Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Cell ; 179(3): 802-802.e1, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626778

RESUMO

S-phase entry and exit are regulated by hundreds of protein complexes that assemble "just in time," orchestrated by a multitude of distinct events. To help understand their interplay, we have created a tailored visualization based on the Minardo layout, highlighting over 80 essential events. This complements our earlier visualization of M-phase, and both can be displayed together, giving a comprehensive overview of the events regulating the cell division cycle. To view this SnapShot, open or download the PDF.


Assuntos
Ciclo Celular/genética , Mitose/genética , Complexos Multiproteicos/genética , Fase S/genética , Divisão Celular/genética , Ciclina B/genética , Ciclina D/genética , Quinases Ciclina-Dependentes/genética , Fase G2/genética , Humanos , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética
2.
Cell ; 155(1): 135-47, 2013 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074866

RESUMO

Self-renewal and differentiation of stem cells are fundamentally associated with cell-cycle progression to enable tissue specification, organ homeostasis, and potentially tumorigenesis. However, technical challenges have impaired the study of the molecular interactions coordinating cell fate choice and cell-cycle progression. Here, we bypass these limitations by using the FUCCI reporter system in human pluripotent stem cells and show that their capacity of differentiation varies during the progression of their cell cycle. These mechanisms are governed by the cell-cycle regulators cyclin D1-3 that control differentiation signals such as the TGF-ß-Smad2/3 pathway. Conversely, cell-cycle manipulation using a small molecule directs differentiation of hPSCs and provides an approach to generate cell types with a clinical interest. Our results demonstrate that cell fate decisions are tightly associated with the cell-cycle machinery and reveal insights in the mechanisms synchronizing differentiation and proliferation in developing tissues.


Assuntos
Ciclo Celular , Diferenciação Celular , Ciclina D/metabolismo , Células-Tronco Embrionárias/citologia , Transdução de Sinais , Ciclina D/genética , Células-Tronco Embrionárias/metabolismo , Fase G1 , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína Smad2/genética , Proteína Smad3/genética
3.
Mol Cell ; 74(4): 758-770.e4, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30982746

RESUMO

The cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein Rb, which inhibits cell-cycle progression until its inactivation by phosphorylation. However, the role of Rb phosphorylation by cyclin D-Cdk4,6 in cell-cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdks, and cyclin D-Cdk4,6 has other targets involved in cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the Rb C terminus, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents its phosphorylation, promotes G1 arrest, and enhances Rb's tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and expands the diversity of known cyclin-based protein docking mechanisms.


Assuntos
Proliferação de Células/genética , Ciclina D/genética , Mapas de Interação de Proteínas/genética , Proteína do Retinoblastoma/genética , Ciclo Celular/genética , Proteína Substrato Associada a Crk/genética , Ciclina D/química , Quinase 4 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/genética , Ciclinas/genética , Fase G1/genética , Humanos , Simulação de Acoplamento Molecular , Fosforilação/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice/genética , Proteína do Retinoblastoma/química , Proteína p107 Retinoblastoma-Like/genética , Fase S/genética
4.
Mol Cell ; 62(6): 929-942, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27237051

RESUMO

The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteína do Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Ciclina D/genética , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Ativação Enzimática , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
5.
Genes Dev ; 30(4): 421-33, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883361

RESUMO

Coordination of differentiation and cell cycle progression represents an essential process for embryonic development and adult tissue homeostasis. These mechanisms ultimately determine the quantities of specific cell types that are generated. Despite their importance, the precise molecular interplays between cell cycle machinery and master regulators of cell fate choice remain to be fully uncovered. Here, we demonstrate that cell cycle regulators Cyclin D1-3 control cell fate decisions in human pluripotent stem cells by recruiting transcriptional corepressors and coactivator complexes onto neuroectoderm, mesoderm, and endoderm genes. This activity results in blocking the core transcriptional network necessary for endoderm specification while promoting neuroectoderm factors. The genomic location of Cyclin Ds is determined by their interactions with the transcription factors SP1 and E2Fs, which result in the assembly of cell cycle-controlled transcriptional complexes. These results reveal how the cell cycle orchestrates transcriptional networks and epigenetic modifiers to instruct cell fate decisions.


Assuntos
Ciclo Celular/genética , Diferenciação Celular/genética , Ciclina D/genética , Ciclina D/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Cromatina/metabolismo , Endoderma/citologia , Epigênese Genética , Estudo de Associação Genômica Ampla , Placa Neural/citologia , Fosforilação , Ligação Proteica
6.
Genes Dev ; 28(23): 2613-20, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452272

RESUMO

Germline deletion of the p53 gene in mice gives rise to spontaneous thymic (T-cell) lymphomas. In this study, the p53 knockout mouse was employed as a model to study the mutational evolution of tumorigenesis. The clonality of the T-cell repertoire from p53 knockout and wild-type thymic cells was analyzed at various ages employing TCRß sequencing. These data demonstrate that p53 knockout thymic lymphomas arose in an oligoclonal fashion, with tumors evolving dominant clones over time. Exon sequencing of tumor DNA revealed that all of the independently derived oligoclonal mouse tumors had a deletion in the Pten gene prior to the formation of the TCRß rearrangement, produced early in development. This was followed in each independent clone of the thymic lymphoma by the amplification or overexpression of cyclin Ds and Cdk6. Alterations in the expression of Ikaros were common and blocked further development of CD-4/CD-8 T cells. While the frequency of point mutations in the genome of these lymphomas was one per megabase, there were a tremendous number of copy number variations producing the tumors' driver mutations. The initial inherited loss of p53 functions appeared to delineate an order of genetic alterations selected for during the evolution of these thymic lymphomas.


Assuntos
Evolução Molecular , Linfoma/genética , Neoplasias do Timo/genética , Proteína Supressora de Tumor p53/genética , Animais , Ciclina D/genética , Quinase 6 Dependente de Ciclina/genética , Variações do Número de Cópias de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Mutação Puntual/genética
7.
Exp Cell Res ; 388(2): 111819, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31917964

RESUMO

Intestinal stem cells (ISCs) play a crucial role in maintaining intestinal homeostasis upon chemotherapy and radiotherapy. It has been documented that prostaglandin E2 (PGE2) treatment improved hematopoietic stem cell function in vitro and in vivo, while the relationship between PGE2 and intestinal stem cells remains unclear. Presently, mice were exposed to PGE1, dmPGE2 and indomethacin. Numbers and function of ISCs were assessed by analyzing Olfm4+ ISCs. Intestinal protection of dmPGE2 was investigated on a 5-fluorouracil (5FU)-induced intestinal damage mouse model. The results showed that dmPGE2 treatment, but not PGE1, increased numbers of Olfm4+ ISCs in dose- and time-dependent manners. Indomethacin treatment decreased numbers of Olfm4+ ISCs. The beneficial effects of short-term dmPGE2 treatment on intestine were supported in a 5FU-induced intestinal damage model. Our data showed that 5FU treatment significantly decreased numbers of Olfm4+ ISCs and goblet cells in intestine, which could be ameliorated by dmPGE2 treatment. dmPGE2 treatment accelerated the recovery of 5FU-induced ISC injury via increasing expression of cyclin D1 and D2 in intestine. Furthermore, dmPGE2 treatment-induced expression of cyclin D1 and D2 might be mediated by up-regulation of FOXM1 expression in intestine. These findings feature PGE2 as an effective protector against chemotherapy-induced intestinal damage.


Assuntos
Ciclina D/metabolismo , Dinoprostona/farmacologia , Fluoruracila/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Ciclina D/genética , Humanos , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitócicos/farmacologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Células Tumorais Cultivadas
8.
Cell Mol Life Sci ; 77(14): 2659-2680, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31884567

RESUMO

The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Neoplasias/genética , Doenças Neurodegenerativas/genética , Microambiente Tumoral/genética , Encéfalo/patologia , Ciclina D/genética , Ciclina E/genética , Ciclinas/genética , Progressão da Doença , Humanos , Peptidilprolil Isomerase de Interação com NIMA/genética , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Proteína Fosfatase 2/genética , Proteína Supressora de Tumor p53/genética
9.
Mol Syst Biol ; 15(3): e8604, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886052

RESUMO

The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time-lapse microscopy, we found that each phase duration follows an Erlang distribution and is statistically independent from other phases. We challenged this observation by perturbing phase durations through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Despite large changes in durations in cell populations, phase durations remained uncoupled in individual cells. These results suggested that the independence of phase durations may arise from a large number of molecular factors that each exerts a minor influence on the rate of cell cycle progression. We tested this model by experimentally forcing phase coupling through inhibition of cyclin-dependent kinase 2 (CDK2) or overexpression of cyclin D. Our work provides an explanation for the historical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states.


Assuntos
Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Replicação do DNA/genética , Ciclina D/genética , Ciclina D/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Dano ao DNA , Humanos , Oncogenes/genética , Temperatura
10.
Cell Microbiol ; 21(5): e13001, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30650225

RESUMO

Due to an increasing emergence of new and drug-resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/ß-catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/ß-catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up-regulated and 20 miRNAs that down-regulated the Wnt/ß-catenin signalling pathway. Fifteen miRNAs were validated to up-regulate and five miRNAs to down-regulate the pathway. Overexpression of four selected miRNAs (miR-193b, miR-548f-1, miR-1-1, and miR-509-1) that down-regulated the Wnt/ß-catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34-infected HEK293 cells, and progeny virus production. Overexpression of miR-193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR-193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that ß-catenin was a target of miR-193b, and ß-catenin rescued miR-193b-mediated suppression of IAV infection. miR-193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus-mediated gene transfer of miR-193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR-193b represses IAV infection by inhibiting Wnt/ß-catenin signalling.


Assuntos
Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/metabolismo , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Células A549 , Transporte Ativo do Núcleo Celular/genética , Animais , Sobrevivência Celular/genética , Ciclina D/genética , Ciclina D/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/genética , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ribonucleoproteínas/metabolismo , Replicação Viral/genética , beta Catenina/genética
11.
Exp Cell Res ; 375(1): 11-21, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513337

RESUMO

Gliomas are lethal and aggressive form of brain tumors with resistance to conventional radiation and cytotoxic chemotherapies; inviting continuous efforts for drug discovery and drug delivery. Interestingly, small molecule hybrids are one such pharmacophore that continues to capture interest owing to their pluripotent medicinal effects. Accordingly, we earlier reported synthesis of potent Styryl-cinnamate hybrids (analogues of Salvianolic acid F) along with its plausible mode of action (MOA). We explored iTRAQ-LC/MS-MS technique to deduce differentially expressed landscape of native & phospho-proteins in treated glioma cells. Based on this, Protein-Protein Interactome (PPI) was looked into by employing computational tools and further validated in vitro. We hereby report that the Styryl-cinnamate hybrid, an analogue of natural Salvianolic acid F, alters key regulatory proteins involved in translation, cytoskeleton development, bioenergetics, DNA repair, angiogenesis and ubiquitination. Cell cycle analysis dictates arrest at G0/G1 stage along with reduced levels of cyclin D; involved in G1 progression. We discovered that Styryl-cinnamate hybrid targets glioma by intrinsically triggering metabolite-mediated stress. Various oncological circuits alleviated by the potential drug candidate strongly supports the role of such pharmacophores as anticancer drugs. Although, further analysis of SC hybrid in treating xenografts or solid tumors is yet to be explored but their candidature has gained huge impetus through this study. This study equips us better in understanding the shift in proteomic landscape after treating glioma cells with SC hybrid. It also allows us to elicit molecular targets of this potential drug before progressing to preclinical studies.


Assuntos
Alcenos/farmacologia , Cinamatos/farmacologia , Glioma/tratamento farmacológico , Polifenóis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Alcenos/síntese química , Alcenos/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cinamatos/síntese química , Cinamatos/química , Química Computacional , Ciclina D/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Camundongos , Proteínas de Neoplasias/genética , Polifenóis/síntese química , Polifenóis/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica , Bibliotecas de Moléculas Pequenas/síntese química
12.
Mol Cell ; 45(2): 196-209, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22206868

RESUMO

Growth factors activate Ras, PI3K, and other signaling pathways. It is not well understood how these signals are translated by individual cells into a decision to proliferate or differentiate. Here, using single-cell image analysis of nerve growth factor (NGF)-stimulated PC12 cells, we identified a two-dimensional phospho-ERK (pERK)-phospho-AKT (pAKT) response map with a curved boundary that separates differentiating from proliferating cells. The boundary position remained invariant when different stimuli were used or upstream signaling components perturbed. We further identified Rasa2 as a negative feedback regulator that links PI3K to Ras, placing the stochastically distributed pERK-pAKT signals close to the decision boundary. This allows for uniform NGF stimuli to create a subpopulation of cells that differentiates with each cycle of proliferation. Thus, by linking a complex signaling system to a simpler intermediate response map, cells gain unique integration and control capabilities to balance cell number expansion with differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Crescimento Neural/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Ciclina D/genética , Ciclina D/metabolismo , Ciclina D/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/fisiologia
13.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182800

RESUMO

Histone acetylation plays an important role in plant growth and development. Here, we investigated the effect of sodium butyrate (NaB), a histone deacetylase inhibitor, on adventitious shoot formation from protoplast-derived calli and cotyledon explants of tobacco (Nicotiana benthamiana) and tomato (Solanum lycopersicum). The frequency of adventitious shoot formation from protoplast-derived calli was higher in shoot induction medium (SIM) containing NaB than in the control. However, the frequency of adventitious shoot formation from cotyledon explants of tobacco under the 0.1 mM NaB treatment was similar to that in the control, but it decreased with increasing NaB concentration. Unlike in tobacco, NaB decreased adventitious shoot formation in tomato explants in a concentration-dependent manner, but it did not have any effect on adventitious shoot formation in calli. NaB inhibited or delayed the expression of D-type cyclin (CYCD3-1) and shoot-regeneration regulatory gene WUSCHEL (WUS) in cotyledon explants of tobacco and tomato. However, compared to that in control SIM, the expression of WUS was promoted more rapidly in tobacco calli cultured in NaB-containing SIM, but the expression of CYCD3-1 was inhibited. In conclusion, the effect of NaB on adventitious shoot formation and expression of CYCD3-1 and WUS genes depended on the plant species and whether the effects were tested on explants or protoplast-derived calli.


Assuntos
Ácido Butírico/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Cotilédone/efeitos dos fármacos , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Ciclina D/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Especificidade da Espécie , Nicotiana/genética
14.
J Cell Biochem ; 120(9): 15546-15552, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31050374

RESUMO

Hypoxia is a condition of low oxygen level which poses a common feature of most cancers. In the current study, we investigated effect of water containing oxygen nanobubble (ONB) on tumor growth in breast cancer 4T1-bearing mice during 14-day treatment period. Tumor-bearing mice were randomly divided into three groups (six mice per group), including the ONB group drinking water containing ONB, the air nanobubble (ANB) group drinking water containing ANB, and control group drinking normal water. Tumor weight and size were measured in 2-day interval during 14-day treatment. mRNA expression of p53, vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF), and cyclin D/Cdk2 genes were measured in the treated and control mice. After 8, 12, and 14 days of treatment, tumor size in ONB group was significantly decreased by 40.5%, 32.8%, and 28%, respectively, when compared with the control group. In addition, ANB group showed a significant reduction in tumor burden as well. The messenger RNA (mRNA) level of p53 in tumor cells of ONB and ANB group was found to be 36-fold (P = 0.0001) and 33-fold (P = 0.0001) higher than that in the control group, respectively. There was a ninefold increase in mRNA expression of VEGF gene in tumor cells of ANB mice than that in control mice; however, there was no significant changes in ONB group. Expression of HIF gene was significantly lower in tumor cells of ONB and ANB group than in the control group. It is concluded that drinking ONB water has potential to inhibit tumor growth, however more preclinical and proof-of-concept studies are needed to confirm its safety and therapeutic effect.


Assuntos
Neoplasias da Mama/terapia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Mamárias Animais/terapia , Oxigênio/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclina D/genética , Quinase 2 Dependente de Ciclina/genética , Feminino , Peixes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Oxigênio/química , RNA Mensageiro/genética , Hipóxia Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Água/química , Água/farmacologia
15.
Development ; 143(23): 4405-4418, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27899508

RESUMO

Inducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms. These are based on genetic engineering of human genomic safe harbors combined with an improved tetracycline-inducible system and CRISPR/Cas9 technology. We exemplify the efficacy of these methods in human pluripotent stem cells (hPSCs), and show that generation of sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled individual or multiplexed gene knockdown or knockout in hPSCs and in a wide variety of differentiated cells. Finally, we illustrate the general applicability of this approach by investigating the function of transcription factors (OCT4 and T), cell cycle regulators (cyclin D family members) and epigenetic modifiers (DPY30). Overall, sOPTiKD and sOPTiKO provide a unique opportunity for functional analyses in multiple cell types relevant for the study of human development.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ciclina D/genética , Proteínas Fetais/genética , Engenharia Genética/métodos , Proteínas Nucleares/genética , Fator 3 de Transcrição de Octâmero/genética , Proteínas com Domínio T/genética , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição
16.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 634-644, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28087342

RESUMO

The present study focuses on the identification of the gene expression profile of neonatal rat cardiomyocytes (NRVCMs) after dynamic mechanical stretch through microarrays of RNA isolated from cells stretched for 2, 6 or 24h. In this analysis, myeloid leukemia factor-1 (MLF1) was found to be significantly downregulated during the course of stretch. We found that MLF1 is highly expressed in the heart, however, its cardiac function is unknown yet. In line with microarray data, MLF1 was profoundly downregulated in in vivo mouse models of cardiomyopathy, and also significantly reduced in the hearts of human patients with dilated cardiomyopathy. Our data indicates that the overexpression of MLF1 in NRVCMs inhibited cell proliferation while augmenting apoptosis. Conversely, knockdown of MLF1 protected NRVCMs from apoptosis and promoted cell proliferation. Moreover, we found that knockdown of MLF1 protected NRVCMs from hypoxia-induced cell death. The observed accelerated apoptosis is attributed to the activation of caspase-3/-7/PARP-dependent apoptotic signaling and upregulation of p53. Most interestingly, MLF1 knockdown significantly upregulated the expression of D cyclins suggesting its possible role in cyclin-dependent cell proliferation. Taken together, we, for the first time, identified an important role for MLF1 in NRVCM proliferation.


Assuntos
Proliferação de Células/genética , Miócitos Cardíacos/metabolismo , Proteínas/genética , Animais , Animais Recém-Nascidos , Apoptose , Fenômenos Biomecânicos , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular , Ciclina D/genética , Ciclina D/metabolismo , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Miócitos Cardíacos/citologia , Proteínas Nucleares , Análise de Sequência com Séries de Oligonucleotídeos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Cultura Primária de Células , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Estresse Mecânico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
J Cell Mol Med ; 22(6): 3108-3118, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524295

RESUMO

Molecule interacting with CasL 1 (MICAL1) is a multidomain flavoprotein mono-oxygenase that strongly involves in cytoskeleton dynamics and cell oxidoreduction metabolism. Recently, results from our laboratory have shown that MICAL1 modulates reactive oxygen species (ROS) production, and the latter then activates phosphatidyl inositol 3-kinase (PI3K)/protein kinase B (Akt) signalling pathway which regulates breast cancer cell invasion. Herein, we performed this study to assess the involvement of MICAL1 in breast cancer cell proliferation and to explore the potential molecular mechanism. We noticed that depletion of MICAL1 markedly reduced cell proliferation in breast cancer cell line MCF-7 and T47D. This effect of MICAL1 on proliferation was independent of wnt/ß-catenin and NF-κB pathways. Interestingly, depletion of MICAL1 significantly inhibited ROS production, decreased p-ERK expression and unfavourable for proliferative phenotype of breast cancer cells. Likewise, MICAL1 overexpression increased p-ERK level as well as p-ERK nucleus translocation. Moreover, we investigated the effect of MICAL1 on cell cycle-related proteins. MICAL1 positively regulated CDK4 and cyclin D expression, but not CDK2, CDK6, cyclin A and cyclin E. In addition, more expression of CDK4 and cyclin D by MICAL1 overexpression was blocked by PI3K/Akt inhibitor LY294002. LY294002 treatment also attenuated the increase in the p-ERK level in MICAL1-overexpressed breast cancer cells. Together, our results suggest that MICAL1 exhibits its effect on proliferation via maintaining cyclin D expression through ROS-sensitive PI3K/Akt/ERK signalling in breast cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Proliferação de Células/genética , Ciclina D/genética , Proteínas do Citoesqueleto/genética , Proteínas com Domínio LIM/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cromonas/farmacologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Morfolinas/farmacologia , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Exp Cell Res ; 352(2): 364-374, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237093

RESUMO

Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3ß (GSK3ß) was identified as a direct target of miR-26a. GSK3ß expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3ß achieved similar effect as miR-26a over-expression; over-expression of GSK3ß reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased ß-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of ß-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3ß expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of ß-catenin pathway by targeting GSK3ß, suggesting the potential applicability of miR-26a as a target for cancer treatment.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Ciclina D/genética , Ciclina D/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , Metástase Neoplásica
19.
Can J Physiol Pharmacol ; 96(3): 281-286, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28977758

RESUMO

We intended to explore whether NH4Cl influences the viability and regulates the expression of Wnt/ß-catenin pathway in hepatocytes. The Chang liver cell line was used and cultured with different concentrations of NH4Cl (2.5, 5, 10, 20, 40, and 50 mmol/L) for 12, 24, and 48 h. The viability of hepatocytes was detected by MTT assay. The mRNA and protein expression level was analyzed with qRT-PCR and Western blotting, respectively. NH4Cl concentration significantly affects the viability of hepatocytes. With the increase of NH4Cl concentration, the viability of hepatocytes was decreased, accordingly. The mRNA and protein expression of Wnt1, ß-catenin, and cyclin D was significantly increased after treatment with low concentrations of NH4Cl as compared with the control group, whereas their expression levels were decreased after treatment with high concentrations of NH4Cl. The mRNA and protein expression of Wnt1, ß-catenin, and cyclin D was also significantly increased after treatment with NH4Cl for a short period as compared with the control group, whereas their expression levels were decreased after treatment with NH4Cl for a long period. In addition, we found NH4Cl treatment significantly reversed the results after RNA silencing of Wnt1 in hepatocytes. NH4Cl influences the viability of hepatocytes and affects the expression of Wnt/ß-catenin pathway in hepatocytes.


Assuntos
Cloreto de Amônio/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclina D/genética , Ciclina D/metabolismo , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Humanos , Interferência de RNA , Fatores de Tempo , Proteína Wnt1/deficiência , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
J Exp Bot ; 68(7): 1585-1597, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369656

RESUMO

The family of maize Kip-related proteins (KRPs) has been studied and a nomenclature based on the relationship to rice KRP genes is proposed. Expression studies of KRP genes indicate that all are expressed at 24 h of seed germination but expression is differential in the different tissues of maize plantlets. Recombinant KRP1;1 and KRP4;2 proteins, members of different KRP classes, were used to study association to and inhibitory activity on different maize cyclin D (CycD)-cyclin-dependent kinase (CDK) complexes. Kinase activity in CycD2;2-CDK, CycD4;2-CDK, and CycD5;3-CDK complexes was inhibited by both KRPs; however, only KRP1;1 inhibited activity in the CycD6;1-CDK complex, not KRP4;2. Whereas KRP1;1 associated with either CycD2;2 or CycD6;1, and to cyclin-dependent kinase A (CDKA) recombinant proteins, forming ternary complexes, KRP4;2 bound CDKA and CycD2;2 but did not bind CycD6;1, establishing a differential association capacity. All CycD-CDK complexes included here phosphorylated both the retinoblastoma-related (RBR) protein and the two KRPs; interestingly, while KRP4;2 phosphorylated by the CycD2;2-CDK complex increased its inhibitory capacity, when phosphorylated by the CycD6;1-CDK complex the inhibitory capacity was reduced or eliminated. Evidence suggests that the phosphorylated residues in KRP4;2 may be different for every kinase, and this would influence its performance as a cyclin-CDK inhibitor.


Assuntos
Ciclina D/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/genética , Ciclina D/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA