, describe the recent progress of lens regeneration, explore the key molecular signaling pathways, and, more importantly, discuss the prospects and challenges of their clinical applications to provide reference for clinical transformations.
Assuntos
Catarata , Cristalino , Regeneração/fisiologia , Animais , Catarata/metabolismo , Catarata/patologia , Catarata/terapia , Diferenciação Celular , Células-Tronco Embrionárias/transplante , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/transplante , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/fisiologiaRESUMO
Spinal cord injury is a serious problem with a high rate of morbidity and mortality for all persons, especially young people (15-25 years old). Due to the large burden and the costs incurred on the government, finding the best therapeutic approach is necessary. In this respect, treatment strategies based on the disease mechanism can be effective. After the first trauma of spinal cord cascades, cellular events happen one after the other known as secondary trauma. The mechanism of secondary events of spinal cord injury could be helpful for target therapy as trying to stop the secondary trauma. Herein, some medical and surgical therapy has been introduced and cell therapy strategy was considered as a recent method. Actually, cell therapy is defined as the application of different cells including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and some others to replace or reconstruct the damaged tissues and restore their functions. However, as a newly emerged therapeutic method, cell therapy should be used through various subclinical studies in animal models to assess the efficacy of the treatment under controlled conditions. In this review, the role of Zebrafish as a recommended model has been discussed and combinatory approach as the probably most useful treatment has been suggested.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa/métodos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Regeneração Nervosa , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Peixe-ZebraRESUMO
Transplantation of appropriate neuronal precursors after injury is a promising strategy to reconstruct cortical circuits, but the efficiency of these approaches remains limited. Here, we applied targeted apoptosis to selectively ablate layer II/III pyramidal neurons in the rat juvenile cerebral cortex and attempted to replace lost neurons with their appropriate embryonic precursors by transplantation. We demonstrate that grafted precursors do not migrate to replace lost neurons but form vascularized clusters establishing reciprocal synaptic contacts with host networks and show functional integration. These heterotopic neuronal clusters significantly enhance the activity of the host circuits without causing epileptic seizures and attenuate the apoptotic injury-induced functional deficits in electrophysiological and behavioral tests. Chemogenetic activation of grafted neurons further improved functional recovery, and the persistence of the graft was necessary for maintaining restored functions in adult animals. Thus, implanting neuronal precursors capable to form synaptically integrated neuronal clusters combined with activation-based approaches represents a useful strategy for helping long-term functional recovery following brain injury.
Assuntos
Lesões Encefálicas , Células-Tronco Embrionárias/transplante , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Animais , Ratos , Ratos WistarRESUMO
Stem cells have the potential as a regenerative therapy for cerebral ischemia by improving functional outcomes. However, cell transplantation has some limitations, including a low rate of the grafted cell survival. There is still a major challenge of promoting the harmonious symbiosis between grafted cells and the host. Acupuncture can effectively improve the functional outcome after cerebral ischemia. The present study evaluated the therapeutic effects and explored the mechanism of combined medial ganglionic eminence (MGE) neural progenitors differentiated from human embryonic stem cells (hESCs) with electroacupuncture (EA) in a bilateral common carotid artery occlusion (2VO) rat model. The results showed that EA could promote the survival of the grafted MGE neural progenitors differentiated from hESCs and alleviate learning and memory impairment in rats with cerebral ischemia. This may have partially resulted from inhibited expression of TNF-α and IL-1ß and increased vascular endothelial growth factor (VEGF) expression and blood vessel density in the hippocampus. Our findings indicated that EA could promote the survival of the grafted MGE neural progenitors and enhance transplantation therapy's efficacy by promoting angiogenesis and inhibiting inflammation.
Assuntos
Isquemia Encefálica/terapia , Eletroacupuntura/métodos , Mediadores da Inflamação/antagonistas & inibidores , Eminência Mediana/transplante , Neovascularização Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Eminência Mediana/citologia , Eminência Mediana/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Ratos , Ratos Sprague-DawleyRESUMO
The pathophysiology of preeclampsia (PE) is poorly understood; however, there is a large body of evidence that suggests a role of immune cells in the development of PE. Amongst these, B cells are a dominant element in the pathogenesis of PE, and they have been shown to play an important role in various immune-mediated diseases, both as pro-inflammatory and regulatory cells. Perinatal cells are defined as cells from birth-associated tissues isolated from term placentas and fetal annexes and more specifically from the amniotic membrane, chorionic membrane, chorionic villi, umbilical cord (including Wharton's jelly), the basal plate, and the amniotic fluid. They have drawn particular attention in recent years due to their ability to modulate several aspects of immunity, making them promising candidates for the prevention and treatment of various immune-mediated diseases. In this review we describe main findings regarding the multifaceted in vitro and in vivo immunomodulatory properties of perinatal cells, with a focus on B lymphocytes. Indeed, we discuss evidence on the ability of perinatal cells to inhibit B cell proliferation, impair B cell differentiation, and promote regulatory B cell formation. Therefore, the findings discussed herein unveil the possibility to modulate B cell activation and function by exploiting perinatal immunomodulatory properties, thus possibly representing a novel therapeutic strategy in PE.
Assuntos
Linfócitos B/imunologia , Células-Tronco Embrionárias/transplante , Pré-Eclâmpsia/imunologia , Animais , Células-Tronco Embrionárias/imunologia , Feminino , Humanos , Pré-Eclâmpsia/terapia , Gravidez , Transplante de Células-Tronco/métodosRESUMO
Interspecies chimeric assays are a valuable tool for investigating the potential of human stem and progenitor cells, as well as their differentiated progeny. This Spotlight article discusses the different factors that affect interspecies chimera generation, such as evolutionary distance, developmental timing, and apoptosis of the transplanted cells, and suggests some possible strategies to address them. A refined approach to generating interspecies chimeras could contribute not only to a better understanding of cellular potential, but also to understanding the nature of xenogeneic barriers and mechanisms of heterochronicity, to modeling human development, and to the creation of human transplantable organs.
Assuntos
Pesquisa com Células-Tronco , Quimeras de Transplante , Animais , Apoptose , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Especificidade da Espécie , Pesquisa com Células-Tronco/éticaRESUMO
An intrinsic timing mechanism specifies the positional values of the zeugopod (i.e. radius/ulna) and then autopod (i.e. wrist/digits) segments during limb development. Here, we have addressed whether this timing mechanism ensures that patterning events occur only once by grafting GFP-expressing autopod progenitor cells to the earlier host signalling environment of zeugopod progenitor cells. We show by detecting Hoxa13 expression that early and late autopod progenitors fated for the wrist and phalanges, respectively, both contribute to the entire host autopod, indicating that the autopod positional value is irreversibly determined. We provide evidence that Hoxa13 provides an autopod-specific positional value that correctly allocates cells into the autopod, most likely through the control of cell-surface properties as shown by cell-cell sorting analyses. However, we demonstrate that only the earlier autopod cells can adopt the host proliferation rate to permit normal morphogenesis. Therefore, our findings reveal that the ability of embryonic cells to differentially reset their intrinsic behaviours confers robustness to limb morphogenesis. We speculate that this plasticity could be maintained beyond embryogenesis in limbs with regenerative capacity.
Assuntos
Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Padronização Corporal , Pontos de Checagem do Ciclo Celular , Linhagem da Célula , Embrião de Galinha , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/metabolismo , Regeneração , Asas de Animais/citologia , Asas de Animais/embriologia , Asas de Animais/metabolismoRESUMO
BACKGROUND: The limited availability of donor kidneys for transplantation has spurred interest in investigating alternative strategies, such as regenerating organs from stem cells transplanted into animal embryos. However, there is no known method for transplanting cells into later-stage embryos, which may be the most suitable host stages for organogenesis, particularly into regions useful for kidney regeneration. METHODS: We demonstrated accurate transplantation of renal progenitor cells expressing green fluorescent protein to the fetal kidney development area by incising the opaque uterine muscle layer but not the transparent amniotic membrane. We allowed renal progenitor cell-transplanted fetuses to develop for 6 days postoperatively before removal for analysis. We also transplanted renal progenitor cells into conditional kidney-deficient mouse embryos. We determined growth and differentiation of transplanted cells in all cases. RESULTS: Renal progenitor cell transplantation into the retroperitoneal cavity of fetuses at E13-E14 produced transplant-derived, vascularized glomeruli with filtration function and did not affect fetal growth or survival. Cells transplanted to the nephrogenic zone produced a chimera in the cap mesenchyme of donor and host nephron progenitor cells. Renal progenitor cells transplanted to conditional kidney-deficient fetuses induced the formation of a new nephron in the fetus that is connected to the host ureteric bud. CONCLUSIONS: We developed a cell transplantation method for midstage to late-stage fetuses. In vivo kidney regeneration from renal progenitor cells using the renal developmental environment of the fetus shows promise. Our findings suggest that fetal transplantation methods may contribute to organ regeneration and developmental research.
Assuntos
Células-Tronco Embrionárias/transplante , Rim/fisiologia , Regeneração/fisiologia , Animais , Transferência Embrionária , Feminino , Genes Reporter , Idade Gestacional , Rim/citologia , Rim/embriologia , Masculino , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Néfrons/embriologia , Espaço Retroperitoneal , Quimeras de TransplanteRESUMO
Neurological disorders, such as stroke, are triggered by a loss of neurons and glial cells. Ischemic stroke remains a substantial problem for industrialized countries. Over the previous few decades our understanding about the pathophysiology of stroke has enhanced, nevertheless, more awareness is required to advance the field of stroke recovery. Existing therapies are incapable to adequately relief the disease outcome and are not appropriate to all patients. Meanwhile, the majority of patients continue to show neurological deficits even subsequent effective thrombolysis, recuperative therapies are immediately required that stimulate brain remodeling and repair once stroke damage has happened. Cell therapy is emergent as a hopeful new modality for increasing neurological recovery in ischemic stroke. Numerous types of stem cells from various sources have been identified and their possibility and efficiency for the treatment of stroke have been investigated. Stem cell therapy in patients with stroke using adult stem cells have been first practiced in clinical trials since 15 years ago. Even though stem cells have revealed a hopeful role in ischemic stroke in investigational studies besides early clinical pilot studies, cellular therapy in human is still at a primary stage. In this review, we summarize the types of stem cells, various delivery routes, and clinical application of stem cell-based therapy for stroke treatment.
Assuntos
Isquemia Encefálica/terapia , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/terapia , Células-Tronco Adultas/transplante , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Ensaios Clínicos como Assunto , Células-Tronco Embrionárias/transplante , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologiaRESUMO
Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed SCs (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs, epiblast SCs, and primordial germ cells suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review, we will critically discuss all these questions and the concept that small dormant SCs related to migratory primordial germ cells, described as very small embryonic-like SCs, are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue-committed SCs and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human very small embryonic-like SC in chemically defined media free from feeder-layer cells open up new and exciting possibilities for their application in regenerative medicine.
Assuntos
Células-Tronco Adultas/fisiologia , Células-Tronco Embrionárias/fisiologia , Miócitos Cardíacos/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/transplante , Camadas Germinativas/fisiologia , Camadas Germinativas/transplante , Humanos , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplanteRESUMO
RATIONALE: Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. OBJECTIVE: To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. METHODS AND RESULTS: Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. CONCLUSIONS: This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.
Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Animais , Linhagem Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Transplante de Células-Tronco/métodosAssuntos
Pesquisa Biomédica/estatística & dados numéricos , Animais , Animais Geneticamente Modificados , Animais de Laboratório/genética , Autoria , Bibliometria , Engenharia Biomédica/estatística & dados numéricos , Pesquisa Biomédica/economia , Pesquisa Biomédica/ética , Pesquisa Biomédica/legislação & jurisprudência , Sistemas CRISPR-Cas/genética , Criança , China , Modelos Animais de Doenças , Pesquisas com Embriões/ética , Células-Tronco Embrionárias/transplante , Pessoal Profissional Estrangeiro/provisão & distribuição , Edição de Genes/ética , Haplorrinos/genética , Humanos , Masculino , CoelhosRESUMO
PURPOSE OF REVIEW: Discogenic low back pain (DLBP) stems from pathology in one or more intervertebral discs identified as the root cause of the pain. It is the most common type of chronic low back pain (LBP), representing 26-42% of attributable cases. RECENT FINDINGS: The clinical presentation of DLBP includes increased pain when sitting, coughing, or sneezing, and experiencing relief when standing or ambulating. Dermatomal radiation of pain to the lower extremity and neurological symptoms including numbness, motor weakness, and urinary or fecal incontinence are signs of advanced disease with disc prolapse, nerve root compression, or spinal stenosis. Degenerative disc disease is caused by both a decrease in disc nutrient supply causing decreased oxygen, lowered pH, and lessened ability of the intervertebral disc (IVD) to respond to increased load or injury; moreover, changes in the extracellular matrix composition cause weakening of the tissue and skewing the extracellular matrix's (ECM) harmonious balance between catabolic and anabolic factors for cell turnover in favor of catabolism. Thus, the degeneration of the disc causes a shift from type II to type I collagen expression by NP cells and a decrease in aggrecan synthesis leads to dehydrated matrix cells ultimately with loss of swelling pressure needed for mechanical support. Cell-based therapies such as autologous nucleus pulposus cell re-implantation have in animal models and human trials shown improvements in LBP score, retention of hydration in IVD, and increased disc height. Percutaneously delivered multipotent mesenchymal stem cell (MSC) therapy has been proposed as a potential means to uniquely ameliorate discogenic LBP holistically through three mechanisms: mitigation of primary nociceptive disc pain, slow or reversal of the catabolic metabolism, and restoration of disc tissue. Embryonic stem cells (ESCs) can differentiate into cells of all three germ layers in vitro, but their use is hindered related to ethical concerns, potential for immune rejection after transplantation, disease, and teratoma formation. Another similar approach to treating back pain is transplantation of the nucleus pulposus, which, like stem cell therapy, seeks to address the underlying cause of intervertebral disc degeneration by aiming to reverse the destructive inflammatory process and regenerate the proteoglycans and collagen found in healthy disc tissue. Preliminary animal models and clinical studies have shown mesenchymal stem cell implantation as a potential therapy for IVD regeneration and ECM restoration via a shift towards favorable anabolic balance and reduction of pain.
Assuntos
Degeneração do Disco Intervertebral/terapia , Dor Lombar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Células-Tronco Embrionárias/transplante , Humanos , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/diagnóstico , Dor Lombar/diagnóstico , Dor Lombar/etiologia , Transplante de Células-Tronco Mesenquimais/tendências , Resultado do TratamentoRESUMO
Recent advances in stem cell biology present significant opportunities to advance clinical applications of stem cell-based therapies for spinal cord injury (SCI). In this review, the authors critically analyze the basic science and translational evidence that supports the use of various stem cell sources, including induced pluripotent stem cells, oligodendrocyte precursor cells, and mesenchymal stem cells. They subsequently explore recent advances in stem cell biology and discuss ongoing clinical translation efforts, including combinatorial strategies utilizing scaffolds, biogels, and growth factors to augment stem cell survival, function, and engraftment. Finally, the authors discuss the evolution of stem cell therapies for SCI by providing an overview of completed (n = 18) and ongoing (n = 9) clinical trials.
Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais , Células Precursoras de Oligodendrócitos/transplante , Traumatismos da Medula Espinal/terapia , Tecido Adiposo/citologia , Células da Medula Óssea , Ensaios Clínicos como Assunto , Células-Tronco Embrionárias/transplante , Previsões , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Alicerces Teciduais , Cordão Umbilical/citologiaRESUMO
Stem cells (SCs) are classes of undifferentiated biological cells existing only at the embryonic, fetal, and adult stages that can divide to produce specialized cell types during fetal development and remain in our bodies throughout life. The progression of regenerative and reproductive medicine owes the advancement of respective in vitro and in vivo biological science on the stem cell nature under appropriate conditions. The SCs are promising therapeutic tools to treat currently of infertility because of wide sources and high potency to differentiate. Nevertheless, no effective remedies are available to deal with severe infertility due to congenital or gonadotoxic stem cell deficiency in prepubertal childhood. Some recent solutions have been developed to address the severe fertility problems, including in vitro formation of germ cells from stem cells, induction of pluripotency from somatic cells, and production of patient-specific pluripotent stem cells. There is a possibility of fertility restoration using the in vitro formation of germ cells from somatic cells. Accordingly, the present review aimed at studying the literature published on the medical application of stem cells in reproductive concerns.
Assuntos
Azoospermia/terapia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Infertilidade Masculina/terapia , Adolescente , Adulto , Azoospermia/patologia , Diferenciação Celular/genética , Células-Tronco Embrionárias/transplante , Células Germinativas/citologia , Células Germinativas/patologia , Células Germinativas/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Infertilidade Masculina/patologia , Masculino , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Neoplasias Testiculares/terapia , Adulto JovemRESUMO
The constant quest for generation of large number of islets aimed us to explore the differentiation potential of mouse embryo fibroblast cells. Mouse embryo fibroblast cells isolated from 12- to 14-day-old pregnant mice were characterized for their surface markers and tri-lineage differentiation potential. They were subjected to serum-free media containing a cocktail of islet differentiating reagents and analyzed for the expression of pancreatic lineage transcripts. The islet-like cell aggregates (ICAs) was confirmed for their pancreatic properties via immunofluorecence for C-peptide, glucagon, and somatostain. They were positive for CD markers-Sca1, CD44, CD73, and CD90 and negative for hematopoietic markers-CD34 and CD45 at both transcription and translational levels. The transcriptional analysis of the ICAs at different day points exhibited up-regulation of islet markers (Insulin, PDX1, HNF3, Glucagon, and Somatostatin) and down-regulation of MSC-markers (Vimentin and Nestin). They positively stained for dithizone, C-peptide, insulin, glucagon, and somatostatin indicating intact insulin producing machinery. In vitro glucose stimulation assay revealed three-fold increase in insulin secretion as compared to basal glucose with insulin content being the same in both the conditions. The preliminary in vivo data on ICA transplantation showed reversal of diabetes in streptozotocin induced diabetic mice. Our results demonstrate for the first time that mouse embryo fibroblast cells contain a population of MSC-like cells which could differentiate into insulin producing cell aggregates. Hence, our study could be extrapolated for isolation of MSC-like cells from human, medically terminated pregnancies to generate ICAs for treating type 1 diabetic patients.