RESUMO
The human cerebrum consists of a precise and stereotyped arrangement of lobes, primary gyri, and connectivity that underlies human cognition [P. Rakic, Nat. Rev. Neurosci. 10, 724-735 (2009)]. The development of this arrangement is less clear. Current models explain individual primary gyrification but largely do not account for the global configuration of the cerebral lobes [T. Tallinen, J. Y. Chung, J. S. Biggins, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 111, 12667-12672 (2014) and D. C. Van Essen, Nature 385, 313-318 (1997)]. The insula, buried in the depths of the Sylvian fissure, is unique in terms of gyral anatomy and size. Here, we quantitatively show that the insula has unique morphology and location in the cerebrum and that these key differences emerge during fetal development. Finally, we identify quantitative differences in developmental migration patterns to the insula that may underlie these differences. We calculated morphologic data in the insula and other lobes in adults (N = 107) and in an in utero fetal brain atlas (N = 81 healthy fetuses). In utero, the insula grows an order of magnitude slower than the other lobes and demonstrates shallower sulci, less curvature, and less surface complexity both in adults and progressively throughout fetal development. Spherical projection analysis demonstrates that the lenticular nuclei obstruct 60 to 70% of radial pathways from the ventricular zone (VZ) to the insula, forcing a curved migration to the insula in contrast to a direct radial pathway. Using fetal diffusion tractography, we identify radial glial fascicles that originate from the VZ and curve around the lenticular nuclei to form the insula. These results confirm existing models of radial migration to the cortex and illustrate findings that suggest differential insular and cerebral development, laying the groundwork to understand cerebral malformations and insular function and pathologies.
Assuntos
Desenvolvimento Fetal , Córtex Insular , Córtex Insular/anatomia & histologia , Córtex Insular/diagnóstico por imagem , Córtex Insular/crescimento & desenvolvimento , Imagem de Tensor de Difusão , Humanos , Masculino , Feminino , Adulto Jovem , AdultoRESUMO
PURPOSE: The insula, a cortical structure buried deep within the sylvian fissure, has long posed a surgical challenge. Comprehensive knowledge of the insular anatomy is therefore integral to preoperative planning and safe interventional procedures. Since magnetic resonance imaging (MRI) is a favoured modality for the identification of cerebral structures, this study aimed to investigate the morphology and morphometry of the insula in a South African population, using MRI scans. METHODS: One-hundred MRI studies of insulae (n = 200 hemispheres) were retrospectively analysed for morphological features and morphometric parameters. RESULTS: The insulae were predominantly trapezoidal in shape (Laterality: Left: 82%; Right: 78%; Sex: Male: 84%, Female: 76%). The central insular sulcus was almost always "well seen" (Laterality: Left: 97%; Right: 99%; Sex: Male: 99%, Female: 97%). The middle short insular gyrus (MSG) was most variable in visibility, especially when compared across the sexes (p = 0.004). Insular gyri widths were comparable in both cerebral hemispheres; the posterior long gyrus (PLG) presented with the smallest mean widths. Anterior lobule (AL) widths were larger than those of the posterior lobule (PL). Widths of the insular gyri and lobules were generally larger in males than in females. The MSG and PLG widths in the left hemisphere, AL width in the right hemisphere, and the PL width in both hemispheres were significantly larger in males than in females (p = 0.001; p = 0.005; p = 0.041; p = 0.001, p = 0.015, respectively). CONCLUSION: MRI scans may be used to accurately interpret insular anatomy. The data obtained may aid neurosurgeons to perform safe insula-related surgical procedures.
Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , África do Sul , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Córtex Insular/diagnóstico por imagem , Córtex Insular/anatomia & histologia , Adulto Jovem , Idoso , Adolescente , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/anatomia & histologiaRESUMO
Pain thresholds vary considerably across individuals and are influenced by a number of behavioral, genetic and neurobiological factors. However, the neurobiological underpinnings that account for individual differences remain to be fully elucidated. In this study, we used voxel-based morphometry (VBM) and graph theory, specifically the local clustering coefficient (CC) based on resting-state connectivity, to identify brain regions, where regional gray matter volume and network properties predicted individual pain thresholds. As a main finding, we identified a cluster in the left posterior insular cortex (IC) reaching into the left parietal operculum, including the secondary somatosensory cortex, where both regional gray matter volume and the local CC correlated with individual pain thresholds. We also performed a resting-state functional connectivity analysis using the left posterior IC as seed region, demonstrating that connectivity to the pre- as well as postcentral gyrus bilaterally; that is, to the motor and primary sensory cortices were correlated with individual pain thresholds. To our knowledge, this is the first study that applied VBM in combination with voxel-based graph theory in the context of pain thresholds. The co-location of the VBM and the local CC cluster provide first evidence that both structure and function map to the same brain region while being correlated with the same behavioral measure; that is, pain thresholds. The study highlights the importance of the posterior IC, not only for pain perception in general, but also for the determination of individual pain thresholds.
Assuntos
Variação Biológica Individual , Conectoma , Córtex Insular/anatomia & histologia , Córtex Insular/fisiologia , Imageamento por Ressonância Magnética , Limiar da Dor/fisiologia , Adulto , Humanos , Córtex Insular/diagnóstico por imagem , Adulto JovemRESUMO
The insular lobe has long been investigated, from its anatomical descriptions to its neurophysiological activity. Located in a central location, the insular lobe participates in several afferent and efferent pathways, forming part of the eloquent and fundamental structures that make up the central core of the brain. The lobe of the insula has participation in language function, such as speech, sensory (e.g., taste), limbic, autonomic (visceral), also forming part of complex associative circuits, including part of the circuits of mirror neurons. Several functional descriptions attributed to the insular lobe have beenmade in patients suffering fromcerebrovascular diseases, as well as in those with epilepsy. Much progress and many descriptions have also been made in patients with tumors. Despite much information already available about the insular lobe, it is likely that much will be discovered in the coming years.