Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.370
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 40(16): e107821, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34159616

RESUMO

SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.


Assuntos
COVID-19/metabolismo , Catepsina L/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Animais , COVID-19/genética , Células CACO-2 , Chlorocebus aethiops , Endocitose , Interações entre Hospedeiro e Microrganismos , Humanos , Concentração de Íons de Hidrogênio , Proteólise , Serina Endopeptidases/genética , Transdução de Sinais , Células Vero , Internalização do Vírus
2.
Genes Cells ; 29(4): 328-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366711

RESUMO

The deposition of α-synuclein (α-Syn) fibrils in neuronal cells has been implicated as a causative factor in Parkinson's disease (PD) and dementia with Lewy Bodies (DLB). α-Syn can be degraded by autophagy, proteasome, and chaperone-mediated autophagy, and previous studies have suggested the potency of certain cathepsins, lysosomal proteases, for α-Syn degradation. However, no studies have comprehensively evaluated all cathepsins. Here, we evaluated the efficacy of all 15 cathepsins using a cell model of α-Syn fibril propagation and found that overexpression of cathepsin L (CTSL) was the most effective in preventing the accumulation of α-Syn aggregates. CTSL-mediated degradation of α-Syn aggregates was dependent on the autophagy machinery, and CTSL itself promoted autophagy flux. Interestingly, CTSL was effective in autophagic degradation of wild-type (WT) α-Syn, but not in the case of A53T and E46K missense mutations, which are causative for familial PD. These results suggest that CTSL is a potential therapeutic strategy for sporadic PD pathology in WT α-Syn.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Catepsina L/genética , Catepsina L/metabolismo , Doença de Parkinson/metabolismo , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
Rev Med Virol ; 34(4): e2568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937111

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Oócitos , SARS-CoV-2 , Humanos , COVID-19/virologia , SARS-CoV-2/fisiologia , Feminino , Oócitos/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Internalização do Vírus , Catepsina L/metabolismo , Basigina/metabolismo , Folículo Ovariano/virologia , Folículo Ovariano/metabolismo , Estresse Oxidativo , Serina Endopeptidases/metabolismo
4.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775843

RESUMO

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Assuntos
Autofagia , Catepsinas , Lisossomos , Proteólise , Humanos , Lisossomos/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitose , Catepsina L/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
5.
Biol Chem ; 405(5): 351-365, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38410910

RESUMO

Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.


Assuntos
Catepsina L , Catepsina L/metabolismo , Catepsina L/deficiência , Catepsina L/genética , Animais , Camundongos , Núcleo Celular/metabolismo , Especificidade por Substrato , Camundongos Knockout , Células Dendríticas/metabolismo
6.
Biol Chem ; 405(4): 283-296, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37889671

RESUMO

Proteolytic activity in the tumour microenvironment is an important factor in cancer development since it can also affect intracellular signalling pathways via positive feedback loops that result in either increased tumour growth or resistance to anticancer mechanisms. In this study, we demonstrated extracellular cathepsin L-mediated cleavage of epidermal growth factor receptor (EGFR) and identified the cleavage site in the extracellular domain after R224. To further evaluate the relevance of this cleavage, we cloned and expressed a truncated version of EGFR, starting at G225, in HeLa cells. We confirmed the constitutive activation of the truncated protein in the absence of ligand binding and determined possible changes in intracellular signalling. Furthermore, we determined the effect of truncated EGFR protein expression on HeLa cell viability and response to the EGFR inhibitors, tyrosine kinase inhibitor (TKI) erlotinib and monoclonal antibody (mAb) cetuximab. Our data reveal the nuclear localization and phosphorylation of EGFR and signal trancducer and activator of transcription 3 (STAT3) in cells that express the truncated EGFR protein and suggest that these phenomena cause resistance to EGFR inhibitors.


Assuntos
Neoplasias Pulmonares , Humanos , Catepsina L/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Células HeLa , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Microambiente Tumoral
7.
Int J Obes (Lond) ; 48(6): 830-840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351251

RESUMO

BACKGROUND/OBJECTIVES: Adipose tissue macrophages (ATM) are key actors in the pathophysiology of obesity-related diseases. They have a unique intermediate M2-M1 phenotype which has been linked to endoplasmic reticulum (ER) stress. We previously reported that human M2 macrophages treated with the ER stress inducer thapsigargin switched to a pro-inflammatory phenotype that depended on the stress protein GRP94. In these conditions, GRP94 promoted cathepsin L secretion and was co-secreted with complement C3. As cathepsin L and complement C3 have been reported to play a role in the pathophysiology of obesity, in this work we studied the involvement of GRP94 in the pro-inflammatory phenotype of ATM. METHODS: GRP94, cathepsin L and C3 expression were analyzed in CD206 + ATM from mice, WT or obesity-resistant transgenic fat-1, fed a high-fat diet (HFD) or a standard diet. GRP94 colocalization with cathepsin L and C3 and its effects were analyzed in human primary macrophages using thapsigargin as a control to induce ER stress and palmitic acid (PA) as a driver of metabolic activation. RESULTS: In WT, but not in fat-1 mice, fed a HFD, we observed an increase in crown-like structures consisting of CD206 + pSTAT1+ macrophages showing high expression of GRP94 that colocalized with cathepsin L and C3. In vitro experiments showed that PA favored a M2-M1 switch depending on GRP94. This switch was prevented by omega-3 fatty acids. PA-induced GRP94-cathepsin L colocalization and a decrease in cathepsin L enzymatic activity within the cells (while the enzymatic activity in the extracellular medium was increased). These effects were prevented by the GRP94 inhibitor PU-WS13. CONCLUSIONS: GRP94 is overexpressed in macrophages both in in vivo and in vitro conditions of obesity-associated inflammation and is involved in changing their profile towards a more pro-inflammatory profile. It colocalizes with complement C3 and cathepsin L and modulates cathepsin L activity.


Assuntos
Catepsina L , Estresse do Retículo Endoplasmático , Inflamação , Macrófagos , Obesidade , Animais , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Obesidade/metabolismo , Macrófagos/metabolismo , Catepsina L/metabolismo , Inflamação/metabolismo , Humanos , Dieta Hiperlipídica , Modelos Animais de Doenças , Tecido Adiposo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos
8.
Plant Physiol ; 193(4): 2605-2621, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37437113

RESUMO

Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te). Here, we used tomato-adapted two-spotted spider mite (Tu-A) and Te populations to compare mechanisms underlying their host adaptation and specialization. We show that both mites attenuate induced tomato defenses, including protease inhibitors (PIs) that target mite cathepsin L digestive proteases. While Te solely relies on transcriptional attenuation of PI induction, Tu and Tu-A have elevated constitutive activity of cathepsin L proteases, making them less susceptible to plant anti-digestive proteins. Tu-A and Te also rely on detoxification of tomato constitutive defenses. Te uses esterase and P450 activities, while Tu-A depends on the activity of all major detoxification enzymatic classes to disarm tomato defensive compounds to a lesser extent. Thus, even though both Tu-A and Te use similar mechanisms to counteract tomato defenses, Te can better cope with them. This finding is congruent with the ecological and evolutionary times required to establish mite adaptation and specialization states, respectively.


Assuntos
Tetranychidae , Animais , Adaptação ao Hospedeiro , Catepsina L , Plantas , Evolução Biológica , Herbivoria
9.
Acc Chem Res ; 56(2): 157-168, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580641

RESUMO

SARS-CoV-2 is the etiological pathogen of the COVID-19 pandemic, which led to more than 6.5 million deaths since the beginning of the outbreak in December 2019. The unprecedented disruption of social life and public health caused by COVID-19 calls for fast-track development of diagnostic kits, vaccines, and antiviral drugs. Small molecule antivirals are essential complements of vaccines and can be used for the treatment of SARS-CoV-2 infections. Currently, there are three FDA-approved antiviral drugs, remdesivir, molnupiravir, and paxlovid. Given the moderate clinical efficacy of remdesivir and molnupiravir, the drug-drug interaction of paxlovid, and the emergence of SARS-CoV-2 variants with potential drug-resistant mutations, there is a pressing need for additional antivirals to combat current and future coronavirus outbreaks.In this Account, we describe our efforts in developing covalent and noncovalent main protease (Mpro) inhibitors and the identification of nirmatrelvir-resistant mutants. We initially discovered GC376, calpain inhibitors II and XII, and boceprevir as dual inhibitors of Mpro and host cathepsin L from a screening of a protease inhibitor library. Given the controversy of targeting cathepsin L, we subsequently shifted the focus to designing Mpro-specific inhibitors. Specifically, guided by the X-ray crystal structures of these initial hits, we designed noncovalent Mpro inhibitors such as Jun8-76-3R that are highly selective toward Mpro over host cathepsin L. Using the same scaffold, we also designed covalent Mpro inhibitors with novel cysteine reactive warheads containing di- and trihaloacetamides, which similarly had high target specificity. In parallel to our drug discovery efforts, we developed the cell-based FlipGFP Mpro assay to characterize the cellular target engagement of our rationally designed Mpro inhibitors. The FlipGFP assay was also applied to validate the structurally disparate Mpro inhibitors reported in the literature. Lastly, we introduce recent progress in identifying naturally occurring Mpro mutants that are resistant to nirmatrelvir from genome mining of the nsp5 sequences deposited in the GISAID database. Collectively, the covalent and noncovalent Mpro inhibitors and the nirmatrelvir-resistant hot spot residues from our studies provide insightful guidance for future work aimed at developing orally bioavailable Mpro inhibitors that do not have overlapping resistance profile with nirmatrelvir.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Catepsina L , Pandemias , Antivirais/farmacologia , Antivirais/química , Desenho de Fármacos
10.
Am J Nephrol ; 55(3): 345-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330925

RESUMO

INTRODUCTION: The aim of this study was to explore the renoprotective effects of Klotho on podocyte injury mediated by complement activation and autoantibodies in idiopathic membranous nephropathy (IMN). METHODS: Rat passive Heymann nephritis (PHN) was induced as an IMN model. Urine protein levels, serum biochemistry, kidney histology, and podocyte marker levels were assessed. In vitro, sublytic podocyte injury was induced by C5b-9. The expression of Klotho, transient receptor potential channel 6 (TRPC6), and cathepsin L (CatL); its substrate synaptopodin; and the intracellular Ca2+ concentration were detected via immunofluorescence. RhoA/ROCK pathway activity was measured by an activity quantitative detection kit, and the protein expression of phosphorylated-LIMK1 (p-LIMK1) and p-cofilin in podocytes was detected via Western blotting. Klotho knockdown and overexpression were performed to evaluate its role in regulating the TRPC6/CatL pathway. RESULTS: PHN rats exhibited proteinuria, podocyte foot process effacement, decreased Klotho and Synaptopodin levels, and increased TRPC6 and CatL expression. The RhoA/ROCK pathway was activated by the increased phosphorylation of LIMK1 and cofilin. Similar changes were observed in C5b-9-injured podocytes. Klotho knockdown exacerbated podocyte injury, while Klotho overexpression partially ameliorated podocyte injury. CONCLUSION: Klotho may protect against podocyte injury in IMN patients by inhibiting the TRPC6/CatL pathway. Klotho is a potential target for reducing proteinuria in IMN patients.


Assuntos
Citoesqueleto de Actina , Catepsina L , Glomerulonefrite Membranosa , Glucuronidase , Proteínas Klotho , Podócitos , Transdução de Sinais , Canal de Cátion TRPC6 , Podócitos/metabolismo , Podócitos/patologia , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Animais , Glucuronidase/metabolismo , Ratos , Canal de Cátion TRPC6/metabolismo , Masculino , Citoesqueleto de Actina/metabolismo , Catepsina L/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Humanos , Modelos Animais de Doenças , Proteínas dos Microfilamentos/metabolismo , Proteinúria/metabolismo , Ratos Sprague-Dawley , Quinases Associadas a rho/metabolismo , Canais de Cátion TRPC/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo
11.
Nat Chem Biol ; 18(10): 1056-1064, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35879545

RESUMO

SARS-CoV-2 entry into cells requires specific host proteases; however, no successful in vivo applications of host protease inhibitors have yet been reported for treatment of SARS-CoV-2 pathogenesis. Here we describe a chemically engineered nanosystem encapsulating CRISPR-Cas13d, developed to specifically target lung protease cathepsin L (Ctsl) messenger RNA to block SARS-CoV-2 infection in mice. We show that this nanosystem decreases lung Ctsl expression in normal mice efficiently, specifically and safely. We further show that this approach extends survival of mice lethally infected with SARS-CoV-2, correlating with decreased lung virus burden, reduced expression of proinflammatory cytokines/chemokines and diminished severity of pulmonary interstitial inflammation. Postinfection treatment by this nanosystem dramatically lowers the lung virus burden and alleviates virus-induced pathological changes. Our results indicate that targeting lung protease mRNA by Cas13d nanosystem represents a unique strategy for controlling SARS-CoV-2 infection and demonstrate that CRISPR can be used as a potential treatment for SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Animais , Catepsina L , Quimiocinas , Citocinas , Endopeptidases , Pulmão/patologia , Camundongos , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , RNA Mensageiro/genética , SARS-CoV-2
12.
Biosci Biotechnol Biochem ; 88(4): 405-411, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271604

RESUMO

Cathepsin L (CTSL) could cleave and activate SARS-CoV-2 Spike protein to promote viral entry, making it a hopeful therapeutic target for COVID-19 prevention and treatment. So CTSL inhibitors are considered to be a promising strategy to SARS-CoV-2 infection. CTSL has previously been expressed in inclusion body in Escherichia coli. In order to prepare CTSL with high purity and activity in soluble active form, we transformed HEK-293T cells with a recombinant mammalian expression plasmid. CTSL was purified to a purity about 95%, found to migrate at approximately 43 kDa and exhibited substrate specificity against Z-Phe-Arg-AMC with specific activity of no less than 85 081 U/mg, characteristic of active CTSL. Although eukaryotic purified CTSL is commercially available, our study for the first time reported the details of the expression, purification, and characterization of active, recombinant CTSL in eukaryocyte system, which laid an experimental foundation for the establishment of high-throughput screening model for anti-coronavirus drugs targeting CTSL.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Catepsina L/metabolismo , Mamíferos/metabolismo
13.
Arch Pharm (Weinheim) ; 357(5): e2300661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335311

RESUMO

Drug discovery and design challenges, such as drug repurposing, analyzing protein-ligand and protein-protein complexes, ligand promiscuity studies, or function prediction, can be addressed by protein binding site similarity analysis. Although numerous tools exist, they all have individual strengths and drawbacks with regard to run time, provision of structure superpositions, and applicability to diverse application domains. Here, we introduce SiteMine, an all-in-one database-driven, alignment-providing binding site similarity search tool to tackle the most pressing challenges of binding site comparison. The performance of SiteMine is evaluated on the ProSPECCTs benchmark, showing a promising performance on most of the data sets. The method performs convincingly regarding all quality criteria for reliable binding site comparison, offering a novel state-of-the-art approach for structure-based molecular design based on binding site comparisons. In a SiteMine showcase, we discuss the high structural similarity between cathepsin L and calpain 1 binding sites and give an outlook on the impact of this finding on structure-based drug design. SiteMine is available at https://uhh.de/naomi.


Assuntos
Bases de Dados de Proteínas , Sítios de Ligação , Ligantes , Desenho de Fármacos , Descoberta de Drogas , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Conformação Proteica , Humanos , Catepsina L/metabolismo , Catepsina L/química , Catepsina L/antagonistas & inibidores
14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000332

RESUMO

Fasciolosis, a globally re-emerging zoonotic disease, is mostly caused by the parasitic infection with Fasciola hepatica, often known as the liver fluke. This disease has a considerable impact on livestock productivity. This study aimed to evaluate the fluke burdens and faecal egg counts in goats that were administered phage clones of cathepsin L mimotopes and then infected with F. hepatica metacercariae. Additionally, the impact of vaccination on the histology of the reproductive system, specifically related to egg generation in adult parasites, was examined. A total of twenty-four goats, which were raised in sheds, were divided into four groups consisting of six animals each. These groups were randomly assigned. The goats were then subjected to two rounds of vaccination. Each vaccination involved the administration of 1 × 1013 phage particles containing specific mimotopes for cathepsin L2 (group 1: PPIRNGK), cathepsin L1 (group 2: DPWWLKQ), and cathepsin L1 (group 3: SGTFLFS). The immunisations were carried out on weeks 0 and 4, and the Quil A adjuvant was used in combination with the mimotopes. The control group was administered phosphate-buffered saline (PBS) (group 4). At week 6, all groups were orally infected with 200 metacercariae of F. hepatica. At week 22 following the initial immunisation, the subjects were euthanised, and adult F. hepatica specimens were retrieved from the bile ducts and liver tissue, and subsequently quantified. The specimens underwent whole-mount histology for the examination of the reproductive system, including the testis, ovary, vitellaria, Mehlis' gland, and uterus. The mean fluke burdens following the challenge were seen to decrease by 50.4%, 62.2%, and 75.3% (p < 0.05) in goats that received vaccinations containing cathepsin L2 PPIRNGK, cathepsin L1 DPWWLKQ, and cathepsin L1 SGTFLFS, respectively. Animals that received vaccination exhibited a significant reduction in the production of parasite eggs. The levels of IgG1 and IgG2 isotypes in vaccinated goats were significantly higher than in the control group, indicating that protection is associated with the induction of a mixed Th1/Th2 immune response. The administration of cathepsin L to goats exhibits a modest level of efficacy in inducing histological impairment in the reproductive organs of liver flukes, resulting in a reduction in egg output.


Assuntos
Catepsina L , Fasciola hepatica , Fasciolíase , Cabras , Vacinação , Animais , Fasciola hepatica/imunologia , Catepsina L/metabolismo , Fasciolíase/veterinária , Fasciolíase/prevenção & controle , Fasciolíase/imunologia , Fasciolíase/parasitologia , Vacinação/métodos , Feminino , Masculino , Doenças das Cabras/parasitologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/imunologia , Contagem de Ovos de Parasitas , Bacteriófagos/imunologia
15.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338448

RESUMO

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Assuntos
Herpesvirus Humano 1 , Colforsina/farmacologia , Colforsina/química , Catepsina L , Simulação de Acoplamento Molecular , Herpesvirus Humano 1/metabolismo , Antivirais/farmacologia , Antivirais/química
16.
Cancer Sci ; 114(3): 837-854, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36382580

RESUMO

N6-methyladenosine (m6A) is a highly abundant RNA modification in eukaryotic cells. Methyltransferase-like 3 (METTL3), a major protein in the m6A methyltransferase complex, plays important roles in many malignancies, but its role in cervical cancer metastasis remains uncertain. Here, we found that METTL3 was significantly upregulated in cervical cancer tissue, and its upregulation was associated with a poor prognosis in cervical cancer patients. Knockdown of METTL3 significantly reduced cervical cancer cell migration and invasion. Conversely, METTL3 overexpression markedly promoted cervical cancer cell metastasis in vitro and in vivo. Furthermore, METTL3 mediated the m6A modification of cathepsin L (CTSL) mRNA at the 5'-UTR, and the m6A reader protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) bound to the m6A sites and enhanced CTSL mRNA stability. Our results indicated that METTL3 enhanced CTSL mRNA stability through an m6A-IGF2BP2-dependent mechanism, thereby promoting cervical cancer cell metastasis. These findings provide insights into a novel m6A modification pattern involved in cervical cancer development.


Assuntos
Metiltransferases , Neoplasias do Colo do Útero , Feminino , Humanos , Metiltransferases/genética , Catepsina L/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
17.
Biol Reprod ; 109(6): 904-917, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37712895

RESUMO

Cathepsin L plays physiological and pathological roles in immune responses, cancer, metamorphosis, and oogenesis in several species. However, the function of Cathepsin L in medaka ovaries remains unclear. Therefore, here, we examined the physiological functions of Cathepsin L in the medaka ovaries. Cathepsin L mRNA transcripts and proteins were found to be constitutively expressed in the ovaries of Oryzias latipes over a 24-h spawning cycle. Expression was localized within the oocyte cytoplasm of growing follicles and the follicle layer of preovulatory and postovulatory follicles. Moreover, the active form of Cathepsin L was highly expressed in the follicle layer of periovulatory follicles and the ovaries 2-6 h after ovulation. Recombinant Cathepsin L was activated under acidic conditions and exhibited enzymatic activity in acidic and neutral pH conditions. However, extracellular matrix proteins were degraded by recombinant Cathepsin L under acidic, not neutral pH conditions. Cathepsin L was secreted from preovulatory follicles, while active recombinant Cathepsin L was detected in the conditioned medium of a medaka cell line, OLHNI-2. Mechanistically, recombinant Cathepsin L activates recombinant urokinase-type plasminogen activator-1, which is expressed within the follicle layers post-ovulation. Meanwhile, the treatment of medakas with an E-64 or anti-Cathepsin L antibody effectively blocked follicular layer degeneration and degradation after ovulation, whereas in vitro ovulation was not inhibited by either. Collectively, the findings of this study indicate that although Cathepsin L does not impact ovulation in medakas, it contributes to the degeneration and degradation of the follicle layers following ovulation via activation of urokinase-type plasminogen activator-1, and not via the degradation of extracellular matrix proteins.


Assuntos
Oryzias , Ovário , Feminino , Animais , Ovário/fisiologia , Oryzias/fisiologia , Catepsina L/genética , Catepsina L/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ovulação/fisiologia , Proteínas da Matriz Extracelular
18.
Rheumatology (Oxford) ; 62(3): 1306-1316, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900152

RESUMO

OBJECTIVES: Lung fibrosis is the leading cause of death in SSc, with no cure currently available. Antifibrotic Endostatin (ES) production does not reach therapeutic levels in SSc patients, suggesting a deficit in its release from Collagen XVIII by the main cleavage enzyme, Cathepsin L (CTSL). Thus, elucidating a potential deficit in CTSL expression and activity unravels an underlying molecular cause for SSc-driven lung fibrosis. METHODS: Fibrosis was induced experimentally using TGF-ß in vitro, in primary human lung fibroblasts (pLFs), and ex vivo, in human lung tissues. ES and CTSL expression was quantified using ELISA, RT-qPCR, immunoblotting or immunofluorescence. Recombinant NC1-FLAG peptide was used to assess CTSL cleavage activity. CTSL expression was also compared between SSc vs normal (NL)-derived pLFs and lung tissues. RESULTS: ES levels were significantly reduced in media conditioned by TGF-ß-induced pLFs. TGF-ß-stimulated pLFs significantly reduced expression and secretion of CTSL into the extracellular matrix (ECM). CTSL was also sequestered in its inactive form into extracellular vesicles, further reducing its availability in the ECM. Media conditioned by TGF-ß-induced pLFs showed reduced cleavage of NC1-Flag and reduced release of the antifibrotic ES fragment. SSc-derived pLFs and lung tissues expressed significantly lower levels of CTSL compared with NL. CONCLUSIONS: Our findings identify CTSL as a protein protective against lung fibrosis via its activation of antifibrotic ES, and whose expression in SSc pLFs and lung tissues is suppressed. Identifying strategies to boost CTSL endogenous levels in SSc patients could serve as a viable therapeutic strategy.


Assuntos
Fibrose Pulmonar , Escleroderma Sistêmico , Humanos , Catepsina L/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/patologia , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo
19.
Protein Expr Purif ; 201: 106174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130682

RESUMO

Cysteine peptidases are involved in physiological processes of insect development and have been considered as potential targets for the development of insect control strategies. In this study, we obtained a recombinant cysteine cathepsin L (AsCathL) from leaf-cutting ant (Atta sexdens), a species from the order Hymenoptera who causes enormous damage to crops, natural forests and reforested areas. RT-qPCR showed AsCathL expression throughout insect development and in all body parts of the adult insect analysed, suggesting its role as a lysosomal cathepsin. AsCathL encodes a protein of 320 amino acid residues consisting of a pro-peptide and the mature with amino acids sequence over 67% similarity with lysosomal cathepsin L of species from Lepidoptera and Diptera. Phylogenetic tree revealed that AsCathL is very similar to predicted cathepsins found in other ants. Recombinant AsCathL was expressed in insoluble form by Escherichia coli Arctic Express (DE3) RIL, purified under denaturing conditions and refolded. The enzyme showed hydrolytic activity in vitro towards synthetic substrate Z-Phe-Arg-AMC at acidic pH. Synthetic inhibitor E-64 acted against peptidase activity and a study regarding the interaction between E-64 and AsCathL using nuclear magnetic resonance (NMR) revealed that 83.18% from all E-64 molecules are irreversibly bound to AsCathL. In addition, the proteolytic activity of AsCathL was strongly inhibited by recombinant sugarcane cystatins with Ki ranging from 0.6 nM to 2.95 nM. To the best of our knowledge this is the first report characterizing a cysteine peptidase from leaf-cutting ants, which may contribute to future studies of ants' cathepsins.


Assuntos
Formigas , Cistatinas , Cisteína Proteases , Animais , Formigas/genética , Catepsina L , Cisteína , Cisteína Proteases/genética , Peptídeos , Filogenia
20.
Bioorg Med Chem Lett ; 80: 129087, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427655

RESUMO

Currently, the migration and invasion of cancer cells remain the main factors of poor prognosis in the majority of cancer patients. Developing an effective antimetastatic agent is crucial for cancer therapy. Our recent research revealed that Cat L and S are expressed concurrently in metastatic pancreatic cancer cells. Asperphenamate analog ASPER-29, which exhibits dual Cat L and S inhibitory potency, showed a definite antimetastatic effect on pancreatic cancer BxPC-3 and PANC-1 cells. To further improve the antimetastatic ability of asperphenamate-type molecules, 24 derivatives were designed and synthesized by a scaffold-hopping strategy. The cathepsin inhibitory activity assay results showed that most of the derivatives exhibited dual inhibitory effects on Cat L and S. Among all derivatives, Compound B1a showed the strongest inhibitory activity, with IC50 values of 4.10 ± 0.14 µM and 1.79 ± 0.11 µM, which were 1.5-fold and 2.8-fold more potent than those of positive drugs against Cat L and S, respectively. Further wound-healing and transwell chamber assays demonstrated that B1a presented significant antimetastatic ability in vitro.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Catepsina L/metabolismo , Catepsinas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pancreáticas/tratamento farmacológico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA