Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem J ; 438(2): 389-96, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21352098

RESUMO

Assembly of distinct α subunits of Kv1 (voltage-gated K(+) channels) into tetramers underlies the diversity of their outward currents in neurons. Kv1.4-containing channels normally exhibit N-type rapid inactivation, mediated through an NIB (N-terminal inactivation ball); this can be over-ridden if associated with a Kv1.6 α subunit, via its NIP (N-type inactivation prevention) domain. Herein, NIP function was shown to require positioning of Kv1.6 adjacent to the Kv1.4 subunit. Using a recently devised gene concatenation, heterotetrameric Kv1 channels were expressed as single-chain proteins on the plasmalemma of HEK (human embryonic kidney)-293 cells, so their constituents could be arranged in different positions. Placing the Kv1.4 and 1.6 genes together, followed by two copies of Kv1.2, yielded a K(+) current devoid of fast inactivation. Mutation of critical glutamates within the NIP endowed rapid inactivation. Moreover, separating Kv1.4 and 1.6 with a copy of Kv1.2 gave a fast-inactivating K(+) current with steady-state inactivation shifted to more negative potentials and exhibiting slower recovery, correlating with similar inactivation kinetics seen for Kv1.4-(1.2)(3). Alternatively, separating Kv1.4 and 1.6 with two copies of Kv1.2 yielded slow-inactivating currents, because in this concatamer Kv1.4 and 1.6 should be together. These findings also confirm that the gene concatenation can generate K(+) channels with α subunits in pre-determined positions.


Assuntos
Ativação do Canal Iônico , Canal de Potássio Kv1.4/metabolismo , Canal de Potássio Kv1.6/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.6/química , Mutagênese/genética , Plasmídeos/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Ratos
2.
Proc Natl Acad Sci U S A ; 105(1): 376-81, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162557

RESUMO

Large conductance voltage and Ca(2+)-dependent K(+) channels (BK(Ca)) are activated by both membrane depolarization and intracellular Ca(2+). Recent studies on bacterial channels have proposed that a Ca(2+)-induced conformational change within specialized regulators of K(+) conductance (RCK) domains is responsible for channel gating. Each pore-forming alpha subunit of the homotetrameric BK(Ca) channel is expected to contain two intracellular RCK domains. The first RCK domain in BK(Ca) channels (RCK1) has been shown to contain residues critical for Ca(2+) sensitivity, possibly participating in the formation of a Ca(2+)-binding site. The location and structure of the second RCK domain in the BK(Ca) channel (RCK2) is still being examined, and the presence of a high-affinity Ca(2+)-binding site within this region is not yet established. Here, we present a structure-based alignment of the C terminus of BK(Ca) and prokaryotic RCK domains that reveal the location of a second RCK domain in human BK(Ca) channels (hSloRCK2). hSloRCK2 includes a high-affinity Ca(2+)-binding site (Ca bowl) and contains similar secondary structural elements as the bacterial RCK domains. Using CD spectroscopy, we provide evidence that hSloRCK2 undergoes a Ca(2+)-induced change in conformation, associated with an alpha-to-beta structural transition. We also show that the Ca bowl is an essential element for the Ca(2+)-induced rearrangement of hSloRCK2. We speculate that the molecular rearrangements of RCK2 likely underlie the Ca(2+)-dependent gating mechanism of BK(Ca) channels. A structural model of the heterodimeric complex of hSloRCK1 and hSloRCK2 domains is discussed.


Assuntos
Cálcio/metabolismo , Canal de Potássio Kv1.6/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Dicroísmo Circular , Cristalografia por Raios X/métodos , Humanos , Conformação Molecular , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
3.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868587

RESUMO

RCK domains regulate the activity of K+ channels and transporters in eukaryotic and prokaryotic organisms by responding to ions or nucleotides. The mechanisms of RCK activation by Ca2+ in the eukaryotic BK and bacterial MthK K+ channels are well understood. However, the molecular details of activation in nucleotide-dependent RCK domains are not clear. Through a functional and structural analysis of the mechanism of ATP activation in KtrA, a RCK domain from the B. subtilis KtrAB cation channel, we have found that activation by nucleotide requires binding of cations to an intra-dimer interface site in the RCK dimer. In particular, divalent cations are coordinated by the γ-phosphates of bound-ATP, tethering the two subunits and stabilizing the active state conformation. Strikingly, the binding site residues are highly conserved in many different nucleotide-dependent RCK domains, indicating that divalent cations are a general cofactor in the regulatory mechanism of many nucleotide-dependent RCK domains.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Nucleotídeos/química , Conformação Proteica , Trifosfato de Adenosina/química , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação/genética , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/ultraestrutura , Cátions/química , Cristalografia por Raios X , Canal de Potássio Kv1.6/química , Canal de Potássio Kv1.6/ultraestrutura , Nucleotídeos/genética , Potássio/química , Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/ultraestrutura , Domínios Proteicos/genética , Estrutura Terciária de Proteína , Proteínas Ribossômicas
4.
J Gen Physiol ; 136(2): 189-202, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20624858

RESUMO

Large-conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels play a fundamental role in cellular function by integrating information from their voltage and Ca(2+) sensors to control membrane potential and Ca(2+) homeostasis. The molecular mechanism of Ca(2+)-dependent regulation of BK(Ca) channels is unknown, but likely relies on the operation of two cytosolic domains, regulator of K(+) conductance (RCK)1 and RCK2. Using solution-based investigations, we demonstrate that the purified BK(Ca) RCK1 domain adopts an alpha/beta fold, binds Ca(2+), and assembles into an octameric superstructure similar to prokaryotic RCK domains. Results from steady-state and time-resolved spectroscopy reveal Ca(2+)-induced conformational changes in physiologically relevant [Ca(2+)]. The neutralization of residues known to be involved in high-affinity Ca(2+) sensing (D362 and D367) prevented Ca(2+)-induced structural transitions in RCK1 but did not abolish Ca(2+) binding. We provide evidence that the RCK1 domain is a high-affinity Ca(2+) sensor that transduces Ca(2+) binding into structural rearrangements, likely representing elementary steps in the Ca(2+)-dependent activation of human BK(Ca) channels.


Assuntos
Cálcio/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Sequência de Aminoácidos , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.6/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/genética
5.
J Biol Chem ; 283(34): 23026-32, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18505731

RESUMO

Two venom peptides, CPY-Pl1 (EU000528) and CPY-Fe1 (EU000529), characterized from the vermivorous marine snails Conus planorbis and Conus ferrugineus, define a new class of conopeptides, the conopeptide Y (CPY) family. The peptides have no disulfide cross-links and are 30 amino acids long; the high content of tyrosine is unprecedented for any native gene product. The CPY peptides were chemically synthesized and shown to be biologically active upon injection into both mice and Caenorhabditis elegans; activity on mammalian Kv1 channel isoforms was demonstrated using an oocyte heterologous expression system, and selectivity for Kv1.6 was found. NMR spectroscopy revealed that the peptides were unstructured in aqueous solution; however, a helical region including residues 12-18 for one peptide, CPY-Pl1, formed in trifluoroethanol buffer. Clones obtained from cDNA of both species encoded prepropeptide precursors that shared a unique signal sequence, indicating that these peptides are encoded by a novel gene family. This is the first report of tyrosine-rich bioactive peptides in Conus venom.


Assuntos
Peptídeos/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Tirosina/química , Sequência de Aminoácidos , Animais , Caramujo Conus , DNA Complementar/metabolismo , Canal de Potássio Kv1.6/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Venenos de Moluscos/metabolismo , Oócitos/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Trifluoretanol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA