Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.241
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418917

RESUMO

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Assuntos
Processamento Alternativo , Evolução Molecular , Hominidae , Proteínas com Domínio T , Cauda , Animais , Humanos , Camundongos , Processamento Alternativo/genética , Elementos Alu/genética , Modelos Animais de Doenças , Genoma/genética , Hominidae/anatomia & histologia , Hominidae/genética , Íntrons/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Fenótipo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Cauda/anatomia & histologia , Cauda/embriologia , Éxons/genética
2.
Annu Rev Cell Dev Biol ; 30: 535-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062362

RESUMO

Although most modern dog breeds are less than 200 years old, the symbiosis between man and dog is ancient. Since prehistoric times, repeated selection events have transformed the wolf into man's guardians, laborers, athletes, and companions. The rapid transformation from pack predator to loyal companion is a feat that is arguably unique among domesticated animals. How this transformation came to pass remained a biological mystery until recently: Within the past decade, the deployment of genomic approaches to study population structure, detect signatures of selection, and identify genetic variants that underlie canine phenotypes is ushering into focus novel biological mechanisms that make dogs remarkable. Ironically, the very practices responsible for breed formation also spurned morbidity; today, many diseases are correlated with breed identity. In this review, we discuss man's best friend in the context of a genetic model to understand paradigms of heritable phenotypes, both desirable and disadvantageous.


Assuntos
Cães/genética , Genoma , Animais , Tamanho Corporal/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Cruzamento , Mapeamento Cromossômico , Modelos Animais de Doenças , Doenças do Cão/genética , Cães/anatomia & histologia , Cães/classificação , Extremidades/anatomia & histologia , Estudo de Associação Genômica Ampla , Glicoproteínas/genética , Glicoproteínas/fisiologia , Proteína HMGA2/genética , Proteína HMGA2/fisiologia , Cabelo/anatomia & histologia , Cardiopatias/genética , Cardiopatias/veterinária , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/veterinária , Osteossarcoma/genética , Osteossarcoma/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Pele/anatomia & histologia , Crânio/anatomia & histologia , Proteína Smad2/genética , Proteína Smad2/fisiologia , Especificidade da Espécie , Cauda/anatomia & histologia
3.
Development ; 151(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39253748

RESUMO

Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the DM-domain transcription factor DMD-3. To find genes regulated by DMD-3, we performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males versus dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the unfolded protein response pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are co-regulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , RNA-Seq , Cauda , Animais , Caenorhabditis elegans/genética , Morfogênese/genética , Masculino , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Especificidade de Órgãos/genética
4.
Development ; 151(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39315665

RESUMO

The intricate dynamics of Hes expression across diverse cell types in the developing vertebrate embryonic tail have remained elusive. To address this, we have developed an endogenously tagged Hes1-Achilles mouse line, enabling precise quantification of dynamics at the single-cell resolution across various tissues. Our findings reveal striking disparities in Hes1 dynamics between presomitic mesoderm (PSM) and preneural tube (pre-NT) cells. While pre-NT cells display variable, low-amplitude oscillations, PSM cells exhibit synchronized, high-amplitude oscillations. Upon the induction of differentiation, the oscillation amplitude increases in pre-NT cells. Additionally, our study of Notch inhibition on Hes1 oscillations unveils distinct responses in PSM and pre-NT cells, corresponding to differential Notch ligand expression dynamics. These findings suggest the involvement of separate mechanisms driving Hes1 oscillations. Thus, Hes1 demonstrates dynamic behaviour across adjacent tissues of the embryonic tail, yet the varying oscillation parameters imply differences in the information that can be transmitted by these dynamics.


Assuntos
Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Análise de Célula Única , Fatores de Transcrição HES-1 , Animais , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Camundongos , Mesoderma/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Embrião de Mamíferos/metabolismo , Receptores Notch/metabolismo , Diferenciação Celular , Padronização Corporal , Somitos/metabolismo , Somitos/embriologia , Desenvolvimento Embrionário/genética , Cauda/embriologia
5.
Nature ; 600(7888): 259-263, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853468

RESUMO

Armoured dinosaurs are well known for their evolution of specialized tail weapons-paired tail spikes in stegosaurs and heavy tail clubs in advanced ankylosaurs1. Armoured dinosaurs from southern Gondwana are rare and enigmatic, but probably include the earliest branches of Ankylosauria2-4. Here we describe a mostly complete, semi-articulated skeleton of a small (approximately 2 m) armoured dinosaur from the late Cretaceous period of Magallanes in southernmost Chile, a region that is biogeographically related to West Antarctica5. Stegouros elengassen gen. et sp. nov. evolved a large tail weapon unlike any dinosaur: a flat, frond-like structure formed by seven pairs of laterally projecting osteoderms encasing the distal half of the tail. Stegouros shows ankylosaurian cranial characters, but a largely ancestral postcranial skeleton, with some stegosaur-like characters. Phylogenetic analyses placed Stegouros in Ankylosauria; specifically, it is related to Kunbarrasaurus from Australia6 and Antarctopelta from Antarctica7, forming a clade of Gondwanan ankylosaurs that split earliest from all other ankylosaurs. The large osteoderms and specialized tail vertebrae in Antarctopelta suggest that it had a tail weapon similar to Stegouros. We propose a new clade, the Parankylosauria, to include the first ancestor of Stegouros-but not Ankylosaurus-and all descendants of that ancestor.


Assuntos
Agressão , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Fósseis , Cauda/anatomia & histologia , Cauda/fisiologia , Animais , Regiões Antárticas , Chile , Comportamento Predatório , Esqueleto
6.
Genome Res ; 33(3): 463-477, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37310928

RESUMO

Structural variations (SVs) are a major contributor to genetic diversity and phenotypic variations, but their prevalence and functions in domestic animals are largely unexplored. Here we generated high-quality genome assemblies for 15 individuals from genetically diverse sheep breeds using Pacific Biosciences (PacBio) high-fidelity sequencing, discovering 130.3 Mb nonreference sequences, from which 588 genes were annotated. A total of 149,158 biallelic insertions/deletions, 6531 divergent alleles, and 14,707 multiallelic variations with precise breakpoints were discovered. The SV spectrum is characterized by an excess of derived insertions compared to deletions (94,422 vs. 33,571), suggesting recent active LINE expansions in sheep. Nearly half of the SVs display low to moderate linkage disequilibrium with surrounding single-nucleotide polymorphisms (SNPs) and most SVs cannot be tagged by SNP probes from the widely used ovine 50K SNP chip. We identified 865 population-stratified SVs including 122 SVs possibly derived in the domestication process among 690 individuals from sheep breeds worldwide. A novel 168-bp insertion in the 5' untranslated region (5' UTR) of HOXB13 is found at high frequency in long-tailed sheep. Further genome-wide association study and gene expression analyses suggest that this mutation is causative for the long-tail trait. In summary, we have developed a panel of high-quality de novo assemblies and present a catalog of structural variations in sheep. Our data capture abundant candidate functional variations that were previously unexplored and provide a fundamental resource for understanding trait biology in sheep.


Assuntos
Estudo de Associação Genômica Ampla , Cauda , Animais , Ovinos/genética , Regiões 5' não Traduzidas , Alelos , Fenótipo
7.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522363

RESUMO

Xenopus laevis tadpoles can regenerate whole tails after amputation. We have previously reported that interleukin 11 (il11) is required for tail regeneration. In this study, we have screened for genes that support tail regeneration under Il11 signaling in a certain cell type and have identified the previously uncharacterized genes Xetrov90002578m.L and Xetrov90002579m.S [referred to hereafter as regeneration factors expressed on myeloid.L (rfem.L) and rfem.S]. Knockdown (KD) of rfem.L and rfem.S causes defects of tail regeneration, indicating that rfem.L and/or rfem.S are required for tail regeneration. Single-cell RNA sequencing (scRNA-seq) revealed that rfem.L and rfem.S are expressed in a subset of leukocytes with a macrophage-like gene expression profile. KD of colony-stimulating factor 1 (csf1), which is essential for macrophage differentiation and survival, reduced rfem.L and rfem.S expression levels and the number of rfem.L- and rfem.S-expressing cells in the regeneration bud. Furthermore, forced expression of rfem.L under control of the mpeg1 promoter, which drives rfem.L in macrophage-like cells, rescues rfem.L and rfem.S KD-induced tail regeneration defects. Our findings suggest that rfem.L or rfem.S expression in macrophage-like cells is required for tail regeneration.


Assuntos
Interleucina-11 , Transdução de Sinais , Animais , Xenopus laevis/genética , Xenopus laevis/metabolismo , Interleucina-11/metabolismo , Larva/genética , Transdução de Sinais/genética , Macrófagos , Cauda
8.
Cell ; 145(3): 383-397, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21529712

RESUMO

Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than regulatory capacity in mRNA translation. Here we identify mutations of the Ribosomal Protein L38 (Rpl38) gene in mice exhibiting surprising tissue-specific patterning defects, including pronounced homeotic transformations of the axial skeleton. In Rpl38 mutant embryos, global protein synthesis is unchanged; however the translation of a select subset of Homeobox mRNAs is perturbed. Our data reveal that RPL38 facilitates 80S complex formation on these mRNAs as a regulatory component of the ribosome to confer transcript-specific translational control. We further show that Rpl38 expression is markedly enriched in regions of the embryo where loss-of-function phenotypes occur. Unexpectedly, a ribosomal protein (RP) expression screen reveals dynamic regulation of individual RPs within the vertebrate embryo. Collectively, these findings suggest that RP activity may be highly regulated to impart a new layer of specificity in the control of gene expression and mammalian development.


Assuntos
Padronização Corporal , Doenças do Desenvolvimento Ósseo/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Organogênese , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Cauda/anormalidades
9.
Nature ; 581(7806): 67-70, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376955

RESUMO

In recent decades, intensive research on non-avian dinosaurs has strongly suggested that these animals were restricted to terrestrial environments1. Historical proposals that some groups, such as sauropods and hadrosaurs, lived in aquatic environments2,3 were abandoned decades ago4-6. It has recently been argued that at least some of the spinosaurids-an unusual group of large-bodied theropods of the Cretaceous era-were semi-aquatic7,8, but this idea has been challenged on anatomical, biomechanical and taphonomic grounds, and remains controversial9-11. Here we present unambiguous evidence for an aquatic propulsive structure in a dinosaur, the giant theropod Spinosaurus aegyptiacus7,12. This dinosaur has a tail with an unexpected and unique shape that consists of extremely tall neural spines and elongate chevrons, which forms a large, flexible fin-like organ capable of extensive lateral excursion. Using a robotic flapping apparatus to measure undulatory forces in physical models of different tail shapes, we show that the tail shape of Spinosaurus produces greater thrust and efficiency in water than the tail shapes of terrestrial dinosaurs and that these measures of performance are more comparable to those of extant aquatic vertebrates that use vertically expanded tails to generate forward propulsion while swimming. These results are consistent with the suite of adaptations for an aquatic lifestyle and piscivorous diet that have previously been documented for Spinosaurus7,13,14. Although developed to a lesser degree, aquatic adaptations are also found in other members of the spinosaurid clade15,16, which had a near-global distribution and a stratigraphic range of more than 50 million years14, pointing to a substantial invasion of aquatic environments by dinosaurs.


Assuntos
Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Natação , Cauda/anatomia & histologia , Cauda/fisiologia , Água , Adaptação Fisiológica , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/fisiologia , Dieta/veterinária , Dinossauros/classificação , Ecossistema , Peixes , Robótica , Coluna Vertebral/anatomia & histologia
10.
Dev Biol ; 512: 26-34, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705558

RESUMO

The signals that regulate peripheral blood vessel formation during development are still under investigation. The hormone leptin promotes blood vessel formation, adipose tissue establishment and expansion, tumor growth, and wound healing, but the underlying mechanisms for these actions are currently unknown. We investigated whether leptin promotes angiogenesis in the developing tail fin using embryonic transgenic xflk-1:GFP Xenopus laevis, which express a green fluorescent protein on vascular endothelial cells to mark blood vessels. We found that leptin protein is expressed in endothelial cells of developing blood vessels and that leptin treatment via injection increased phosphorylated STAT3 signaling, which is indicative of leptin activation of its receptor, in blood vessels of the larval tail fin. Leptin administration via media increased vessel length, branching, and reconnection with the cardinal vein, while decreased leptin signaling via immunoneutralization had an opposing effect on vessel development. We also observed disorganization of major vessels and microvessels of the tail fin and muscle when leptin signaling was decreased. Reduced leptin signaling lowered mRNA expression of cenpk, gpx1, and mmp9, markers for cell proliferation, antioxidation, and extracellular matrix remodeling/cell migration, respectively, in the developing tail, providing insight into three possible mechanisms underlying leptin's promotion of angiogenesis. Together these results illustrate that leptin levels are correlated with embryonic angiogenesis and that leptin coordinates multiple aspects of blood vessel growth and development, showing that leptin is an important morphogen during embryonic development.


Assuntos
Larva , Leptina , Neovascularização Fisiológica , Transdução de Sinais , Cauda , Xenopus laevis , Animais , Leptina/metabolismo , Cauda/irrigação sanguínea , Cauda/embriologia , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Larva/metabolismo , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Animais Geneticamente Modificados , Fator de Transcrição STAT3/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
11.
Dev Biol ; 511: 84-91, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648924

RESUMO

We established a normal embryonic development table for the Anji salamander Hynobius amjiensis, a critically endangered tailed amphibian of the family Hynobiidae with a very limited distribution in East China, following the standards set by the early developmental table of vertebrates. Put together 32 embryonic stages for the Anji salamander was defined. The total embryonic period from oviposition to hatching is approximately 30 days at 9 °C. Stages 1-16 represent early development from cleavage to neurulation. Stages 17-32 represent organogenesis documenting later developmental events such as tail, gill, and limb formation, and hatching (Stage 32). We provided a detailed description of the external morphology and color changes of the head, trunk, limbs, tail, external gills, and balancers at various stages from egg-laying to hatching. We also described several cases of abnormal embryonic development. The establishment of the embryonic development table in H. amjiensis contributes to better understanding of the ontogeny in tailed amphibians, distinguishing closely related species, and identifying abnormal embryonic amphibians.


Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário , Urodelos , Animais , Urodelos/embriologia , Desenvolvimento Embrionário/fisiologia , Embrião não Mamífero/embriologia , Feminino , Organogênese/fisiologia , Cauda/embriologia , China
12.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35815643

RESUMO

The barrier-forming, self-renewing mammalian epidermis comprises keratinocytes, pigment-producing melanocytes and resident immune cells as first-line host defense. In murine tail skin, interfollicular epidermis patterns into pigmented 'scale' and hypopigmented 'interscale' epidermis. Why and how mature melanocytes accumulate in scale epidermis is unresolved. Here, we delineate a cellular hierarchy among epidermal cell types that determines skin patterning. Already during postnatal development, melanocytes co-segregate with newly forming scale compartments. Intriguingly, this process coincides with partitioning of both Langerhans cells and dendritic epidermal T cells to interscale epidermis, suggesting functional segregation of pigmentation and immune surveillance. Analysis of non-pigmented mice and of mice lacking melanocytes or resident immune cells revealed that immunocyte patterning is melanocyte and melanin independent and, vice versa, immune cells do not control melanocyte localization. Instead, genetically enforced progressive scale fusion upon Lrig1 deletion showed that melanocytes and immune cells dynamically follow epithelial scale:interscale patterns. Importantly, disrupting Wnt-Lef1 function in keratinocytes caused melanocyte mislocalization to interscale epidermis, implicating canonical Wnt signaling in organizing the pigmentation pattern. Together, this work uncovers cellular and molecular principles underlying the compartmentalization of tissue functions in skin.


Assuntos
Epiderme , Cauda , Animais , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Mamíferos/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Pigmentação da Pele , Cauda/metabolismo
13.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227591

RESUMO

Ventral tail bending, which is transient but pronounced, is found in many chordate embryos and constitutes an interesting model of how tissue interactions control embryo shape. Here, we identify one key upstream regulator of ventral tail bending in embryos of the ascidian Ciona. We show that during the early tailbud stages, ventral epidermal cells exhibit a boat-shaped morphology (boat cell) with a narrow apical surface where phosphorylated myosin light chain (pMLC) accumulates. We further show that interfering with the function of the BMP ligand Admp led to pMLC localizing to the basal instead of the apical side of ventral epidermal cells and a reduced number of boat cells. Finally, we show that cutting ventral epidermal midline cells at their apex using an ultraviolet laser relaxed ventral tail bending. Based on these results, we propose a previously unreported function for Admp in localizing pMLC to the apical side of ventral epidermal cells, which causes the tail to bend ventrally by resisting antero-posterior notochord extension at the ventral side of the tail.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona intestinalis/metabolismo , Ciona/metabolismo , Cadeias Leves de Miosina/metabolismo , Ligantes , Células Epidérmicas/metabolismo , Cauda/metabolismo
14.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156681

RESUMO

Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3'UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced.


Assuntos
MicroRNAs/metabolismo , Regeneração da Medula Espinal/genética , Medula Espinal/metabolismo , Regiões 3' não Traduzidas , Ambystoma mexicanum/metabolismo , Animais , Antagomirs/metabolismo , Diferenciação Celular , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Medula Espinal/citologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Cauda/fisiologia , Via de Sinalização Wnt , beta Catenina/antagonistas & inibidores , beta Catenina/química , beta Catenina/metabolismo
15.
J Immunol ; 211(8): 1187-1194, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782856

RESUMO

Pigs play an important role in influenza A virus (IAV) epidemiology because they support replication of human, avian, and swine origin viruses and act as an IAV reservoir for pigs and other species, including humans. Moreover, novel IAVs with human pandemic potential may be generated in pigs. To minimize the threat of IAVs to human and swine health, it is crucial to understand host defense mechanisms that restrict viral replication and pathology in pigs. In this article, we review IAV strains circulating in the North American swine population, as well as porcine innate and acquired immune responses to IAV, including recent advances achieved through immunological tools developed specifically for swine. Furthermore, we highlight unique aspects of the porcine pulmonary immune system, which warrant consideration when developing vaccines and therapeutics to limit IAV in swine or when using pigs to model human IAV infections.


Assuntos
Doenças Transmissíveis , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Suínos , Cauda
17.
Proc Natl Acad Sci U S A ; 119(32): e2203121119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914124

RESUMO

Animals maintain the ability to survive and reproduce by acclimating to environmental temperatures. We showed here that Caenorhabditis elegans exhibited temperature acclimation plasticity, which was regulated by a head-tail-head neural circuitry coupled with gut fat storage. After experiencing cold, C. elegans individuals memorized the experience and were prepared against subsequent cold stimuli. The cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) regulated temperature acclimation in the ASJ thermosensory neurons and RMG head interneurons, where it modulated ASJ thermosensitivity in response to past cultivation temperature. The PVQ tail interneurons mediated the communication between ASJ and RMG via glutamatergic signaling. Temperature acclimation occurred via gut fat storage regulation by the triglyceride lipase ATGL-1, which was activated by a neuropeptide, FLP-7, downstream of CREB. Thus, a head-tail-head neural circuit coordinated with gut fat influenced experience-dependent temperature acclimation.


Assuntos
Aclimatação , Tecido Adiposo , Caenorhabditis elegans , Temperatura Baixa , Sistema Digestório , Cabeça , Vias Neurais , Cauda , Aclimatação/fisiologia , Tecido Adiposo/metabolismo , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema Digestório/metabolismo , Ácido Glutâmico/metabolismo , Cabeça/inervação , Interneurônios/metabolismo , Lipase/metabolismo , Neuropeptídeos/metabolismo , Cauda/inervação , Sensação Térmica
18.
J Neurochem ; 168(3): 251-268, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308566

RESUMO

The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.


Assuntos
Dopamina , Cauda , Ratos , Animais , Corpo Estriado , Neostriado , Antagonistas de Dopamina/farmacologia
19.
Evol Dev ; 26(3): e12477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644594

RESUMO

Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called "stolonization," in which posterior segments are transformed into a reproductive individual-like unit called a "stolon." Megasyllis nipponica forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.


Assuntos
Poliquetos , Regeneração , Cauda , Animais , Poliquetos/fisiologia , Poliquetos/anatomia & histologia , Poliquetos/crescimento & desenvolvimento , Reprodução , Cauda/anatomia & histologia , Cauda/fisiologia , Japão
20.
Am Nat ; 203(6): 629-643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781527

RESUMO

AbstractPopulation-level variation in rodent tail structures has been variously attributed to facilitating social communication, locomotion, thermoregulation, and predator avoidance. Little is known, however, about the applicability of these ecological and social correlates to explaining the tremendous interspecific diversity of this appendage. To investigate the potential drivers of rodent tail morphology at a macroevolutionary level, we first carefully reviewed the literature and constructed a list of major hypotheses regarding this variation. We then compiled a database of 11 different tail traits related to length, color, texture, and ecological characteristics for 2,101 species of rodents (order Rodentia) and examined their key evolutionary correlates. Using Bayesian phylogenetic mixed models across the entire order and additionally within the five rodent suborders, we found that tail length is correlated with both temperature (Allen's rule) and locomotory mode, that black tips are more common in brightly lit environments, that naked tails are often found in warmer climates, that fluffy-tipped tails are more common in smaller and/or arboreal species, that prehensility is predominant in arboreal species and/or species with longer tails, and that tail autotomy is more common in open environments. Most of our tested predictions, largely drawn from population-level studies, are not recapitulated across the entire order, potentially indicating a role of local ecological context in shaping tail morphology.


Assuntos
Evolução Biológica , Roedores , Cauda , Animais , Cauda/anatomia & histologia , Roedores/anatomia & histologia , Roedores/fisiologia , Filogenia , Teorema de Bayes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA