Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.326
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 578(7795): 419-424, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996848

RESUMO

ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome-a parkinsonism with dementia1-and early-onset Parkinson's disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system.


Assuntos
Lisossomos/metabolismo , Poliaminas/metabolismo , ATPases Translocadoras de Prótons/deficiência , ATPases Translocadoras de Prótons/genética , Animais , Biocatálise , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Catepsina B/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Endocitose , Humanos , Lisossomos/patologia , Camundongos , Mutação , Neurônios/metabolismo , Fenótipo , Poliaminas/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
2.
Brain ; 147(2): 627-636, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071653

RESUMO

Extracellular vesicles (EVs) are membrane vesicles that are released extracellularly and considered to be implicated in the pathogenesis of neurodegenerative diseases including Alzheimer's disease. Here, CSF EVs of 16 ATN-classified cases were subjected to quantitative proteome analysis. In these CSF EVs, levels of 11 proteins were significantly altered during the ATN stage transitions (P < 0.05 and fold-change > 2.0). These proteins were thought to be associated with Alzheimer's disease pathogenesis and represent candidate biomarkers for pathogenic stage classification. Enzyme-linked immunosorbent assay analysis of CSF and plasma EVs revealed altered levels of cathepsin B (CatB) during the ATN transition (seven ATN groups in validation set, n = 136). The CSF and plasma EV CatB levels showed a negative correlation with CSF amyloid-ß42 concentrations. This proteomic landscape of CSF EVs in ATN classifications can depict the molecular framework of Alzheimer's disease progression, and CatB may be considered a promising candidate biomarker and therapeutic target in Alzheimer's disease amyloid pathology.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Doença de Alzheimer/patologia , Proteoma/metabolismo , Catepsina B/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Biomarcadores , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo
3.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709385

RESUMO

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Assuntos
Catepsina B , Lisossomos , Pancreatite , Vesículas Secretórias , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Animais , Lisossomos/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/genética , Catepsina B/metabolismo , Catepsina B/genética , Camundongos , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7/metabolismo , Doença Aguda , Células Acinares/metabolismo , Células Acinares/patologia , Tripsinogênio/metabolismo , Tripsinogênio/genética , Ceruletídeo , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Pharmacol Rev ; 74(3): 600-629, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710131

RESUMO

Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.


Assuntos
Doença de Alzheimer , Catepsina B , Doença de Alzheimer/metabolismo , Animais , Catepsina B/genética , Catepsina B/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos
5.
Traffic ; 23(10): 506-520, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36053864

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease. A plethora of evidence has indicated a role for LRRK2 in endolysosomal trafficking in neurons, while LRRK2 function in glia, although highly expressed, remains largely unknown. Here, we present evidence that LRRK2/dLRRK mediates a lysosomal pathway that contributes to glial cell death and the survival of dopaminergic (DA) neurons. LRRK2/dLRRK knockdown in the immortalized microglia or flies results in enlarged and swelling lysosomes fewer in number. These lysosomes are less mobile, wrongly acidified, exhibit defective membrane permeability and reduced activity of the lysosome hydrolase cathepsin B. In addition, LRRK2/dLRRK depletion causes glial apoptosis, DA neurodegeneration, and locomotor deficits in an age-dependent manner. Taken together, these findings demonstrate a functional role of LRRK2/dLRRK in regulating the glial lysosomal pathway; deficits in lysosomal biogenesis and function linking to glial apoptosis potentially underlie the mechanism of DA neurodegeneration, providing insights on LRRK2/dLRRK function in normal and pathological brains.


Assuntos
Catepsina B , Neurônios Dopaminérgicos , Catepsina B/genética , Catepsina B/metabolismo , Morte Celular , Neurônios Dopaminérgicos/metabolismo , Leucina/genética , Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação , Neuroglia/metabolismo
6.
J Cell Mol Med ; 28(17): e70064, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39248527

RESUMO

Cathepsin B (CTSB) is a member of the cysteine protease family, primarily responsible for degrading unnecessary organelles and proteins within the acidic milieu of lysosomes to facilitate recycling. Recent research has revealed that CTSB plays a multifaceted role beyond its function as a proteolytic enzyme in lysosomes. Importantly, recent data suggest that CTSB has significant impacts on different cardiac pathological conditions, such as atherosclerosis (AS), myocardial infarction, hypertension, heart failure and cardiomyopathy. Especially in the context of AS, preclinical models and clinical sample imaging data indicate that the cathepsin activity-based probe can reliably image CTSB activity in foam cells and atherosclerotic plaques; concurrently, it allows synchronous diagnostic and therapeutic interventions. However, our knowledge of CTSB in cardiovascular disease is still in the early stage. This paper aims to provide a comprehensive review of the significance of CTSB in cardiovascular physiology and pathology, with the objective of laying a theoretical groundwork for the development of drugs targeting CTSB.


Assuntos
Doenças Cardiovasculares , Catepsina B , Humanos , Catepsina B/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia
7.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722166

RESUMO

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Assuntos
Proteínas de Bactérias , Lisossomos , Macrófagos , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/imunologia , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fagossomos/microbiologia , Fagossomos/metabolismo , Células THP-1 , Fagocitose , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Catepsina B/metabolismo , Concentração de Íons de Hidrogênio
8.
Neurobiol Dis ; 194: 106468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460801

RESUMO

Intracerebral hemorrhage (ICH) is a subtype of stroke marked by elevated mortality and disability rates. Recently, mounting evidence suggests a significant role of ferroptosis in the pathogenesis of ICH. Through a combination of bioinformatics analysis and basic experiments, our goal is to identify the primary cell types and key molecules implicated in ferroptosis post-ICH. This aims to propel the advancement of ferroptosis research, offering potential therapeutic targets for ICH treatment. Our study reveals pronounced ferroptosis in microglia and identifies the target gene, cathepsin B (Ctsb), by analyzing differentially expressed genes following ICH. Ctsb, a cysteine protease primarily located in lysosomes, becomes a focal point in our investigation. Utilizing in vitro and in vivo models, we explore the correlation between Ctsb and ferroptosis in microglia post-ICH. Results demonstrate that ICH and hemin-induced ferroptosis in microglia coincide with elevated levels and activity of Ctsb protein. Effective alleviation of ferroptosis in microglia after ICH is achieved through the inhibition of Ctsb protease activity and protein levels using inhibitors and shRNA. Additionally, a notable increase in m6A methylation levels of Ctsb mRNA post-ICH is observed, suggesting a pivotal role of m6A methylation in regulating Ctsb translation. These research insights deepen our comprehension of the molecular pathways involved in ferroptosis after ICH, underscoring the potential of Ctsb as a promising target for mitigating brain damage resulting from ICH.


Assuntos
Lesões Encefálicas , Catepsina B , Ferroptose , Microglia , Humanos , Lesões Encefálicas/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Hemorragia Cerebral/patologia , Microglia/metabolismo , Animais , Camundongos
9.
Hum Mol Genet ; 31(14): 2424-2437, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35181782

RESUMO

Variants in multiple lysosomal enzymes increase Parkinson's disease (PD) risk, including the genes encoding glucocerebrosidase (GCase), acid sphingomyelinase (ASMase) and galactosylceramidase. Each of these enzymes generates ceramide by hydrolysis of sphingolipids in lysosomes, but the role of this common pathway in PD pathogenesis has not yet been explored. Variations in GBA1, the gene encoding GCase, are the most common genetic risk factor for PD. The lysosomal enzyme cathepsin B has recently been implicated as an important genetic modifier of disease penetrance in individuals harboring GBA1 variants, suggesting a mechanistic link between these enzymes. Here, we found that ceramide activates cathepsin B, and identified a novel role for cathepsin B in mediating prosaposin cleavage to form saposin C, the lysosomal coactivator of GCase. Interestingly, this pathway was disrupted in Parkin-linked PD models, and upon treatment with inhibitor of ASMase which resulted in decreased ceramide production. Conversely, increasing ceramide production by inhibiting acid ceramidase activity was sufficient to upregulate cathepsin B- and saposin C-mediated activation of GCase. These results highlight a mechanistic link between ceramide and cathepsin B in regulating GCase activity and suggest that targeting lysosomal ceramide or cathepsin B represents an important therapeutic strategy for activating GCase in PD and related disorders.


Assuntos
Glucosilceramidase , Doença de Parkinson , Catepsina B/genética , Catepsina B/metabolismo , Ceramidas/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Saposinas/genética , Saposinas/metabolismo , alfa-Sinucleína/metabolismo
10.
J Pharmacol Exp Ther ; 390(1): 108-115, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38834354

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) possess anti-inflammatory, antipyretic, and analgesic properties and are among the most commonly used drugs. Although the cause of NSAID-induced gastric ulcers is well understood, the mechanism behind small intestinal ulcers remains elusive. In this study, we examined the mechanism through which indomethacin (IM), a prominent NSAID, induces small intestinal ulcers, both in vitro and in vivo. In IEC6 cells, a small intestinal epithelial cell line, IM treatment elevated levels of LC3-II and p62. These expression levels remained unaltered after treatment with chloroquine or bafilomycin, which are vacuolar ATPase (V-ATPase) inhibitors. IM treatment reduced the activity of cathepsin B, a lysosomal protein hydrolytic enzyme, and increased the lysosomal pH. There was a notable increase in subcellular colocalization of LC3 with Lamp2, a lysosome marker, post IM treatment. The increased lysosomal pH and decreased cathepsin B activity were reversed by pretreatment with rapamycin (Rapa) or glucose starvation, both of which stabilize V-ATPase assembly. To validate the in vitro findings in vivo, we established an IM-induced small intestine ulcer mouse model. In this model, we observed multiple ulcerations and heightened inflammation following IM administration. However, pretreatment with Rapa or fasting, which stabilize V-ATPase assembly, mitigated the IM-induced small intestinal ulcers in mice. Coimmunoprecipitation studies demonstrated that IM binds to V-ATPase in vitro and in vivo. These findings suggest that IM induces small intestinal injury through lysosomal dysfunction, likely due to the disassembly of lysosomal V-ATPase caused by direct binding. Moreover, Rapa or starvation can prevent this injury by stabilizing the assembly. SIGNIFICANCE STATEMENT: This study elucidates the largely unknown mechanisms behind small intestinal ulceration induced by indomethacin and reveals the involvement of lysosomal dysfunction via vacuolar ATPase disassembly. The significance lies in identifying potential preventative interventions, such as rapamycin treatment or glucose starvation, offering pivotal insights that extend beyond nonsteroidal anti-inflammatory drugs-induced ulcers to broader gastrointestinal pathologies and treatments, thereby providing a foundation for novel therapeutic strategies aimed at a wide array of gastrointestinal disorders.


Assuntos
Indometacina , Lisossomos , Sirolimo , ATPases Vacuolares Próton-Translocadoras , Animais , Indometacina/toxicidade , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Sirolimo/farmacologia , Camundongos , Masculino , Ratos , Anti-Inflamatórios não Esteroides/farmacologia , Catepsina B/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Úlcera/induzido quimicamente , Úlcera/patologia , Úlcera/metabolismo
11.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741453

RESUMO

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Assuntos
Inflamassomos , Toxoplasma , Camundongos , Animais , Humanos , Feminino , Gravidez , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Trofoblastos/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacologia , Placenta/metabolismo , RNA Interferente Pequeno , Caspases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas NLR/metabolismo
12.
Bioconjug Chem ; 35(7): 1007-1014, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38874557

RESUMO

The synthesis of linker-payloads is a critical step in developing antibody-drug conjugates (ADCs), a rapidly advancing therapeutic approach in oncology. The conventional method for synthesizing cathepsin B-labile dipeptide linkers, which are commonly used in ADC development, involves the solution-phase assembly of cathepsin B-sensitive dipeptides, followed by the installation of self-immolative para-aminobenzyl carbonate to facilitate the attachment of potent cytotoxic payloads. However, this approach is often low yield and laborious, especially when extending the peptide chain with components like glutamic acid to improve mouse serum stability or charged amino acids or poly(ethylene glycol) moieties to enhance linker hydrophilicity. Here, we introduce a novel approach utilizing late-stage desulfurization chemistry, enabling safe, facile, and cost-effective access to the cathepsin B-cleavable linker, Val-Ala-PABC-MMAE, on resin for the first time.


Assuntos
Catepsina B , Imunoconjugados , Oligopeptídeos , Técnicas de Síntese em Fase Sólida , Imunoconjugados/química , Catepsina B/metabolismo , Técnicas de Síntese em Fase Sólida/métodos , Oligopeptídeos/química , Humanos , Animais , Camundongos , Dipeptídeos/química
13.
Bioconjug Chem ; 35(2): 132-139, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345213

RESUMO

Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC(S)]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling. The linker-payload was conjugated to cysteine 34 of albumin using a carbonylacrylic (caa) reagent which produced homogeneous and plasma stable conjugates that retained FcRn binding. Two caa-linker-MMAE reagents were synthesized─one with a cleavable [VC(S)] linker and one with a noncleavable [VC(R)] linker─to question whether protease-mediated cleavage is needed for MMAE release. Our findings demonstrate that cathepsin B is required to achieve efficient and selective antitumor activity. The conjugates equipped with the cleavable [VC(S)] linker had potent antitumor activity in vivo facilitated by the release of free MMAE upon FcRn binding and internalization. In addition to the pronounced antitumor activity of the albumin conjugates in vivo, we also demonstrated their preferable tumor biodistribution and biocompatibility with no associated toxicity or side effects. These results suggest that the use of engineered albumins with high FcRn binding combined with protease cleavable linkers is an efficient strategy to target delivery of drugs to solid tumors.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Recém-Nascido , Albuminas/metabolismo , Catepsina B/metabolismo , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/metabolismo , Neoplasias/tratamento farmacológico , Peptídeo Hidrolases , Distribuição Tecidual
14.
Bioorg Chem ; 147: 107370, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621338

RESUMO

Here, we introduce a novel and effective approach utilizing a cathepsin B cleavage albumin-binding SN38 prodrug specifically designed for the treatment of metastatic breast cancer. Termed Mal-va-mac-SN38, our prodrug exhibits a unique ability to rapidly and covalently bind with endogenous albumin, resulting in the formation of HSA-va-mac-SN38. This prodrug demonstrates exceptional stability in human plasma. Importantly, HSA-va-mac-SN38 showcases an impressive enhancement in cellular uptake by 4T1 breast cancer cells, primarily facilitated through caveolin-mediated endocytosis. Intriguingly, the release of the active SN38, is triggered by the enzymatic activity of cathepsin B within the lysosomal environment. In vivo studies employing a lung metastasis 4T1 breast cancer model underscore the potency of HSA-va-mac-SN38. Histological immunohistochemical analyses further illuminate the multifaceted impact of our prodrug, showcasing elevated levels of apoptosis, downregulated expression of matrix metalloproteinases, and inhibition of angiogenesis, all critical factors contributing to the anti-metastatic effect observed. Biodistribution studies elucidate the capacity of Mal-va-mac-SN38 to augment tumor accumulation through covalent binding to serum albumin, presenting a potential avenue for targeted therapeutic interventions. Collectively, our findings propose a promising therapeutic avenue for metastatic breast cancer, through the utilization of a cathepsin B-cleavable albumin-binding prodrug.


Assuntos
Antineoplásicos , Neoplasias da Mama , Catepsina B , Desenho de Fármacos , Pró-Fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Catepsina B/metabolismo , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Animais , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos
15.
Part Fibre Toxicol ; 21(1): 16, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509617

RESUMO

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Assuntos
Catepsina B , Lipopolissacarídeos , Masculino , Humanos , Camundongos , Animais , Catepsina B/metabolismo , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Ensaios de Triagem em Larga Escala , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos , Citocinas/metabolismo , Interleucina-1beta/metabolismo
16.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418607

RESUMO

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelamento , Ribulose-Bifosfato Carboxilase/metabolismo , Apoptose , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
17.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909243

RESUMO

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Assuntos
Autofagia , Catepsina B , Doenças Desmielinizantes , Gotículas Lipídicas , Lisofosfatidilcolinas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos , Gotículas Lipídicas/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animais de Doenças , Masculino , Regulação da Expressão Gênica , Linhagem Celular
18.
Arch Pharm (Weinheim) ; 357(10): e2400114, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38900588

RESUMO

The design and synthesis of a library of 21 novel benzenesulfonamide-bearing 3-functionalized pyrazole-linked 1,2,3-triazole derivatives as dual inhibitors of cathepsin B and carbonic anhydrase enzymes are reported. The target 1,2,3-triazole-linked pyrazolic esters (16) were synthesized by the condensation of 1,2,3-triazolic diketo esters with 4-hydrazinobenzenesulfonamide hydrochloride, and these were further converted into the corresponding carboxylic acid (17) and carboxamide (18) analogs. The synthesized compounds were assayed in vitro for their inhibition potential against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. They were found to be potent inhibitors at the low nanomolar level against the cancer-related hCA IX and XII and to be selective towards the cytosolic isoform hCA I. The physiologically important isoform hCA II was potently inhibited by all the newly synthesized compounds showing KI values ranging between 0.8 and 561.5 nM. The ester derivative 16c having 4-fluorophenyl (KI = 5.2 nM) was the most potent inhibitor of hCA IX, and carboxamide derivative 18b (KI = 2.2 nM) having 4-methyl substituted phenyl was the most potent inhibitor of hCA XII. The newly synthesized compounds exhibited potent cathepsin B inhibition at 10-7 M concentration. In general, the carboxamide derivatives (18) showed higher % inhibition as compared with the corresponding ester derivatives (16) and carboxylic acid derivatives (17) for cathepsin B. The interactions of the target compounds with the active sites of cathepsin B and CA were studied through molecular docking studies. Further, the in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of the target compounds were also studied.


Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Catepsina B , Pirazóis , Sulfonamidas , Triazóis , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/farmacologia , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química
19.
Arch Pharm (Weinheim) ; 357(10): e2400366, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38991221

RESUMO

The present research focused on the tail-approach synthesis of novel extended thiazolotriazoles (8a-8j) and triazolothiadiazines (11a-11j) including aminotriazole intermediate 10. After successful synthesis, all the compounds were evaluated for their inhibition potential against cytosolic isoforms of human carbonic anhydrase (hCA I, II), tumor-linked transmembrane isoforms (hCA IX, XII), and cathepsin B. As per the inhibition data, the newly synthesized compounds showed poor inhibition against hCA I. Many of the compounds showed effective inhibition toward hCA IX and/or XII in low nanomolar concentration. Despite the strong to moderate inhibition of hCA II by these compounds, more than half of them demonstrated better inhibition against hCA IX and/or XII, comparatively. Further, insights of CA inhibition data of these extended analogs and their comparison with earlier reported thiazolotriazole and triazolothiadiazine derivatives might help in the rational design of novel potent and selective hCA IX and XII inhibitors. The novel compounds were also found to possess anti-cathepsin B potential at a low concentration of 10-7 M. Broadly, compounds of series 11a-11j presented more effective inhibition against cathepsin B than their counterparts in series 8a-8j. Moreover, these in vitro results with respect to cathepsin B inhibition were also supported by the in silico insights obtained via molecular modeling studies.


Assuntos
Inibidores da Anidrase Carbônica , Catepsina B , Triazóis , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Humanos , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Anidrases Carbônicas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia
20.
J Labelled Comp Radiopharm ; 67(8): 295-304, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38837480

RESUMO

Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in tumor cells. Radioimmunoconjugates (RICs) composed of CTSB-recognizing chelating agents are expected to increase the molecular weights of their radiometabolites by forming conjugates with CTSB in cells, resulting in their improved retention in tumor cells. We designed a novel CTSB-recognizing trifunctional chelating agent, azide-[111In]In-DOTA-CTSB-substrate ([111In]In-ADCS), to synthesize a RIC, trastuzumab-[111In]In-ADCS ([111In]In-TADCS), and evaluated its utility to improve tumor retention of the RIC. [111In]In-ADCS and [111In]In-TADCS were synthesized with satisfactory yield and purity. [111In]In-ADCS was markedly stable in murine plasma until 96 h postincubation. [111In]In-ADCS showed binding to CTSB in vitro, and the conjugation was blocked by the addition of CTSB inhibitor. In the internalization assay, [111In]In-TADCS exhibited high-level retention in SK-OV-3 cells, indicating the in vitro utility of the CTSB-recognizing unit. In the biodistribution assay, [111In]In-TADCS showed high-level tumor accumulation, but the retention was hardly improved. In the first attempt to combine a CTSB-recognizing unit and RIC, these findings show the fundamental properties of the CTSB-recognizing trifunctional chelating agent to improve tumor retention of RICs.


Assuntos
Catepsina B , Quelantes , Imunoconjugados , Catepsina B/metabolismo , Quelantes/química , Quelantes/síntese química , Animais , Camundongos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Distribuição Tecidual , Linhagem Celular Tumoral , Humanos , Radioisótopos de Índio/química , Técnicas de Química Sintética , Trastuzumab/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA