Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.766
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(25): 4675-4677, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493748

RESUMO

Wound healing in adult mammalian tissues generally involves scarring instead of tissue regeneration. A study in this issue of Cell reveals that after injury, reindeer antler skin regenerates by priming regenerative genes in wound fibroblasts instead of forming a scar through an inflammatory gene program.


Assuntos
Rena , Animais , Cicatrização , Cicatriz/patologia , Pele/patologia , Fibroblastos/patologia
2.
Cell ; 185(25): 4717-4736.e25, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493752

RESUMO

Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.


Assuntos
Rena , Cicatrização , Adulto , Animais , Humanos , Cicatriz/patologia , Fibroblastos/patologia , Transplante de Pele , Pele/patologia , Feto/patologia
3.
Nat Rev Mol Cell Biol ; 25(8): 599-616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38528155

RESUMO

Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.


Assuntos
Pele , Cicatrização , Humanos , Cicatrização/fisiologia , Animais , Pele/metabolismo , Pele/patologia , Inflamação/patologia , Inflamação/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Neovascularização Fisiológica , Queratinócitos/metabolismo
4.
Cell ; 173(1): 153-165.e22, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502968

RESUMO

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.


Assuntos
Cicatriz/patologia , Traumatismos da Medula Espinal/patologia , Animais , Axônios/fisiologia , Axônios/efeitos da radiação , Modelos Animais de Doenças , Potenciais Evocados/efeitos da radiação , Matriz Extracelular/metabolismo , Fibrose , Luz , Camundongos , Camundongos Transgênicos , Pericitos/citologia , Pericitos/metabolismo , Estimulação Luminosa , Tratos Piramidais/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Recuperação de Função Fisiológica , Regeneração , Córtex Sensório-Motor/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
5.
J Cell Mol Med ; 28(4): e18130, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332511

RESUMO

The dressing that promotes scarless healing is essential for both normal function and aesthetics after a wound. With a deeper understanding of the mechanisms involved in scar formation during the wound healing process, the ideal dressing becomes clearer and more promising. For instance, the yes-associated transcriptional regulator (YAP) has been extensively studied as a key gene involved in regulating scar formation. However, there has been limited attention given to pectolinarin, a natural flavonoid that may exhibit strong binding affinity to YAP, in the context of scarless healing. In this study, we successfully developed a temperature-sensitive Pluronic@F-127 hydrogel as a platform for delivering pectolinarin to promote scarless wound healing. The bioactive pectolinarin was released from the hydrogel, effectively enhancing endothelial cell migration, proliferation and the expression of angiogenesis-related genes. Additionally, a concentration of 20 µg/mL of pectolinarin demonstrated remarkable antioxidant ability, capable of counteracting the detrimental effects of reactive oxygen species (ROS). Our results from rat wound healing models demonstrated that the hydrogel accelerated wound healing, promoting re-epithelialization and facilitating skin appendage regeneration. Furthermore, we discovered that a concentration of 50 µg/mL of pectolinarin incorporated to the hydrogel exhibited the most favourable outcomes in terms of promoting wound healing and minimizing scar formation. Overall, our study highlights that the significant potential of locally released pectolinarin might substantially inhibit YAP and promoting scarless wound healing.


Assuntos
Cromonas , Cicatriz , Hidrogéis , Ratos , Animais , Cicatriz/patologia , Hidrogéis/farmacologia , Temperatura , Cicatrização
6.
Circulation ; 147(6): 498-511, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36484260

RESUMO

BACKGROUND: Myocardial infarction (MI) induces a repair response that ultimately generates a stable fibrotic scar. Although the scar prevents cardiac rupture, an excessive profibrotic response impairs optimal recovery by promoting the development of noncontractile fibrotic areas. The mechanisms that lead to cardiac fibrosis are diverse and incompletely characterized. We explored whether the expansion of cardiac fibroblasts after MI can be regulated through a paracrine action of cardiac stromal cells. METHODS: We performed a bioinformatic secretome analysis of cardiac stromal PW1+ cells isolated from normal and post-MI mouse hearts to identify novel secreted proteins. Functional assays were used to screen secreted proteins that promote fibroblast proliferation. The expressions of candidates were subsequently analyzed in mouse and human hearts and plasmas. The relationship between levels of circulating protein candidates and adverse post-MI cardiac remodeling was examined in a cohort of 80 patients with a first ST-segment-elevation MI and serial cardiac magnetic resonance imaging evaluations. RESULTS: Cardiac stromal PW1+ cells undergo a change in paracrine behavior after MI, and the conditioned media from these cells induced a significant increase in the proliferation of fibroblasts. We identified a total of 12 candidates as secreted proteins overexpressed by cardiac PW1+ cells after MI. Among these factors, GDF3 (growth differentiation factor 3), a member of the TGF-ß (transforming growth factor-ß) family, was markedly upregulated in the ischemic hearts. Conditioned media specifically enriched with GDF3 induced fibroblast proliferation at a high level by stimulation of activin-receptor-like kinases. In line with the secretory nature of this protein, we next found that GDF3 can be detected in mice and human plasma samples, with a significant increase in the days after MI. In humans, higher GDF3 circulating levels (measured in the plasma at day 4 after MI) were significantly associated with an increased risk of adverse remodeling 6 months after MI (adjusted odds ratio, 1.76 [1.03-3.00]; P=0.037), including lower left ventricular ejection fraction and a higher proportion of akinetic segments. CONCLUSIONS: Our findings define a mechanism for the profibrotic action of cardiac stromal cells through secreted cardiokines, such as GDF3, a candidate marker of adverse fibrotic remodeling after MI. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01113268.


Assuntos
Infarto do Miocárdio , Miocárdio , Animais , Humanos , Camundongos , Cicatriz/patologia , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Fibrose , Fator 3 de Diferenciação de Crescimento/metabolismo , Miocárdio/metabolismo , Volume Sistólico , Fator de Crescimento Transformador beta/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular
7.
Glia ; 72(3): 546-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987116

RESUMO

Although brain scars in adults have been extensively studied, there is less data available regarding scar formation during the neonatal period, and the involvement of peripheral immune cells in this process remains unexplored in neonates. Using a murine model of neonatal hypoxic-ischemic encephalopathy (HIE) and confocal microscopy, we characterized the scarring process and examined the recruitment of peripheral immune cells to cortical and hippocampal scars for up to 1 year post-insult. Regional differences in scar formation were observed, including the presence of reticular fibrotic networks in the cortex and perivascular fibrosis in the hippocampus. We identified chemokines with chronically elevated levels in both regions and demonstrated, through a parabiosis-based strategy, the recruitment of lymphocytes, neutrophils, and monocyte-derived macrophages to the scars several weeks after the neonatal insult. After 1 year, however, neutrophils and lymphocytes were absent from the scars. Our data indicate that peripheral immune cells are transient components of HIE-induced brain scars, opening up new possibilities for late therapeutic interventions.


Assuntos
Cicatriz , Hipóxia-Isquemia Encefálica , Adulto , Animais , Humanos , Camundongos , Cicatriz/patologia , Encéfalo/patologia , Macrófagos , Hipóxia-Isquemia Encefálica/patologia
8.
Cancer Metastasis Rev ; 42(3): 653-659, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37582896

RESUMO

It has been demonstrated that scar tissue and fibrosis may increase the likelihood of developing malignancies. Specifically, scar tissue has been linked to the occurrence and progression of lung cancer (LC), though the precise mechanisms necessitate further research for explanation. Lung scarring can stem from various causes, with carcinogenesis on scarring lesions in pulmonary tuberculosis (PTB) being the most frequent (accounting for approximately 75% of cases). Notably, having previously cured, PTB is the second most common risk factor for LC after smoking, with approximately 3% of PTB patients experiencing LC as a secondary condition. This essay will delve into the mechanisms, treatment, and prognosis of tuberculosis scar carcinoma (TSC).


Assuntos
Carcinoma , Neoplasias Pulmonares , Tuberculose Pulmonar , Humanos , Cicatriz/complicações , Cicatriz/patologia , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/epidemiologia , Neoplasias Pulmonares/patologia , Carcinoma/complicações , Fatores de Risco
9.
Mol Pain ; 20: 17448069241245420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511285

RESUMO

Background: Scar formation after trauma and surgery involves an inflammatory response and can lead to the development of chronic pain. Neurotropin® (NTP) is a nonprotein extract of inflamed skin of rabbits inoculated with vaccinia virus. It has been widely used for the treatment of chronic pain. However, the in vivo effects of NTP on painful scar formation have not been determined. To investigate the molecular mechanisms underlying the effects of NTP on the inflammatory response, we evaluated gene expression in the scar tissues and dorsal root ganglions (DRGs) of mice administered NTP and control mice. Methods and results: Mice injected with saline or NTP were used as controls; other mice were subjected to surgery on the left hind paw to induce painful scar formation, and then injected with saline or NTP. Hind paw pain was evaluated by measuring the threshold for mechanical stimulation using the von Frey test. The paw withdrawal threshold gradually returned to pre-operative levels over 4 weeks post-operation; NTP-treated mice showed a significantly shortened recovery time of approximately 3 weeks, suggesting that NTP exerted an analgesic effect in this mouse model. Total RNA was extracted from the scarred hind paw tissues and DRGs were collected 1 week post-operation for a microarray analysis. Gene set enrichment analysis revealed that the expression of some gene sets related to inflammatory responses was activated or inhibited following surgery and NTP administration. Quantitative real-time reverse transcription-polymerase chain reaction analysis results for several genes were consistent with the microarray results. Conclusion: The administration of NTP to the hind paws of mice with painful scar formation following surgery diminished nociceptive pain and reduced the inflammatory response. NTP inhibited the expression of some genes involved in the response to surgery-induced inflammation. Therefore, NTP is a potential therapeutic option for painful scar associated with chronic pain.


Assuntos
Dor Crônica , Cicatriz , Modelos Animais de Doenças , Inflamação , Polissacarídeos , Animais , Masculino , Camundongos , Dor Crônica/tratamento farmacológico , Dor Crônica/etiologia , Cicatriz/tratamento farmacológico , Cicatriz/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Polissacarídeos/farmacologia
10.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576159

RESUMO

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Assuntos
Cicatriz , Gliose , Infarto da Artéria Cerebral Média , Animais , Gliose/metabolismo , Gliose/patologia , Camundongos , Cicatriz/metabolismo , Cicatriz/patologia , Infarto da Artéria Cerebral Média/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Masculino , Camundongos Endogâmicos C57BL , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Obesidade/metabolismo , Obesidade/complicações , Proteínas da Matriz Extracelular/metabolismo , Hiperglicemia/metabolismo
11.
J Hepatol ; 80(5): 730-743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38199298

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which there is an unmet need to understand the cellular composition of the affected liver and how it underlies disease pathogenesis. We aimed to generate a comprehensive atlas of the PSC liver using multi-omic modalities and protein-based functional validation. METHODS: We employed single-cell and single-nucleus RNA sequencing (47,156 cells and 23,000 nuclei) and spatial transcriptomics (one sample by 10x Visium and five samples with Nanostring GeoMx DSP) to profile the cellular ecosystem in 10 PSC livers. Transcriptomic profiles were compared to 24 neurologically deceased donor livers (107,542 cells) and spatial transcriptomics controls, as well as 18,240 cells and 20,202 nuclei from three PBC livers. Flow cytometry was performed to validate PSC-specific differences in immune cell phenotype and function. RESULTS: PSC explants with parenchymal cirrhosis and prominent periductal fibrosis contained a population of cholangiocyte-like hepatocytes that were surrounded by diverse immune cell populations. PSC-associated biliary, mesenchymal, and endothelial populations expressed chemokine and cytokine transcripts involved in immune cell recruitment. Additionally, expanded CD4+ T cells and recruited myeloid populations in the PSC liver expressed the corresponding receptors to these chemokines and cytokines, suggesting potential recruitment. Tissue-resident macrophages, by contrast, were reduced in number and exhibited a dysfunctional and downregulated inflammatory response to lipopolysaccharide and interferon-γ stimulation. CONCLUSIONS: We present a comprehensive atlas of the PSC liver and demonstrate an exhaustion-like phenotype of myeloid cells and markers of chronic cytokine expression in late-stage PSC lesions. This atlas expands our understanding of the cellular complexity of PSC and has potential to guide the development of novel treatments. IMPACT AND IMPLICATIONS: Primary sclerosing cholangitis (PSC) is a rare liver disease characterized by chronic inflammation and irreparable damage to the bile ducts, which eventually results in liver failure. Due to a limited understanding of the underlying pathogenesis of disease, treatment options are limited. To address this, we sequenced healthy and diseased livers to compare the activity, interactions, and localization of immune and non-immune cells. This revealed that hepatocytes lining PSC scar regions co-express cholangiocyte markers, whereas immune cells infiltrate the scar lesions. Of these cells, macrophages, which typically contribute to tissue repair, were enriched in immunoregulatory genes and demonstrated a lack of responsiveness to stimulation. These cells may be involved in maintaining hepatic inflammation and could be a target for novel therapies.


Assuntos
Colangite Esclerosante , Humanos , Cicatriz/metabolismo , Cicatriz/patologia , Ecossistema , Fígado/patologia , Cirrose Hepática/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Perfilação da Expressão Gênica
12.
Am J Gastroenterol ; 119(2): 378-381, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734341

RESUMO

INTRODUCTION: When initial resection of rectal neuroendocrine tumors (r-NETs) is not R0, persistence of local residue could lead to disease recurrence. This study aimed to evaluate the interest of systematic resection of non-R0 r-NET scars. METHODS: Retrospective analysis of all the consecutive endoscopic revisions and resections of the scar after non-R0 resections of r-NETs. RESULTS: A total of 100 patients were included. Salvage endoscopic procedure using endoscopic submucosal dissection or endoscopic full-thickness resection showed an R0 rate of near 100%. Residual r-NET was found in 43% of cases. DISCUSSION: In case of non-R0 resected r-NET, systematic scar resection by endoscopic full-thickness resection or endoscopic submucosal dissection seems necessary.


Assuntos
Ressecção Endoscópica de Mucosa , Tumores Neuroendócrinos , Neoplasias Retais , Humanos , Tumores Neuroendócrinos/cirurgia , Cicatriz/etiologia , Cicatriz/patologia , Estudos Retrospectivos , Resultado do Tratamento , Recidiva Local de Neoplasia/cirurgia , Neoplasias Retais/cirurgia , Neoplasias Retais/patologia , Ressecção Endoscópica de Mucosa/métodos
13.
J Neuroinflammation ; 21(1): 193, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095832

RESUMO

Lactate-derived histone lactylation is involved in multiple pathological processes through transcriptional regulation. The role of lactate-derived histone lactylation in the repair of spinal cord injury (SCI) remains unclear. Here we report that overall lactate levels and lactylation are upregulated in the spinal cord after SCI. Notably, H4K12la was significantly elevated in the microglia of the injured spinal cord, whereas exogenous lactate treatment further elevated H4K12la in microglia after SCI. Functionally, lactate treatment promoted microglial proliferation, scar formation, axon regeneration, and locomotor function recovery after SCI. Mechanically, lactate-mediated H4K12la elevation promoted PD-1 transcription in microglia, thereby facilitating SCI repair. Furthermore, a series of rescue experiments confirmed that a PD-1 inhibitor or microglia-specific AAV-sh-PD-1 significantly reversed the therapeutic effects of lactate following SCI. This study illustrates the function and mechanism of lactate/H4K12la/PD-1 signaling in microglia-mediated tissue repair and provides a novel target for SCI therapy.


Assuntos
Histonas , Ácido Láctico , Microglia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Histonas/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Ácido Láctico/metabolismo , Ratos , Lisina/metabolismo , Lisina/análogos & derivados , Lisina/farmacologia , Camundongos , Cicatriz/metabolismo , Cicatriz/patologia , Feminino , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Masculino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia
14.
J Transl Med ; 22(1): 187, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378655

RESUMO

BACKGROUND: The initial idea of functional tissue replacement has shifted to the concept that injected cells positively modulate myocardial healing by a non-specific immune response of the transplanted cells within the target tissue. This alleged local modification of the scar requires assessment of regional properties of the left ventricular wall in addition to commonly applied measures of global morphological and functional parameters. Hence, we aimed at investigating the effect of cardiac cell therapy with cardiovascular progenitor cells, so-called cardiac induced cells, on both global and regional properties of the left ventricle by a multimodal imaging approach in a mouse model. METHODS: Myocardial infarction was induced in mice by ligation of the left anterior descending artery, the therapy group received an intramyocardial injection of 1 × 106 cardiac induced cells suspended in matrigel, the control group received matrigel only. [18F]FDG positron emission tomography imaging was performed after 17 days, to assess regional glucose metabolism. Three weeks after myocardial infarction, cardiac magnetic resonance imaging was performed for morphological and functional assessment of the left ventricle. Following these measurements, hearts were excised for histological examinations. RESULTS: Cell therapy had no significant effect on global morphological parameters. Similarly, there was no difference in scar size and capillary density between therapy and control group. However, there was a significant improvement in contractile function of the left ventricle - left ventricular ejection fraction, stroke volume and cardiac output. Regional analysis of the left ventricle identified changes of wall properties in the scar area as the putative mechanism. Cell therapy reduced the thinning of the scar and significantly improved its radial contractility. Furthermore, the metabolic defect, assessed by [18F]FDG, was significantly reduced by the cell therapy. CONCLUSION: Our data support the relevance of extending the assessment of global left ventricular parameters by a structured regional wall analysis for the evaluation of therapies targeting at modulation of healing myocardium. This approach will enable a deeper understanding of mechanisms underlying the effect of experimental regenerative therapies, thus paving the way for a successful translation into clinical application.


Assuntos
Fluordesoxiglucose F18 , Infarto do Miocárdio , Animais , Camundongos , Volume Sistólico , Fluordesoxiglucose F18/metabolismo , Cicatriz/patologia , Função Ventricular Esquerda , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miocárdio/patologia
15.
Am J Kidney Dis ; 83(3): 306-317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37879529

RESUMO

RATIONALE & OBJECTIVE: Some living donor kidneys are found to have biopsy evidence of chronic scarring and/or glomerular disease at implantation, but it is unclear if these biopsy findings help predict donor kidney recovery or allograft outcomes. Our objective was to identify the prevalence of chronic histological changes and glomerular disease in donor kidneys, and their association with donor and recipient outcomes. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: Single center, living donor kidney transplants from January 2010 to July 2022. EXPOSURE: Chronic histological changes, glomerular disease in donor kidney implantation biopsies. OUTCOME: For donors, single-kidney estimated glomerular filtration rate (eGFR) increase, percent total eGFR loss, ≥40% eGFR decline from predonation baseline, and eGFR<60mL/min/1.73m2 at 6 months after donation; for recipients, death-censored allograft survival. ANALYTICAL APPROACH: Biopsies were classified as having possible glomerular disease by pathologist diagnosis or chronic changes based on the percentage of glomerulosclerosis, interstitial fibrosis/tubular atrophy, and vascular disease. We used logistic regression to identify factors associated with the presence of chronic changes, linear regression to identify the association between chronic changes and single-kidney estimated glomerular filtration rate (eGFR) recovery, and time-to-event analyses to identify the relationship between abnormal biopsy findings and allograft outcomes. RESULTS: Among 1,104 living donor kidneys, 155 (14%) had advanced chronic changes on implantation biopsy, and 12 (1%) had findings suggestive of possible donor glomerular disease. Adjusted logistic regression showed that age (odds ratio [OR], 2.44 per 10 years [95% CI, 1.98-3.01), Hispanic ethnicity (OR, 1.87 [95% CI, 1.15-3.05), and hypertension (OR, 1.92 [95% CI, 1.01-3.64), were associated with higher odds of chronic changes on implantation biopsy. Adjusted linear regression showed no association of advanced chronic changes with single-kidney eGFR increase or relative risk of eGFR<60mL/min/1.73m2. There were no differences in time-to-death-censored allograft failure in unadjusted or adjusted Cox proportional hazards models when comparing kidneys with chronic changes to kidneys without histological abnormalities. LIMITATIONS: Retrospective, absence of measured GFR. CONCLUSIONS: Approximately 1 in 7 living donor kidneys had chronic changes on implantation biopsy, primarily in the form of moderate vascular disease, and 1% had possible donor glomerular disease. Abnormal implantation biopsy findings were not significantly associated with 6-month donor eGFR outcomes or allograft survival. PLAIN-LANGUAGE SUMMARY: Kidney biopsies are the gold standard test to identify the presence or absence of kidney disease. However, kidneys donated by healthy living donors-who are extensively screened for any evidence of kidney disease before donation-occasionally show findings that might be considered "abnormal," including the presence of scarring in the kidney or findings suggestive of a primary kidney disease. We studied the frequency of abnormal kidney biopsy findings among living donors at our center. We found that about 14% of kidneys had chronic abnormalities and 1% had findings suggesting possible glomerular kidney disease, but the presence of abnormal biopsy findings was not associated with worse outcomes for the donors or their recipients.


Assuntos
Hipertensão , Falência Renal Crônica , Humanos , Criança , Doadores Vivos , Estudos Retrospectivos , Cicatriz/patologia , Rim/patologia , Taxa de Filtração Glomerular , Biópsia
16.
NMR Biomed ; 37(3): e5059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872862

RESUMO

While single-shot late gadolinium enhancement (LGE) is useful for imaging patients with arrhythmia and/or dyspnea, it produces low spatial resolution. One approach to improve spatial resolution is to accelerate data acquisition using compressed sensing (CS). Our previous work described a single-shot, multi-inversion time (TI) LGE pulse sequence using radial k-space sampling and CS, but over-regularization resulted in significant image blurring that muted the benefits of data acceleration. The purpose of the present study was to improve the spatial resolution of the single-shot, multi-TI LGE pulse sequence by incorporating view sharing (VS) and k-space weighted contrast (KWIC) filtering into a GRASP-Pro reconstruction. In 24 patients (mean age = 61 ± 16 years; 9/15 females/males), we compared the performance of our improved multi-TI LGE and standard multi-TI LGE, where clinical standard LGE was used as a reference. Two clinical raters independently graded multi-TI images and clinical LGE images visually on a five-point Likert scale (1, nondiagnostic; 3, clinically acceptable; 5, best) for three categories: the conspicuity of myocardium or scar, artifact, and noise. The summed visual score (SVS) was defined as the sum of the three scores. Myocardial scar volume was quantified using the full-width at half-maximum method. The SVS was not significantly different between clinical breath-holding LGE (median 13.5, IQR 1.3) and multi-TI LGE (median 12.5, IQR 1.6) (P = 0.068). The myocardial scar volumes measured from clinical standard LGE and multi-TI LGE were strongly correlated (coefficient of determination, R2 = 0.99) and in good agreement (mean difference = 0.11%, lower limit of the agreement = -2.13%, upper limit of the agreement = 2.34%). The inter-rater agreement in myocardial scar volume quantification was strong (intraclass correlation coefficient = 0.79). The incorporation of VS and KWIC into GRASP-Pro improved spatial resolution. Our improved 25-fold accelerated, single-shot LGE sequence produces clinically acceptable image quality, multi-TI reconstruction, and accurate myocardial scar volume quantification.


Assuntos
Meios de Contraste , Gadolínio , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Cicatriz/patologia , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia
17.
NMR Biomed ; 37(1): e5043, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740596

RESUMO

Late gadolinium enhancement (LGE) MRI is the non-invasive reference standard for identifying myocardial scar and fibrosis but has limitations, including difficulty delineating subendocardial scar and operator dependence on image quality. The purpose of this work is to assess the feasibility of generating multi-contrast synthetic LGE images from post-contrast T1 and T2 maps acquired using magnetic resonance fingerprinting (MRF). Fifteen consecutive patients with a history of prior ischemic cardiomyopathy (12 men; mean age 63  ±  13 years) were prospectively scanned at 1.5 T between Oct 2020 and May 2021 using conventional LGE and MRF after injection of gadolinium contrast. Three classes of synthetic LGE images were derived from MRF post-contrast T1 and T2 maps: bright-blood phase-sensitive inversion recovery (PSIR), black- and gray-blood T2 -prepared PSIR (T2 -PSIR), and a novel "tissue-optimized" image to enhance differentiation among scar, viable myocardium, and blood. Image quality was assessed on a 1-5 Likert scale by two cardiologists, and contrast was quantified as the mean absolute difference (MAD) in pixel intensities between two tissues, with different methods compared using Kruskal-Wallis with Bonferroni post hoc tests. Per-patient and per-segment scar detection rates were evaluated using conventional LGE images as reference. Image quality scores were highest for synthetic PSIR (4.0) and reference images (3.8), followed by synthetic tissue-optimized (3.3), gray-blood T2 -PSIR (3.0), and black-blood T2 -PSIR (2.6). Among synthetic images, PSIR yielded the highest myocardium/scar contrast (MAD = 0.42) but the lowest blood/scar contrast (MAD = 0.05), and vice versa for T2 -PSIR, while tissue-optimized images achieved a balance among all tissues (myocardium/scar MAD = 0.16, blood/scar MAD = 0.26, myocardium/blood MAD = 0.10). Based on reference mid-ventricular LGE scans, 13/15 patients had myocardial scar. The per-patient sensitivity/accuracy for synthetic images were the following: PSIR, 85/87%; black-blood T2 -PSIR, 62/53%; gray-blood T2 -PSIR, 100/93%; tissue optimized, 100/93%. Synthetic multi-contrast LGE images can be generated from post-contrast MRF data without additional scan time, with initial feasibility shown in ischemic cardiomyopathy patients.


Assuntos
Cardiomiopatias , Isquemia Miocárdica , Masculino , Humanos , Meios de Contraste , Gadolínio , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/patologia , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Espectroscopia de Ressonância Magnética
18.
Acta Neuropathol ; 148(1): 11, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060438

RESUMO

The underlying pathogenesis of neurological sequelae in post-COVID-19 patients remains unclear. Here, we used multidimensional spatial immune phenotyping and machine learning methods on brains from initial COVID-19 survivors to identify the biological correlate associated with previous SARS-CoV-2 challenge. Compared to healthy controls, individuals with post-COVID-19 revealed a high percentage of TMEM119+P2RY12+CD68+Iba1+HLA-DR+CD11c+SCAMP2+ microglia assembled in prototypical cellular nodules. In contrast to acute SARS-CoV-2 cases, the frequency of CD8+ parenchymal T cells was reduced, suggesting an immune shift toward innate immune activation that may contribute to neurological alterations in post-COVID-19 patients.


Assuntos
Encéfalo , COVID-19 , Imunidade Inata , Humanos , COVID-19/imunologia , Imunidade Inata/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Microglia/imunologia , Microglia/patologia , Adulto , Linfócitos T CD8-Positivos/imunologia , SARS-CoV-2/imunologia , Cicatriz/imunologia , Cicatriz/patologia , Aprendizado de Máquina
19.
Exp Dermatol ; 33(1): e15019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284205

RESUMO

Monitoring medical therapy remains a challenging task across all non-surgical skin cancer treatment modalities. In addition, confirmation of residual tumours after treatment is essential for the early detection of potential relapses. Optical coherence tomography (OCT), a non-invasive method for real-time cross-sectional imaging of living tissue, is a promising imaging approach for assessing relatively flat, near-surface skin lesions, such as those that occur in most basal cell carcinomas (BCCs), at the time of diagnosis. However, the skin's inherent property of strong light scattering impedes the implementation of OCT in these cases due to the poor image quality. Furthermore, translating OCT's optical parameters into practical use in routine clinical settings is complicated due to substantial observer subjectivity. In this retrospective pilot study, we developed a workflow based on the upscale of the OCT images resolution using a deep generative adversarial network and the estimation of the skin optical attenuation coefficient. At the site of immunocryosurgery-treated BCC, the proposed methodology can extract optical parameters and discriminate objectively between tumour foci and scar tissue.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Humanos , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Projetos Piloto , Recidiva Local de Neoplasia , Neoplasias Cutâneas/patologia , Carcinoma Basocelular/patologia
20.
Exp Eye Res ; 244: 109949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815791

RESUMO

PURPOSE: The current study used various techniques to develop a rabbit animal model of lacrimal gland damage caused by scarring conjunctivitis in the periglandular area. METHODS: Left eyes of New Zealand white rabbits were injected with 0.1 ml of 1M NaOH subconjunctivally around superior and inferior lacrimal gland orifices (Group 1, n = 4), touched with 1M NaOH for 100 s to the superior and inferior fornices with conjunctival denuding (Group 2; n = 4), and electrocauterization to the ductal opening area (Group 3; n = 4). The ocular surface staining, Schirmer I, lacrimal gland, and conjunctival changes were observed at baseline,1, 4, 8, and 12 weeks. The degree of glandular inflammation, conjunctival fibrosis (Masson Trichrome), and goblet cell density (PAS) were also assessed. RESULTS: At 12 weeks, the lacrimal glands of group 1 rabbits with periglandular injection showed severe inflammation with mean four foci/10HPF and a significant mean reduction in the Schirmer values by 7.6 mm (P = 0.007). Lacrimal glands had diffuse acinar atrophy, loss of myoepithelial cells, and ductular dilatation. The overlying conjunctiva showed fibrosis, goblet cell loss, and corneal vascularization in the inferotemporal quadrant. No lacrimal gland or ocular surface changes were observed in groups 2 and 3 at 12 weeks, except for localized subconjunctival fibrosis. CONCLUSION: Periglandular injection of 0.1 ml of 1M NaOH induced extensive lacrimal gland damage with reduced secretion and scarring in the subconjunctival plane compared to direct cauterization or direct NaOH contact to the ductal orifices of the rabbit lacrimal gland.


Assuntos
Cicatriz , Túnica Conjuntiva , Conjuntivite , Modelos Animais de Doenças , Síndromes do Olho Seco , Células Caliciformes , Lágrimas , Animais , Coelhos , Síndromes do Olho Seco/metabolismo , Cicatriz/patologia , Células Caliciformes/patologia , Túnica Conjuntiva/patologia , Lágrimas/metabolismo , Conjuntivite/patologia , Aparelho Lacrimal/patologia , Hidróxido de Sódio/toxicidade , Fibrose , Masculino , Contagem de Células , Feminino , Eletrocoagulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA