Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 741-768, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569526

RESUMO

Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/biossíntese , Antígenos O/biossíntese , Poliprenois/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Teicoicos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
2.
Nature ; 604(7905): 371-376, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388216

RESUMO

The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.


Assuntos
Ligases , Lipopolissacarídeos , Antígenos O , Proteínas de Bactérias/química , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Microscopia Crioeletrônica , Glicosiltransferases , Bactérias Gram-Negativas , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo
3.
Plant Physiol ; 195(4): 2877-2890, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38630859

RESUMO

Thousands of barley (Hordeum vulgare L.) mutants have been isolated over the last century, and many are stored in gene banks across various countries. In the present work, we developed a pipeline to efficiently identify causal mutations in barley. The pipeline is also efficient for mutations located in centromeric regions. Through bulked segregant analyses using whole genome sequencing of pooled F2 seedlings, we mapped 2 mutations and identified a limited number of candidate genes. We applied the pipeline on F2 mapping populations made from xan-j.59 (unknown mutation) and xan-l.82 (previously known). The Xantha-j (xan-j) gene was identified as encoding chlorophyll synthase, which catalyzes the last step in the chlorophyll biosynthetic pathway: the addition of a phytol moiety to the propionate side chain of chlorophyllide. Key amino acid residues in the active site, including the binding sites of the isoprenoid and chlorophyllide substrates, were analyzed in an AlphaFold2-generated structural model of the barley chlorophyll synthase. Three allelic mutants, xan-j.19, xan-j.59, and xan-j.64, were characterized. While xan-j.19 is a 1 base pair deletion and xan-j.59 is a nonsense mutation, xan-j.64 causes an S212F substitution in chlorophyll synthase. Our analyses of xan-j.64 and treatment of growing barley with clomazone, an inhibitor of chloroplastic isoprenoid biosynthesis, suggest that binding of the isoprenoid substrate is a prerequisite for the stable maintenance of chlorophyll synthase in the plastid. We further suggest that chlorophyll synthase is a sensor for coordinating chlorophyll and isoprenoid biosynthesis.


Assuntos
Clorofila , Hordeum , Mutação , Proteínas de Plantas , Hordeum/genética , Hordeum/enzimologia , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Genes de Plantas , Mapeamento Cromossômico
4.
Antimicrob Agents Chemother ; 68(5): e0171623, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506550

RESUMO

Outbreaks caused by vancomycin-resistant enterococci that transcend jurisdictional boundaries are occurring worldwide. This study focused on a vancomycin-resistant enterococcus outbreak that occurred between 2018 and 2021 across two cities in Hiroshima, Japan. The study involved genetic and phylogenetic analyses using whole-genome sequencing of 103 isolates of vancomycin-resistant enterococci to identify the source and transmission routes of the outbreak. Phylogenetic analysis was performed using core genome multilocus sequence typing and core single-nucleotide polymorphisms; infection routes between hospitals were inferred using BadTrIP. The outbreak was caused by Enterococcus faecium sequence type (ST) 80 carrying the vanA plasmid, which was derived from strain A10290 isolated in India. Of the 103 isolates, 93 were E. faecium ST80 transmitted across hospitals. The circular vanA plasmid of the Hiroshima isolates was similar to the vanA plasmid of strain A10290 and transferred from E. faecium ST80 to other STs of E. faecium and other Enterococcus species by conjugation. The inferred transmission routes across hospitals suggest the existence of a central hospital serving as a hub, propagating vancomycin-resistant enterococci to multiple hospitals. Our study highlights the importance of early intervention at the key central hospital to prevent the spread of the infection to small medical facilities, such as nursing homes, with limited medical resources and a high number of vulnerable individuals.


Assuntos
Surtos de Doenças , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos , Enterococos Resistentes à Vancomicina , Sequenciamento Completo do Genoma , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Japão/epidemiologia , Humanos , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/isolamento & purificação , Plasmídeos/genética , Infecções por Bactérias Gram-Positivas/transmissão , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Infecção Hospitalar/epidemiologia , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Carbono-Oxigênio Ligases/genética , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Hospitais , Vancomicina/farmacologia , Genoma Bacteriano/genética
5.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39076010

RESUMO

AIMS: To investigate enterococci carrying linezolid and vancomycin resistance genes from fecal samples recovered from wild boars. METHODS AND RESULTS: Florfenicol- and vancomycin-resistant enterococci, isolated on selective agar plates, were screened by PCR for the presence of linezolid and vancomycin resistance genes. Five isolates carried optrA or poxtA linezolid resistance genes; one strain was resistant to vancomycin for the presence of vanA gene. All isolates were tested for their antibiotic susceptibility and subjected to Whole Genome Sequencing (WGS) analysis. In Enterococcus faecalis (E. faecalis) V1344 and V1676, the optrA was located on the new pV1344-optrA and pV1676-optrA plasmids, respectively, whereas in Enterococcus faecium (E. faecium) V1339 this gene was on a 22 354-bp chromosomal genetic context identical to the one detected in a human E. faecium isolate. In both E. faecium V1682 and E. durans V1343, poxtA was on the p1818-c plasmid previously found in a human E. faecium isolate. In E. faecium V1328, the vanA gene was on the Tn1546 transposon in turn located on a new pV1328-vanA plasmid. Only E. faecium V1682 successfully transferred the poxtA gene to an enterococcal recipient in filter mating assays. CONCLUSIONS: The occurrence of genetic elements carrying linezolid and vancomycin resistance genes in enterococci from wild boars is a matter of concern, moreover, the sharing of plasmids and transposons between isolates from wild animals, human, and environment indicates an exchange of genetic material between these settings.


Assuntos
Proteínas de Bactérias , Farmacorresistência Bacteriana , Enterococcus faecalis , Enterococcus faecium , Sus scrofa , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/efeitos dos fármacos , Fezes/microbiologia , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Itália , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Sus scrofa/microbiologia , Resistência a Vancomicina/genética , Sequenciamento Completo do Genoma
6.
Ann Clin Microbiol Antimicrob ; 23(1): 62, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978096

RESUMO

BACKGROUND: This study analyzed the genetic traits and fitness costs of vancomycin-resistant Enterococcus faecium (VREfm) blood isolates carrying Tn1546-type transposons harboring the vanA operon. METHODS: All E. faecium blood isolates were collected from eight general hospitals in South Korea during one-year study period. Antimicrobial susceptibility testing and vanA and vanB PCR were performed. Growth rates of E. faecium isolates were determined. The vanA-positive isolates were subjected to whole genome sequencing and conjugation experiments. RESULTS: Among 308 E. faecium isolates, 132 (42.9%) were positive for vanA. All Tn1546-type transposons harboring the vanA operon located on the plasmids, but on the chromosome in seven isolates. The plasmids harboring the vanA operon were grouped into four types; two types of circular, nonconjugative plasmids (Type A, n = 50; Type B, n = 46), and two types of putative linear, conjugative plasmids (Type C, n = 16; Type D, n = 5). Growth rates of vanA-positive E. faecium isolates were significantly lower than those of vanA-negative isolates (P < 0.001), and reduction in growth rate under vancomycin pressure was significantly larger in isolates harboring putative linear plasmids than in those harboring circular plasmids (P = 0.020). CONCLUSIONS: The possession of vanA operon was costly to bacterial hosts in antimicrobial-free environment, which provide evidence for the importance of reducing vancomycin pressure for prevention of VREfm dissemination. Fitness burden to bacterial hosts was varied by type and size of the vanA operon-harboring plasmid.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbono-Oxigênio Ligases , Elementos de DNA Transponíveis , Enterococcus faecium , Testes de Sensibilidade Microbiana , Óperon , Plasmídeos , Plasmídeos/genética , Enterococcus faecium/genética , Humanos , Proteínas de Bactérias/genética , República da Coreia , Carbono-Oxigênio Ligases/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococos Resistentes à Vancomicina/genética , Resistência a Vancomicina/genética , Aptidão Genética , Vancomicina/farmacologia , Conjugação Genética
7.
Euro Surveill ; 29(23)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847117

RESUMO

BackgroundVancomycin-resistant enterococci (VRE) are increasing in Denmark and Europe. Linezolid and vancomycin-resistant enterococci (LVRE) are of concern, as treatment options are limited. Vancomycin-variable enterococci (VVE) harbour the vanA gene complex but are phenotypically vancomycin-susceptible.AimThe aim was to describe clonal shifts for VRE and VVE in Denmark between 2015 and 2022 and to investigate genotypic linezolid resistance among the VRE and VVE.MethodsFrom 2015 to 2022, 4,090 Danish clinical VRE and VVE isolates were whole genome sequenced. We extracted vancomycin resistance genes and sequence types (STs) from the sequencing data and performed core genome multilocus sequence typing (cgMLST) analysis for Enterococcus faecium. All isolates were tested for the presence of mutations or genes encoding linezolid resistance.ResultsIn total 99% of the VRE and VVE isolates were E. faecium. From 2015 through 2019, 91.1% of the VRE and VVE were vanA E. faecium. During 2020, to the number of vanB E. faecium increased to 254 of 509 VRE and VVE isolates. Between 2015 and 2022, seven E. faecium clusters dominated: ST80-CT14 vanA, ST117-CT24 vanA, ST203-CT859 vanA, ST1421-CT1134 vanA (VVE cluster), ST80-CT1064 vanA/vanB, ST117-CT36 vanB and ST80-CT2406 vanB. We detected 35 linezolid vancomycin-resistant E. faecium and eight linezolid-resistant VVEfm.ConclusionFrom 2015 to 2022, the numbers of VRE and VVE increased. The spread of the VVE cluster ST1421-CT1134 vanA E. faecium in Denmark is a concern, especially since VVE diagnostics are challenging. The finding of LVRE, although in small numbers, ia also a concern, as treatment options are limited.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbono-Oxigênio Ligases , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Linezolida , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Resistência a Vancomicina , Enterococos Resistentes à Vancomicina , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Humanos , Dinamarca/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Linezolida/farmacologia , Resistência a Vancomicina/genética , Sequenciamento Completo do Genoma , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Genótipo
8.
Mikrobiyol Bul ; 58(2): 125-134, 2024 Apr.
Artigo em Turco | MEDLINE | ID: mdl-38676581

RESUMO

The World Health Organization has included the problem of antibiotic resistance among the top 10 important health problems in the world. Treatment of infectious diseases has become more difficult due to the spread of antibiotic resistance between bacteria via transposable elements. Vancomycin-resistant enterococci (VRE) are of critical medical and public health importance due to their association with serious nosocomial infections and high risk of death. One of the most important features of VREs is that they have multiple antibiotic resistance and treatment options are reduced. Therefore, new treatment methods are needed. The vanA gene constitutes the building block of the vancomycin resistance mechanism and causes high resistance to vancomycin. In this study, it was aimed to investigate the neutralization of the vancomycin resistance mechanism by creating vanA antisense RNA (asRNA). The vanA positive VRE50 strain in our culture collection which was isolated from the clinical sample, was used to amplify the vanA gene by polymerase chain reaction (PCR). The amplified vanA amplicon was inserted inversely into the pUC19 plasmid by means of the enzyme cutting sites in the primers used. The resulting plasmid was combined with the pAT392 plasmid which can replicate in gram-positive bacteria and a fusion plasmid was created. The fusion plasmid whose orientation was confirmed, was transferred to the wild strain VRE50 by electroporation method. Minimum inhibitory concentration (MIC) values of transformed VRE (tVRE50) and wild type VRE50 strains used as control were determined by the E-Test method. The vancomycin MIC value of the wild type VRE50 strain was determined as 1024 µg/mL and that of the tVRE50 strain was 32 µg/mL and it was determined that the vancomycin resistance of the tVRE50 strain decreased with asRNA (antisense RNA). Antisense RNA technology is an important method for neutralizing the expression of genes. This study showed that neutralization of the vancomycin resistance gene may provide a lower MIC value in a vancomycin-resistant enterococcus strain and lead to increased susceptibility. This new approach provides a new method for VRE treatment by neutralizing the vancomycin resistance mechanism. The result obtained in this study needs to be supported by in vivo tests.


Assuntos
Proteínas de Bactérias , Carbono-Oxigênio Ligases , RNA Antissenso , Enterococos Resistentes à Vancomicina , Vancomicina , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Carbono-Oxigênio Ligases/genética , RNA Antissenso/genética , Proteínas de Bactérias/genética , Humanos , Vancomicina/farmacologia , Plasmídeos/genética , Resistência a Vancomicina/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Inativação Gênica
9.
Eur J Clin Microbiol Infect Dis ; 41(10): 1245-1261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057762

RESUMO

The aim of our study was to characterize the epidemiological situation concerning nosocomial vancomycin-resistant Enterococcus faecalis of VanA-phenotype (VREfs-VanA) in Poland by investigating their clonal relationships and the vanA-associated mobilome. One-hundred twenty-five clinical isolates of VREfs-VanA collected between 2004 and 2016 were studied by phenotypic assays, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), PCR detection of plasmid-specific genes, and Tn1546 structure and localization mapping. Selected isolates were subjected to PFGE-S1, Southern hybridization, genomic sequencing and conjugation experiments. The majority of isolates (97.6%) belonged to clonal complexes CC2 and CC87 of E. faecalis. All isolates were resistant to vancomycin and teicoplanin, and resistance to ciprofloxacin and aminoglycosides (high level) was very prevalent in this group. VanA phenotype was associated with 16 types of Tn1546, carrying insertion sequences IS1216, ISEfa4, IS1251 and IS1542, located on repUS1pVEF1, rep1pIP501, rep2pRE25, rep9pAD1/pTEF2/pCF10 and rep6pS86 replicons. The most common Tn1546 B- and BB-type transposons, harbouring one or two copies of IS1216, were inserted between rep18ap200B and repUS1pVEF1 genes and located on ~ 20 kb and 150-200 kb plasmids. VREfs-VanA in Poland represent a polyclonal group, indicating a number of acquisitions of the vanA determinant. The repUS1pVEF1-vanA plasmids, unique for Poland, were the main factor beyond the acquisition of vancomycin resistance by E. faecalis, circulating in Polish hospitals.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Aminoglicosídeos , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Ciprofloxacina , Elementos de DNA Transponíveis , Enterococcus faecalis/genética , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Hospitais , Humanos , Tipagem de Sequências Multilocus , Polônia/epidemiologia , Teicoplanina , Vancomicina
10.
J Bacteriol ; 203(16): e0023021, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34060906

RESUMO

Resistance in VanA-type vancomycin-resistant Enterococcus faecium (VREfm) is due to an inducible gene cassette encoding seven proteins (vanRSHAXYZ). This provides for an alternative peptidoglycan (PG) biosynthesis pathway whereby D-Ala-D-Ala is replaced by D-Ala-d-lactate (Lac), to which vancomycin cannot bind effectively. This study aimed to quantify cytoplasmic levels of normal and alternative pathway PG intermediates in VanA-type VREfm by liquid chromatography-tandem mass spectrometry before and after vancomycin exposure and to correlate these changes with changes in vanA operon mRNA levels measured by real-time quantitative PCR (RT-qPCR). Normal pathway intermediates predominated in the absence of vancomycin, with low levels of alternative pathway intermediates. Extended (18-h) vancomycin exposure resulted in a mixture of the terminal normal (UDP-N-acetylmuramic acid [NAM]-l-Ala-D-Glu-l-Lys-D-Ala-D-Ala [UDP-Penta]) and alternative (UDP-NAM-l-Ala-γ-D-Glu-l-Lys-D-Ala-D-Lac [UDP-Pentadepsi]) pathway intermediates (2:3 ratio). Time course analyses revealed normal pathway intermediates responding rapidly (peaking in 3 to 10 min) and alternative pathway intermediates responding more slowly (peaking in 15 to 45 min). RT-qPCR demonstrated that vanA operon mRNA transcript levels increased rapidly after exposure, reaching maximal levels in 15 min. To resolve the effect of increased van operon protein expression on PG metabolite levels, linezolid was used to block protein biosynthesis. Surprisingly, linezolid dramatically reduced PG intermediate levels when used alone. When used in combination with vancomycin, linezolid only modestly reduced alternative UDP-linked PG intermediate levels, indicating substantial alternative pathway presence before vancomycin exposure. Comparison of PG intermediate levels between VREfm, vancomycin-sensitive Enterococcus faecium, and methicillin-resistant Staphylococcus aureus after vancomycin exposure demonstrated substantial differences between S. aureus and E. faecium PG biosynthesis pathways. IMPORTANCE VREfm is highly resistant to vancomycin due to the presence of a vancomycin resistance gene cassette. Exposure to vancomycin induces the expression of genes in this cassette, which encode enzymes that provide for an alternative PG biosynthesis pathway. In VanA-type resistance, these alternative pathway enzymes replace the D-Ala-D-Ala terminus of normal PG intermediates with D-Ala-D-Lac terminated intermediates, to which vancomycin cannot bind. While the general features of this resistance mechanism are well known, the details of the choreography between vancomycin exposure, vanA gene induction, and changes in the normal and alternative pathway intermediate levels have not been described previously. This study comprehensively explores how VREfm responds to vancomycin exposure at the mRNA and PG intermediate levels.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Enterococcus faecium/efeitos dos fármacos , Peptidoglicano/metabolismo , RNA Mensageiro/genética , Vancomicina/farmacologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Enterococcus faecium/enzimologia , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Óperon/efeitos dos fármacos , RNA Mensageiro/metabolismo , Resistência a Vancomicina
11.
J Antimicrob Chemother ; 76(1): 146-151, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33305802

RESUMO

BACKGROUND: VRE are nosocomial pathogens with an increasing incidence in recent decades. Rapid detection is crucial to reduce their spread and prevent infections and outbreaks. OBJECTIVES: To evaluate a lateral flow immunoassay (LFIA) (called NG-Test VanA) for the rapid and reliable detection of VanA-producing VRE (VanA-VRE) from colonies and broth. METHODS: NG-Test VanA was validated on 135 well-characterized enterococcal isolates grown on Mueller-Hinton (MH) agar (including 40 VanA-VRE). Different agar plates and culture broths widely used in routine laboratories for culture of enterococci were tested. RESULTS: All 40 VanA-VRE clinical isolates were correctly detected in less than 15 min irrespective of the species expressing the VanA ligase and the medium used for bacterial growth. No cross-reaction was observed with any other clinically relevant ligases (VanB, C1, C2, D, E, G, L, M and N). Overall, the sensitivity and specificity of the assay were 100% for VanA-VRE grown on MH agar plates. NG-Test VanA accurately detects VanA-VRE irrespective of the culture medium (agar and broth). Band intensity was increased when using bacteria grown on vancomycin-containing culture media or on MH close to the vancomycin disc as a consequence of VanA induction. The limit of detection of the assay was 6.3 × 106 cfu per test with bacteria grown on MH plates and 4.9 × 105 cfu per test with bacteria grown on ChromID® VRE plates. CONCLUSIONS: NG-Test VanA is efficient, rapid and easy to implement in the routine workflow of a clinical microbiology laboratory for the confirmation of VanA-VRE.


Assuntos
Enterococcus , Infecções por Bactérias Gram-Positivas , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Humanos , Imunoensaio , Vancomicina , Resistência a Vancomicina
12.
Drug Resist Updat ; 53: 100732, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33189998

RESUMO

Enterococci are commensals of the intestinal tract of many animals and humans. Of the various known and still unnamed new enterococcal species, only isolates of Enterococcus faecium and Enterococcus faecalis have received increased medical and public health attention. According to textbook knowledge, the majority of infections are caused by E. faecalis. In recent decades, the number of enterococcal infections has increased, with the increase being exclusively associated with a rising number of nosocomial E. faecium infections. This increase has been accompanied by the dissemination of certain hospital-acquired strain variants and an alarming progress in the development of antibiotic resistance namely vancomycin resistance. With this review we focus on a description of the specific situation of vancomycin resistance among clinical E. faecium isolates in Germany over the past 30 years. The present review describes three VRE episodes in Germany, each of which is framed by the beginning and end of the respective decade. The first episode is specified by the first appearance of VRE in 1990 and a country-wide spread of specific vanA-type VRE strains (ST117/CT24) until the late 1990s. The second decade was initially marked by regional clusters and VRE outbreaks in hospitals in South-Western Germany in 2004 and 2005, mainly caused by vanA-type VRE of ST203. Against the background of a certain "basic level" of VRE prevalence throughout Germany, an early shift from the vanA genotype to the vanB genotype in clinical isolates already occurred at the end of the 2000s without much notice. With the beginning of the third decade in 2010, VRE rates in Germany have permanently increased, first in some federal states and soon after country-wide. Besides an increase in VRE prevalence, this decade was marked by a sharp increase in vanB-type resistance and a dominance of a few, novel strain variants like ST192 and later on ST117 (CT71, CT469) and ST80 (CT1065). The largest VRE outbreak, which involved about 2,900 patients and lasted over three years, was caused by a novel and until that time, unknown strain type of ST80/CT1013 (vanB). Across all periods, VRE outbreaks were mainly oligoclonal and strain types varied over space (hospital wards) and time. The spread of VRE strains obviously respects political borders; for instance, both vancomycin-variable enterococci which were highly prevalent in Denmark and ST796 VRE which successfully disseminated in Australia and Switzerland, were still completely absent among German hospital patients, until to date.


Assuntos
Antibacterianos/farmacologia , Infecção Hospitalar/tratamento farmacológico , Enterococcus faecium/isolamento & purificação , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Enterococos Resistentes à Vancomicina/isolamento & purificação , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Alemanha/epidemiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Prevalência , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/genética
13.
Virol J ; 17(1): 158, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087133

RESUMO

BACKGROUND: Wheat yellow dwarf virus disease is infected by barley yellow dwarf virus (BYDV), which causes leaf yellowing and dwarfing symptoms in wheat, thereby posing a serious threat to China's food production. The infection of plant viruses can produce large numbers of vsiRNAs, which can target host transcripts and cause symptom development. However, few studies have been conducted to explore the role played by vsiRNAs in the interaction between BYDV-GAV and host wheat plants. METHODS: In this study, small RNA sequencing was conducted to profile vsiRNAs in BYDV-GAV-infected wheat plants. The putative targets of vsiRNAs were predicted by the bioinformatics software psRNATarget. RT-qPCR and VIGS were employed to identify the function of selected target transcripts. To confirm the interaction between vsiRNA and the target, 5' RACE was performed to analyze the specific cleavage sites. RESULTS: From the sequencing data, we obtained a total of 11,384 detected vsiRNAs. The length distribution of these vsiRNAs was mostly 21 and 22 nt, and an A/U bias was observed at the 5' terminus. We also observed that the production region of vsiRNAs had no strand polarity. The vsiRNAs were predicted to target 23,719 wheat transcripts. GO and KEGG enrichment analysis demonstrated that these targets were mostly involved in cell components, catalytic activity and plant-pathogen interactions. The results of RT-qPCR analysis showed that most chloroplast-related genes were downregulated in BYDV-GAV-infected wheat plants. Silencing of a chlorophyll synthase gene caused leaf yellowing that was similar to the symptoms exhibited by BYDV-GAV-inoculated wheat plants. A vsiRNA from an overlapping region of BYDV-GAV MP and CP was observed to target chlorophyll synthase for gene silencing. Next, 5' RACE validated that vsiRNA8856 could cleave the chlorophyll synthase transcript in a sequence-specific manner. CONCLUSIONS: This report is the first to demonstrate that BYDV-GAV-derived vsiRNAs can target wheat transcripts for symptom development, and the results of this study help to elucidate the molecular mechanisms underlying leaf yellowing after viral infection.


Assuntos
Carbono-Oxigênio Ligases/genética , Hordeum/virologia , Interações Hospedeiro-Patógeno , Luteovirus/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , RNA Interferente Pequeno/genética , Triticum/virologia , Luteovirus/patogenicidade , Folhas de Planta/enzimologia , Interferência de RNA , Triticum/enzimologia
14.
Mol Microbiol ; 110(1): 95-113, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30047569

RESUMO

WaaL is an inner membrane glycosyltransferase that catalyzes the transfer of O-antigen polysaccharide from its lipid-linked intermediate to a terminal sugar of the lipid A-core oligosaccharide, a conserved step in lipopolysaccharide biosynthesis. Ligation occurs at the periplasmic side of the bacterial cell membrane, suggesting the catalytic region of WaaL faces the periplasm. Establishing the membrane topology of the WaaL protein family will enable understanding its mechanism and exploit it as a potential antimicrobial target. Applying oxidative labeling of native methionine/cysteine residues, we previously validated a topological model for Escherichia coli WaaL, which differs substantially from the reported topology of the Pseudomonas aeruginosa WaaL, derived from the analysis of truncated protein reporter fusions. Here, we examined the topology of intact E. coli and P. aeruginosa WaaL proteins by labeling engineered cysteine residues with the membrane-impermeable sulfhydryl reagent polyethylene glycol maleimide (PEG-Mal). The accessibility of PEG-Mal to targeted engineered cysteine residues in both E. coli and P. aeruginosa WaaL proteins demonstrates that both ligases share similar membrane topology. Further, we also demonstrate that P. aeruginosa WaaL shares similar functional properties with E. coli WaaL and that E. coli WaaL may adopt a functional dimer conformation.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Antígenos O/metabolismo , Pseudomonas aeruginosa/enzimologia , Alanina/genética , Proteínas de Bactérias/química , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Membrana Celular/metabolismo , Cisteína/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lipídeo A/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Periplasma/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Pseudomonas aeruginosa/genética
15.
Chembiochem ; 20(6): 764-769, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30556942

RESUMO

Armeniaspirols are potent antibiotics containing an unusual spiro[4.4]non-8-ene moiety. Herein, we describe the cloning and functional analysis of the armeniaspirol biosynthetic gene cluster. Gene-inactivation studies and subsequent isolation of previously unknown biosynthetic intermediates shed light on intriguing biosynthetic details. Remarkably, deletion of ams15, which encodes a protein bearing a flavin-binding domain, led to the accumulation of several non-spiro intermediates with various numbers of chlorine substitutions on the pyrrole moiety. The di- and trichloropyrrole species were converted by Streptomyces albus expressing Ams15 into mono- and dichlorinated spiro derivatives, respectively. In addition, in vitro conversion of these non-spiro intermediates into des-N-methyl spiro intermediates by the cell lysate of the same recombinant strain proved Ams15 to be responsible for spiro formation through oxidative dehalogenation.


Assuntos
Antibacterianos/biossíntese , Pirróis/metabolismo , Compostos de Espiro/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Halogenação , Estrutura Molecular , Família Multigênica , Oxirredução , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Pirróis/química , Compostos de Espiro/química , Streptomyces/genética , Streptomyces/metabolismo
16.
J Antimicrob Chemother ; 74(7): 1776-1785, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30929020

RESUMO

OBJECTIVES: From 2012 to 2015, a sudden significant increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) was observed in the Capital Region of Denmark. Clonal relatedness of VREfm and vancomycin-susceptible E. faecium (VSEfm) was investigated, transmission events between hospitals were identified and the pan-genome and plasmids from the largest VREfm clonal group were characterized. METHODS: WGS of 1058 E. faecium isolates was carried out on the Illumina platform to perform SNP analysis and to identify the pan-genome. One isolate was also sequenced on the PacBio platform to close the genome. Epidemiological data were collected from laboratory information systems. RESULTS: Phylogeny of 892 VREfm and 166 VSEfm revealed a polyclonal structure, with a single clonal group (ST80) accounting for 40% of the VREfm isolates. VREfm and VSEfm co-occurred within many clonal groups; however, no VSEfm were related to the dominant VREfm group. A similar vanA plasmid was identified in ≥99% of isolates belonging to the dominant group and 69% of the remaining VREfm. Ten plasmids were identified in the completed genome, and ∼29% of this genome consisted of dispensable accessory genes. The size of the pan-genome among isolates in the dominant group was 5905 genes. CONCLUSIONS: Most probably, VREfm emerged owing to importation of a successful VREfm clone which rapidly transmitted to the majority of hospitals in the region whilst simultaneously disseminating a vanA plasmid to pre-existing VSEfm. Acquisition of a heterogeneous accessory genome may account for the success of this clone by facilitating adaptation to new environmental challenges.


Assuntos
Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Enterococcus faecium/isolamento & purificação , Genótipo , Infecções por Bactérias Gram-Positivas/epidemiologia , Plasmídeos/análise , Enterococos Resistentes à Vancomicina/isolamento & purificação , Sequenciamento Completo do Genoma , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Dinamarca/epidemiologia , Transmissão de Doença Infecciosa , Enterococcus faecium/classificação , Enterococcus faecium/genética , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/transmissão , Hospitais , Humanos , Epidemiologia Molecular , Tipagem Molecular , Filogenia , Enterococos Resistentes à Vancomicina/classificação , Enterococos Resistentes à Vancomicina/genética
17.
Photosynth Res ; 140(1): 77-92, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30607859

RESUMO

In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3-4:1, bound ß-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes.


Assuntos
Carbono-Oxigênio Ligases/metabolismo , Clorofila/análogos & derivados , Cianobactérias/enzimologia , Complexo de Proteína do Fotossistema I/metabolismo , Synechococcus/enzimologia , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/isolamento & purificação , Clorofila/metabolismo , Clorofila A/metabolismo , Cianobactérias/genética , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Expressão Gênica , Variação Genética , Luz , Mutagênese Sítio-Dirigida , Feofitinas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Ficobilissomas , Synechococcus/genética , Synechococcus/fisiologia , Synechococcus/efeitos da radiação
18.
Microb Pathog ; 128: 131-135, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597255

RESUMO

This study was based on 43 vancomycin-resistant Enterococcus faecium (VREfm) strains collected from clinical specimens. Susceptibility testing and resistance gene amplification revealed that these strains had multidrug resistance and all belonged to the VanA phenotype. Furthermore, there were seven ST types, and all belonged to the clonal complex (CC17); ST17 and ST78 were the main ST types. In particular, ST1392 and ST1394 are novel ST types first identified in this research. Genome analysis of SY1, LY19 and LY22 showed that tet(O)and tet(K) were the genes responsible for tetracycline resistance; acc(6')-Ie-aph(2')-Ia and aad(6) led to high-level gentamicin and high-level streptomycin resistance. At the same time, the genomic variation among the strains was large, which is of great significance for the prevention and control of the bacteria.


Assuntos
Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Genes Bacterianos/genética , Fenótipo , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/genética , Antibacterianos/farmacologia , Proteínas de Transporte/genética , China , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus faecium/enzimologia , Amplificação de Genes , Variação Genética , Genótipo , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Tipagem Molecular , Tipagem de Sequências Multilocus , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
19.
Eur J Clin Microbiol Infect Dis ; 38(9): 1633-1641, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31140071

RESUMO

The quality of PCR to detect vancomycin-resistant enterococci (VRE) was evaluated by analysing their performance in six consecutive external quality assessment (EQA) schemes, organized annually since 2013 by Quality Control for Molecular Diagnostics. VRE EQA panels consisted of 12-14 heat-inactivated samples. Sensitivity was tested with vanA-positive Enterococcus faecium (E. faecium), vanB-positive E. faecium, E. faecalis or E. gallinarum or vanC-positive E. gallinarum in different concentrations. Vancomycin-susceptible enterococci, Staphylococcus aureus or sample matrix was used to study the specificity. Participants were asked to report the VRE resistance status of each sample. The detection rate of vanA-positive samples was already 95% in the 2013 EQA panel (range 94-97%) and remained stable over the years. The 2013 detection rate of vanB-positive samples was 82% but increased significantly by more than 10% in subsequent years (96% in 2014, 95% in 2015, 92% in 2016 and 93% in 2017/2018, p < 0.05). The vanC detection rate by the limited number of assays specifically targeting this gene was lower compared to vanA/B (range 55-89%). The number of false positives in the true-negative sample (8% in 2013 to 1.4% in 2018) as well as the van-gene-negative bacterial samples (4% in 2013 to 0% in 2018) declined over the years. In the six years of VRE proficiency testing to date, the detection of vanA-positive strains was excellent and an increased sensitivity in vanB detection as well as an increase in specificity was observed. Commercial and in-house assays performed equally well.


Assuntos
Patologia Molecular/estatística & dados numéricos , Patologia Molecular/normas , Reação em Cadeia da Polimerase/normas , Controle de Qualidade , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Sensibilidade e Especificidade , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/isolamento & purificação
20.
Drug Resist Updat ; 40: 25-39, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30447411

RESUMO

Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens. Invasive VRE infections are difficult to treat since common therapeutic options including ampicillin and glycopeptides often fail. In vitro, most VRE remain susceptible to last-resort antibiotics such as linezolid, tigecycline and daptomycin. However, neither tigecycline nor linezolid act in a bactericidal manner, and daptomycin has proven activity only at high dosages licensed for treating enterococcal endocarditis. Despite these pharmacological and therapeutic limitations, reports on resistance to these last-resort drugs in VRE, and enterococci in general, have increased in recent years. In this review, we briefly recapitulate the current knowledge on the mode of action as well as the known and novel mechanisms of resistance and describe surveillance data on resistance to linezolid, tigecycline and daptomycin in enterococci. In addition, we also suggest a common nomenclature for designating enterococci and VRE with resistances to these important last-resort antibiotics.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Linezolida/farmacologia , Tigeciclina/farmacologia , Resistência a Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Daptomicina/uso terapêutico , Genótipo , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Linezolida/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação , Tigeciclina/uso terapêutico , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA