RESUMO
BACKGROUND: Heat extremes are associated with greater risk for cardiovascular death. The pathophysiologic mechanisms mediating this association are unknown. OBJECTIVE: To quantify the myocardial blood flow (MBF) requirements of heat exposure. DESIGN: Experimental study. (ClinicalTrials.gov: NCT04549974). SETTING: Laboratory-based. PARTICIPANTS: 61 participants, comprising 20 healthy young adults (mean age, 28 years), 21 healthy older adults (mean age, 67 years), and 20 older adults with coronary artery disease (CAD) (mean age, 70 years). INTERVENTION: Participants were heated until their core temperature increased 1.5 °C; MBF was measured before heat exposure and at every increase of 0.5 °C in core temperature. MEASUREMENTS: The primary outcome was MBF measured by positron emission tomography-computed tomography. Secondary outcomes included heart rate, blood pressure, and body weight change. RESULTS: At a core temperature increase of 1.5 °C, MBF increased in healthy young adults (change, 0.8 mL/min/g [95% CI, 0.5 to 1.0 mL/min/g]), healthy older adults (change, 0.7 mL/min/g [CI, 0.5 to 0.9 mL/min/g]), and older adults with CAD (change, 0.6 mL/min/g [CI, 0.3 to 0.8 mL/min/g]). This represented a 2.08-fold (CI, 1.75- to 2.41-fold), 1.79-fold (CI, 1.59- to 1.98-fold), and 1.64-fold (CI, 1.41- to 1.87-fold) change, respectively, from preexposure values. Imaging evidence of asymptomatic heat-induced myocardial ischemia was seen in 7 adults with CAD (35%) in post hoc analyses. LIMITATIONS: In this laboratory-based study, heating was limited to about 100 minutes and participants were restricted in movement and fluid intake. Participants refrained from strenuous exercise and smoking; stopped alcohol and caffeine intake; and withheld ß-blockers, calcium-channel blockers, and nitroglycerin before heating. CONCLUSION: Heat exposure that increases core temperature by 1.5 °C nearly doubles MBF. Changes in MBF did not differ by age or presence of CAD, but some older adults with CAD may experience asymptomatic myocardial ischemia. PRIMARY FUNDING SOURCE: Canadian Institutes of Health Research.
Assuntos
Doença da Artéria Coronariana , Circulação Coronária , Temperatura Alta , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão Sanguínea/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária/fisiologia , Frequência Cardíaca/fisiologia , Temperatura Alta/efeitos adversos , Tomografia por Emissão de Pósitrons combinada à Tomografia ComputadorizadaRESUMO
The coronary circulation has the inherent ability to maintain myocardial perfusion constant over a wide range of perfusion pressures. The phenomenon of pressure-flow autoregulation is crucial in response to flow-limiting atherosclerotic lesions which diminish coronary driving pressure and increase risk of myocardial ischemia and infarction. Despite well over half a century of devoted research, understanding of the mechanisms responsible for autoregulation remains one of the most fundamental and contested questions in the field today. The purpose of this review is to highlight current knowledge regarding the complex interrelationship between the pathways and mechanisms proposed to dictate the degree of coronary pressure-flow autoregulation. Our group recently likened the intertwined nature of the essential determinants of coronary flow control to the symbolically unsolvable "Gordian knot". To further efforts to unravel the autoregulatory "knot", we consider recent challenges to the local metabolic and myogenic hypotheses and the complicated dynamic structural and functional heterogeneity unique to the heart and coronary circulation. Additional consideration is given to interrogation of putative mediators, role of K+ and Ca2+ channels, and recent insights from computational modeling studies. Improved understanding of how specific vasoactive mediators, pathways, and underlying disease states influence coronary pressure-flow relations stands to significantly reduce morbidity and mortality for what remains the leading cause of death worldwide.
Assuntos
Circulação Coronária , Homeostase , Humanos , Circulação Coronária/fisiologia , Animais , Pressão Sanguínea/fisiologia , Vasos Coronários/fisiopatologia , HemodinâmicaRESUMO
Restoring ischaemic myocardial tissue perfusion is crucial for minimizing infarct size. Acute mechanical left ventricular (LV) support has been suggested to improve infarct tissue perfusion. However, its regulatory mechanism remains unclear. We investigated the physiological mechanisms in six Yorkshire pigs, which were subjected to 90-min balloon occlusion of the left anterior descending artery. During the acute reperfusion phase, LV support using an Impella heart pump was initiated. LV pressure, coronary flow and pressure of the infarct artery were simultaneously recorded to evaluate the impact of LV support on coronary physiology. Coronary wave intensity was calculated to understand the forces regulating coronary flow. Significant increases in coronary flow velocity and its area under the curve were found after mechanical LV support. Among the coronary flow-regulating factors, coronary pressure was increased mainly during the late diastolic phase with less pulsatility. Meanwhile, LV pressure was reduced throughout diastole resulting in significant and consistent elevation of coronary driving pressure. Interestingly, the duration of diastole was prolonged with LV support. In the wave intensity analysis, the duration between backward suction and pushing waves was extended, indicating that earlier myocardial relaxation and delayed contraction contributed to the extension of diastole. In conclusion, mechanical LV support increases infarct coronary flow by extending diastole and augmenting coronary driving pressure. These changes were mainly driven by reduced LV diastolic pressure, indicating that the key regulator of coronary flow under mechanical LV support is downstream of the coronary artery, rather than upstream. Our study highlights the importance of LV diastolic pressure in infarct coronary flow regulation. KEY POINTS: Restoring ischaemic myocardial tissue perfusion is crucial for minimizing infarct size. Although mechanical left ventricular (LV) support has been suggested to improve infarct coronary flow, its specific mechanism remains to be clarified. LV support reduced LV pressure, and elevated coronary pressure during the late diastolic phase, resulting in high coronary driving pressure. This study demonstrated for the first time that mechanical LV support extends diastolic phase, leading to increased infarct coronary flow. Future studies should evaluate the correlation between improved infarct coronary flow and resulting infarct size.
Assuntos
Infarto do Miocárdio , Função Ventricular Esquerda , Animais , Suínos , Diástole/fisiologia , Função Ventricular Esquerda/fisiologia , Pressão Sanguínea , Vasos Coronários , Circulação Coronária/fisiologiaRESUMO
Recently, a novel method to estimate wedge pressure (Pw)-corrected minimal microvascular resistance (MR) was introduced. However, this method has not been validated since, and there are some theoretical concerns regarding the impact of different physiological conditions on the derivation of Pw measurements. This study sought to validate the recently introduced method to estimate Pw-corrected MR in a Doppler-derived study population and to evaluate the impact of different physiological conditions on the Pw measurements and the derivation of Pw-corrected MR. The method to derive "estimated" hyperemic microvascular resistance (HMR) without the need for Pw measurements was validated by estimating the coronary fractional flow reserve (FFRcor) from myocardial fractional flow reserve (FFRmyo) in a Doppler-derived study population (N = 53). From these patients, 24 had hyperemic Pw measurements available for the evaluation of hyperemic conditions on the derivation of Pw and its effect on the derivation of both "true" (with measured Pw) and "estimated" Pw-corrected HMR. Nonhyperemic Pw differed significantly from Pw measured in hyperemic conditions (26 ± 14 vs. 35 ± 14 mmHg, respectively, P < 0.005). Nevertheless, there was a strong linear relationship between FFRcor and FFRmyo in nonhyperemic conditions (R2 = 0.91, P < 0.005), as well as in hyperemic conditions (R2 = 0.87, P < 0.005). There was a strong linear relationship between "true" HMR and "estimated" HMR using either nonhyperemic (R2 = 0.86, P < 0.005) or hyperemic conditions (R2 = 0.85, P < 0.005) for correction. In contrast to a modest agreement between nonhyperemic Pw-corrected HMR and apparent HMR (R2 = 0.67, P < 0.005), hyperemic Pw-corrected HMR showed a strong agreement with apparent HMR (R2 = 0.88, P < 0.005). We validated the calculation method for Pw-corrected MR in a Doppler velocity-derived population. In addition, we found a significant impact of hyperemic conditions on the measurement of Pw and the derivation of Pw-corrected HMR.NEW & NOTEWORTHY The following are what is known: 1) wedge-pressure correction is often considered for the derivation of indices of minimal microvascular resistance, and 2) the Yong method for calculating wedge pressure-corrected index of microvascular resistance (IMR) without balloon inflation has never been validated in a Doppler-derived population and has not been tested under different physiological conditions. This study 1) adds validation for the Yong method for calculated wedge-pressure correction in a Doppler-derived study population and 2) shows significant influence of the physiological conditions on the derivation of coronary wedge pressure.
Assuntos
Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Hiperemia , Humanos , Vasos Coronários/diagnóstico por imagem , Coração , Velocidade do Fluxo Sanguíneo , Circulação Coronária/fisiologia , Angiografia CoronáriaRESUMO
To compare the merits and drawbacks of three approaches for establishing a rabbit model of nonobstructive coronary microcirculatory disease, namely, open thoracic subtotal ligation of coronary arteries, ultrasound-guided cardiac microsphere injection, and sodium laurate injection. New Zealand rabbits were allocated to four groups: a normal group (Blank group), an Open-chest group (Open-chest), a microsphere group (Echo-M), and a sodium laurate group (Echo-SL), each comprising 10 rabbits. The rabbits were sacrificed 24 h after the procedures, and their echocardiography, stress myocardial contrast echocardiography, pathology, and surgical times were compared. The results demonstrated varying degrees of reduced cardiac function in all three experimental groups, the Open-chest group exhibiting the most significant decline. The myocardial filling in the affected areas was visually analyzed by myocardial contrast echocardiography, revealing sparse filling at rest but more after stress. Quantitative analysis of perfusion parameters (ß, A, MBF) in the affected myocardium showed reduced values, the Open-chest group having the most severe reductions. No differences were observed in stress myocardial acoustic imaging parameters between the Echo-M and Echo-SL groups. Among the pathological presentations, the Open-chest model predominantly exhibited localized ischemia, while the Echo-M model was characterized by mechanical physical embolism, and the Echo-SL model displayed in situ thrombosis as the primary pathological feature. Inflammatory responses and collagen deposition were observed in all groups, with the severity ranking of Open-chest > Echo-SL > Echo-M. The ultrasound-guided intracardiac injection method used in this experiment outperformed open-chest surgery in terms of procedural efficiency, invasiveness, and maneuverability. This study not only optimizes established cardiac injection techniques but also offers valuable evidence to support clinical investigations through a comparison of various modeling methods.
Assuntos
Doença da Artéria Coronariana , Circulação Coronária , Coelhos , Animais , Microcirculação , Circulação Coronária/fisiologia , Miocárdio/patologiaRESUMO
BACKGROUND: Coronary microvascular dysfunction (CMD) is the leading cause of ischemia with no obstructive coronary arteries disease (INOCA) disease. Diagnosis of CMD relies on surrogate physiological indices without objective proof of ischemia. OBJECTIVES: Intracoronary electrocardiogram (icECG) derived hyperemic indices may accurately and objectively detect CMD and reversible ischemia in related territory. METHODS: INOCA patients with proven ischemia by myocardial perfusion scan (MPS) and completely normal coronary arteries underwent simultaneous intracoronary electrophysiological (icECG) and physiological (intracoronary Doppler) assessment in all 3 coronary arteries during rest and under adenosine induced hyperemia. RESULTS: Sixty vessels in 21 patients were included in the final analysis. All patients had at least one vessel with abnormal CFR. 41 vessels had CMD (CFR < 2.5), of which 26 had increased microvascular resistance (structural CMD, HMR > 1.9 mmHg.cm-1.s) and 15 vessels had CMD (CFR < 2.5) with normal microvascular resistance (functional CMD, HMR <= 1.9 mmHg.cm-1.s). Only one-third of the patients (n = 7) had impaired CFR < 2.5 in all 3 epicardial arteries. Absolute ST shift between hyperemia and rest (∆ST) has shown the best diagnostic performance for ischemia (cut-off 0.10 mV, sensitivity: 95%, specificity: 72%, accuracy: 80%, AUC: 0.860) outperforming physiological indices (CFR: 0.623 and HMR: 0.653 DeLong's test P = .0002). CONCLUSIONS: In INOCA patients, CMD involves coronary artery territories heterogeneously. icECG can accurately detect CMD causing perfusion abnormalities in patients with INOCA outperforming physiological CMD markers, by demonstrating actual ischemia instead of predicting the likelihood of inducible ischemia based on violated surrogate thresholds of blunted flow reserve or increased minimum microvascular resistance. CONDENSED ABSTRACT: In 21 INOCA patients with coronary microvascular dysfunction (CMD) and myocardial perfusion scan proved ischemia, hyperemic indices of intracoronary electrocardiogram (icECG) have accurately detected vessel-specific CMD and resulting perfusion abnormalities & ischemia, outperforming invasive hemodynamic indices. Absolute ST shift between hyperemia and rest (∆ST) has shown the best classification performance for ischemia in no Obstructive Coronary Arteries (AUC: 0.860) outperforming Doppler derived CMD indices (CFR: 0.623 and HMR: 0.653 DeLong's test P = .0002).icECG can be used to diagnose CMD causing perfusion defects by demonstrating actual reversible ischemia at vessel-level during the initial CAG session, obviating the need for further costly ischemia tests. CLINICALTRIALS: GOV: NCT05471739.
Assuntos
Doença da Artéria Coronariana , Hiperemia , Isquemia Miocárdica , Humanos , Vasos Coronários/diagnóstico por imagem , Hiperemia/diagnóstico , Circulação Coronária/fisiologia , Doença da Artéria Coronariana/diagnóstico , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/etiologia , Isquemia , Eletrocardiografia , Microcirculação , Angiografia CoronáriaRESUMO
OBJECTIVES: This study aims to evaluate the efficacy and cost-effectiveness of sonothrombolysis delivered pre and post primary percutaneous coronary intervention (pPCI) on infarct size assessed by cardiac MRI, in patients presenting with STEMI, when compared against sham procedure. BACKGROUND: More than a half of patients with successful pPCI have significant microvascular obstruction and residual infarction. Sonothrombolysis is a therapeutic use of ultrasound with contrast enhancement that may improve microcirculation and infarct size. The benefits and real time physiological effects of sonothrombolysis in a multicentre setting are unclear. METHODS: The REDUCE (Restoring microvascular circulation with diagnostic ultrasound and contrast agent) trial is a prospective, multicentre, patient and outcome blinded, sham-controlled trial. Patients presenting with STEMI will be randomized to one of 2 treatment arms, to receive either sonothrombolysis treatment or sham echocardiography before and after pPCI. This tailored design is based on preliminary pilot data from our centre, showing that sonothrombolysis can be safely delivered, without prolonging door to balloon time. Our primary endpoint will be infarct size assessed on day 4±2 on Cardiac Magnetic Resonance (CMR). Patients will be followed up for 6 months post pPCI to assess secondary endpoints. Sample size calculations indicate we will need 150 patients recruited in total. CONCLUSIONS: This multicentre trial will test whether sonothrombolysis delivered pre and post primary PCI can improve patient outcomes and is cost-effective, when compared with sham ultrasound delivered with primary PCI. The results from this trial may provide evidence for the utilization of sonothrombolysis as an adjunct therapy to pPCI to improve cardiovascular outcomes in STEMI. ANZ Clinical Trial Registration number: ACTRN 12620000807954.
Assuntos
Meios de Contraste , Microcirculação , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Intervenção Coronária Percutânea/métodos , Microcirculação/fisiologia , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Estudos Prospectivos , Terapia por Ultrassom/métodos , Circulação Coronária/fisiologia , Masculino , Feminino , Ecocardiografia/métodos , Análise Custo-BenefícioRESUMO
PURPOSE: To investigate and mitigate the influence of physiological and acquisition-related parameters on myocardial blood flow (MBF) measurements obtained with myocardial Arterial Spin Labeling (myoASL). METHODS: A Flow-sensitive Alternating Inversion Recovery (FAIR) myoASL sequence with bSSFP and spoiled GRE (spGRE) readout is investigated for MBF quantification. Bloch-equation simulations and phantom experiments were performed to evaluate how variations in acquisition flip angle (FA), acquisition matrix size (AMS), heart rate (HR) and blood T 1 $$ {\mathrm{T}}_1 $$ relaxation time ( T 1 , B $$ {\mathrm{T}}_{1,B} $$ ) affect quantification of myoASL-MBF. In vivo myoASL-images were acquired in nine healthy subjects. A corrected MBF quantification approach was proposed based on subject-specific T 1 , B $$ {\mathrm{T}}_{1,B} $$ values and, for spGRE imaging, subtracting an additional saturation-prepared baseline from the original baseline signal. RESULTS: Simulated and phantom experiments showed a strong dependence on AMS and FA ( R 2 $$ {R}^2 $$ >0.73), which was eliminated in simulations and alleviated in phantom experiments using the proposed saturation-baseline correction in spGRE. Only a very mild HR dependence ( R 2 $$ {R}^2 $$ >0.59) was observed which was reduced when calculating MBF with individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ . For corrected spGRE, in vivo mean global spGRE-MBF ranged from 0.54 to 2.59 mL/g/min and was in agreement with previously reported values. Compared to uncorrected spGRE, the intra-subject variability within a measurement (0.60 mL/g/min), between measurements (0.45 mL/g/min), as well as the inter-subject variability (1.29 mL/g/min) were improved by up to 40% and were comparable with conventional bSSFP. CONCLUSION: Our results show that physiological and acquisition-related factors can lead to spurious changes in myoASL-MBF if not accounted for. Using individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ and a saturation-baseline can reduce these variations in spGRE and improve reproducibility of FAIR-myoASL against acquisition parameters.
Assuntos
Circulação Coronária , Imagem de Perfusão do Miocárdio , Humanos , Reprodutibilidade dos Testes , Circulação Coronária/fisiologia , Miocárdio , Frequência Cardíaca , Imagens de Fantasmas , Imagem de Perfusão do Miocárdio/métodosRESUMO
BACKGROUND: Determination of myocardial blood flow (MBF) with MRI is usually performed with dynamic contrast enhanced imaging (MBFDCE ). MBF can also be determined from coronary sinus blood flow (MBFCS ), which has the advantage of being a noncontrast technique. However, comparative studies of MBFDCE and MBFCS in large cohorts are lacking. PURPOSE: To compare MBFCS and MBFDCE in a large cohort. STUDY TYPE: Prospective, sequence-comparison study. POPULATION: 147 patients with type 2 diabetes mellitus (age: 56+/-12 years; 106 male; diabetes duration: 12.9+/-8.1 years), and 25 age-matched controls. FIELD STRENGTH/SEQUENCES: 1.5 Tesla scanner. Saturation recovery sequence for MBFDCE vs. phase-contrast gradient-echo pulse sequence (free-breathing) for MBFCS . ASSESSMENT: MBFDCE and MBFCS were determined at rest and during coronary dilatation achieved by administration of adenosine at 140 µg/kg/min. Myocardial perfusion reserve (MPR) was calculated as the stress/rest ratio of MBF values. Coronary sinus flow was determined twice in the same imaging session for repeatability assessment. STATISTICAL TESTS: Agreement between MBFDCE and MBFCS was assessed with Bland and Altman's technique. Repeatability was determined from single-rater random intraclass and repeatability coefficients. RESULTS: Rest and stress flows, including both MBFDCE and MBFCS values, ranged from 33 to 146 mL/min/100 g and 92 to 501 mL/min/100 g, respectively. Intraclass and repeatability coefficients for MBFCS were 0.95 (CI 0.90; 0.95) and 5 mL/min/100 g. In Bland-Altman analysis, mean bias at rest was -1.1 mL/min/100 g (CI -3.1; 0.9) with limits of agreement of -27 and 24.8 mL/min/100 g. Mean bias at stress was 6.3 mL/min/100 g (CI -1.1; 14.1) with limits of agreement of -86.9 and 99.9. Mean bias of MPR was 0.11 (CI: -0.02; 0.23) with limits of agreement of -1.43 and 1.64. CONCLUSION: MBF may be determined from coronary sinus blood flow, with acceptable bias, but relatively large limits of agreement, against the reference of MBFDCE . LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Assuntos
Seio Coronário , Diabetes Mellitus Tipo 2 , Imagem de Perfusão do Miocárdio , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Circulação Coronária/fisiologia , Seio Coronário/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Estudos Prospectivos , FemininoRESUMO
Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.
Assuntos
Circulação Coronária , Oncorhynchus kisutch , Animais , Feminino , Circulação Coronária/fisiologia , Masculino , Oncorhynchus kisutch/fisiologia , Consumo de Oxigênio/fisiologia , Metabolismo BasalRESUMO
Ischemic heart disease (IHD) is the leading cause of mortality in women. While traditional cardiovascular risk factors play an important role in the development of IHD in women, women may experience sex-specific IHD risk factors and pathophysiology, and thus female-specific risk stratification is needed for IHD prevention, diagnosis, and treatment. Emerging data from the past 2 decades have significantly improved the understanding of IHD in women, including mechanisms of ischemia with no obstructive coronary arteries and myocardial infarction with no obstructive coronary arteries. Despite this progress, sex differences in IHD outcomes persist, particularly in young women. This review highlights the contemporary understanding of coronary arterial function and disease in women with no obstructive coronary arteries, including coronary anatomy and physiology, mechanisms of ischemia with no obstructive coronary arteries and myocardial infarction with no obstructive coronary arteries, noninvasive and invasive diagnostic strategies, and management of IHD.
Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Circulação Coronária/fisiologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Antagonistas Adrenérgicos beta/uso terapêutico , Angiografia Coronária/métodos , Doença da Artéria Coronariana/terapia , Feminino , Humanos , Comportamento de Redução do RiscoRESUMO
INTRODUCTION: Coronary microvascular dysfunction (CMD) is common in patients with and without obstructive epicardial coronary artery disease (CAD). Risk factors for the development of CMD have not been fully elucidated, and data regarding sex-associated differences in traditional cardiovascular risk factors for obstructive CAD in patients with CMD are lacking. METHODS: In this single-center, prospective registry, we enrolled patients with nonobstructive CAD undergoing clinically indicated invasive assessment of coronary microvascular function between November 2019 and March 2023. Associations between coronary microvascular dysfunction, traditional cardiovascular risk factors, and sex were assessed using univariate and multivariate regression models. RESULTS: Overall, 245 patients with nonobstructive CAD were included in the analysis (62.9% female; median age 68 (interquartile range: 59, 75). Microvascular dysfunction was diagnosed in 141 patients (57.5%). The prevalence of microvascular dysfunction was similar in women and men (59.0% vs. 57.0%; p = 0.77). No association was found between traditional risk factors for coronary atherosclerosis and CMD regardless of whether CMD was structural or functional. In women, but not in men, older age and the presence of previous ischemic heart disease were associated with lower coronary flow reserve (ß = -0.29; p < 0.01 and ß = -0.15; p = 0.05, respectively) and lower resistive reserve ratio (ß = -0.28; p < 0.01 and ß = -0.17; p = 0.04, respectively). CONCLUSION: For the entire population, no association was found between coronary microvascular dysfunction and traditional risk factors for coronary atherosclerosis. In women only, older age and previous ischemic heart disease were associated with coronary microvascular dysfunction. Larger studies are needed to elucidate risk factors for CMD.
Assuntos
Doença da Artéria Coronariana , Fatores de Risco de Doenças Cardíacas , Microcirculação , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/complicações , Estudos Prospectivos , Fatores Sexuais , Circulação Coronária/fisiologia , Sistema de Registros , Fatores de Risco , Angiografia Coronária , Prevalência , Vasos Coronários/fisiopatologiaRESUMO
BACKGROUND: Inflammatory markers may provide insights into the underlying mechanisms of slow coronary flow (SCF), including subclinical atherosclerosis and endothelial dysfunction. Interleukin-34 (IL-34), known for its role in immuno-inflammatory diseases, might hold significance in SCF. We aimed to explore the potential association between IL-34 and SCF in patients undergoing diagnostic elective coronary angiography. METHODS: This observational, cross-sectional study enrolled 256 participants: 124 with SCF and 132 with normal coronary flow (NCF). All participants had undergone outpatient coronary angiography for suspected coronary artery disease. SCF assessment employed the TIMI frame count (TFC) for quantifying coronary flow rate. RESULTS: SCF patients exhibited significantly elevated TFC in all three major coronary arteries compared to controls (p < 0.05). IL-34 displayed a noteworthy positive correlation with average TFC [for all participants: r = 0.514, p < 0.001; for SCF patients: r = 0.526, p < 0.001; for normal controls: r = -0.288, p > 0.05]. Similarly, high-sensitivity C-reactive protein (hsCRP) showed a significant and positive relationship with average TFC [for all participants: r = 0.504, p < 0.001; for SCF patients: r = 0.558, p < 0.001; for normal controls: r = -0.148, p > 0.05]. SCF patients presented coronary arteries of larger size compared to controls. CONCLUSION: Mean coronary diameter and IL-34 emerged as independent predictors of SCF. Additionally, hsCRP, mean coronary diameter, and IL-34 exhibited a positive correlation with mean TFC values. IL-34 appears to be a more effective indicator than hsCRP in SCF patients.
Assuntos
Proteína C-Reativa , Circulação Coronária , Humanos , Biomarcadores , Velocidade do Fluxo Sanguíneo , Angiografia Coronária , Circulação Coronária/fisiologia , Estudos Transversais , Interleucinas/sangue , Interleucinas/químicaRESUMO
AIM: To investigate whether there was an association between coronary microvascular dysfunction (CMD) and left ventricular (LV) diastolic function in patients with myocardial ischemia with non-obstructive coronary artery disease (INOCA). MATERIALS AND METHODS: Our study included 115 subjects with suspected myocardial ischemia that underwent stress perfusion cardiac magnetic resonance (CMR). They were divided into non-CMD and CMD two groups. CMR-derived volume-time curves and CMR-FT parameters were used to assess LV diastolic function using CVI42 software. The latter included global/regional LV peak longitudinal, circumferential, radial diastolic strain rate (LDSR, CDSR, RDSR). Logistic regression analysis was performed with CMR-FT strain parameters as independent variables and CMD as dependent variables, and the effect value was expressed as an odds ratio (OR). RESULTS: Of the 115 patients, we excluded data from 23 patients and 92 patients (56.5% maleï¼52 ± 12 years) were finally included in the study. Of these, 19 patients were included in the non-CMD group (49 ± 11 years) and CMD group included 73patient (52 ± 12 years). The regional CDSR (P=0.019), and regional RDSR (P=0.006) were significantly lower in the CMD group than in non-CMD group. But, regional LDSR in CMD group was higher than non-CMD (P=0.003). In logistic regression analysis, regional LDSR (adjusted ß= 0.1, 95%CI 0.077, 0.349, p=0.002) and RDSR (adjusted ß= 0.1, 95 % CI 0.066, 0.356, p=0.004) were related to CMD. CONCLUSIONS: LV myocardial perfusion parameter MPRI was negatively correlated with LV diastolic function (CDSR) which needs to take into account the degree of diastolic dysfunction.
Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Disfunção Ventricular Esquerda , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/complicações , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/fisiopatologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/etiologia , Microcirculação/fisiologia , Circulação Coronária/fisiologia , Imagem Cinética por Ressonância Magnética/métodos , Diástole , Função Ventricular Esquerda/fisiologiaRESUMO
Coronary microvascular dysfunction (CMD) involves functional or structural abnormalities of the coronary microvasculature resulting in dysregulation of coronary blood flow (CBF) in response to myocardial oxygen demand. This perfusion mismatch causes myocardial ischemia, which manifests in patients as microvascular angina (MVA). CMD can be diagnosed non-invasively via multiple imaging techniques or invasively using coronary function testing (CFT), which assists in determining the specific mechanisms involving endothelium-independent and dependent epicardial and microcirculation domains. Unlike traditional coronary artery disease (CAD), CMD can often occur in patients without obstructive atherosclerotic epicardial disease, which can make the diagnosis of CMD difficult. Moreover, MVA due to CMD is more prevalent in women and carries increased risk of future cardiovascular events. Successful treatment of symptomatic CMD is often patient-specific risk factor and endotype targeted. This article aims to review newly identified mechanisms and novel treatment strategies for managing CMD, and outline sex-specific differences in the presentation and pathophysiology of the disease.
Assuntos
Microcirculação , Humanos , Feminino , Circulação Coronária/fisiologia , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/fisiopatologia , Angina Microvascular/terapia , Angina Microvascular/epidemiologia , Angina Microvascular/diagnóstico , Angina Microvascular/fisiopatologia , Vasos Coronários/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Fatores de Risco , Microvasos/fisiopatologia , Fatores SexuaisRESUMO
BACKGROUND: Coronary microvascular dysfunction (CMD) refers to structural and functional abnormalities of the coronary microcirculation, which may be diagnosed using invasive coronary physiology. CMD is responsible for impaired diastolic cardiac function. It has recently been suggested that left atrial strain (LASr) represents a highly sensitive tool for detecting cardiac diastolic function abnormalities. Accordingly, the aim of this study was to investigate the relationship between CMD and LASr. METHODS: Consecutively enrolled patients with non-obstructed coronary arteries (NOCA) underwent CMD and LASr evaluation by invasive thermodilution and noninvasive echocardiography, respectively. RESULTS: Forty-two (42) patients were included, out of which 26 presented with CMD. There were no significant differences between CMD-positive and negative patients in terms of clinical and echocardiographic characteristics. LASr was significantly reduced in patients with CMD (24.6% ± 6.1 vs. 30.3 ± 7.8%, p = 0.01). A moderate correlation was observed between coronary flow reserve and LAsr (r = 0.47, p = 0.002). A multivariate logistic regression analysis demonstrated that CMD was independently associated with LASr (OR = 0.88, 95%CI 0.78-0.99.135, p = 0.04). A LASr cut-off of 25.5% enabled an optimal classification of patients with or without CMD. CONCLUSION: Patients with NOCA and CMD had a significantly reduced LASr compared with patients without CMD, suggesting the early impairment of diastolic function in these patients.
Assuntos
Circulação Coronária , Vasos Coronários , Ecocardiografia , Átrios do Coração , Microcirculação , Humanos , Masculino , Feminino , Microcirculação/fisiologia , Pessoa de Meia-Idade , Circulação Coronária/fisiologia , Átrios do Coração/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Ecocardiografia/métodos , Vasos Coronários/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/complicações , Idoso , Função do Átrio Esquerdo/fisiologia , Termodiluição/métodos , DiástoleRESUMO
This systematic review investigates the diagnostic and prognostic utility of coronary flow reserve (CFR) assessment through echocardiography in patients with left bundle branch block (LBBB), a condition known to complicate the clinical evaluation of coronary artery disease (CAD). The literature search was performed on PubMed, EMBASE, Web of Science, Scopus, and Google Scholar, was guided by PRISMA standards up to March 2024, and yielded six observational studies that met inclusion criteria. These studies involved a diverse population of patients with LBBB, employing echocardiographic protocols to clarify the impact of LBBB on coronary flow dynamics. The findings emphasize the importance of CFR in stratifying cardiovascular risk and guiding clinical decision-making in patients with LBBB. Pooled results reveal that patients with LBBB and significant left anterior descending (LAD) artery stenosis exhibited a marked decrease in stress-peak diastolic velocity (MD = -19.03 [-23.58; -14.48] cm/s; p < .0001) and CFR (MD = -.60 [-.71; -.50]; p < .0001), compared to those without significant LAD lesions, suggesting the efficacy of stress echocardiography CFR assessment in the identification of clinically significant CAD among the LBBB population. This review highlights the clinical relevance of echocardiography CFR assessment as a noninvasive tool for evaluating CAD and stratifying risk in the presence of LBBB and underscores the need for standardized protocols in CFR measurement.
Assuntos
Bloqueio de Ramo , Circulação Coronária , Ecocardiografia , Humanos , Bloqueio de Ramo/fisiopatologia , Bloqueio de Ramo/diagnóstico por imagem , Bloqueio de Ramo/complicações , Circulação Coronária/fisiologia , Ecocardiografia/métodos , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/complicações , Velocidade do Fluxo Sanguíneo/fisiologia , Vasos Coronários/fisiopatologia , Vasos Coronários/diagnóstico por imagemRESUMO
PURPOSE OF REVIEW: Recent studies have demonstrated an association between obstructive sleep apnea (OSA) and abnormal myocardial blood flow (MBF), myocardial flow reserve (MFR), and coronary microvascular dysfunction (CMD). Here, we review the evidence and describe the potential underlying mechanisms linking OSA to abnormal MBF. Examining relevant studies, we assess the impact of OSA-specific therapy, such as continuous positive airway pressure (CPAP), on MBF. RECENT FINDINGS: Recent studies suggest an association between moderate to severe OSA and abnormal MBF/MFR. OSA promotes functional and structural abnormalities of the coronary microcirculation. OSA also promotes the uncoupling of MBF to cardiac work. In a handful of studies with small sample sizes, CPAP therapy improved MBF/MFR. Moderate to severe OSA is associated with abnormal MFR, suggesting an association with CMD. Evidence suggests that CPAP therapy improves MBF. Future studies must determine the clinical impact of improved MBF with CPAP.
Assuntos
Doenças Cardiovasculares , Pressão Positiva Contínua nas Vias Aéreas , Circulação Coronária , Microcirculação , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/terapia , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/complicações , Circulação Coronária/fisiologia , Microcirculação/fisiologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/etiologia , Reserva Fracionada de Fluxo Miocárdico/fisiologiaRESUMO
BACKGROUND AND AIMS: Takotsubo syndrome (TTS) is a conundrum without consensus about the cause. In a murine model of coronary microvascular dysfunction (CMD), abnormalities in myocardial perfusion played a key role in the development of TTS. METHODS AND RESULTS: Vascular Kv1.5 channels connect coronary blood flow to myocardial metabolism and their deletion mimics the phenotype of CMD. To determine if TTS is related to CMD, wild-type (WT), Kv1.5-/-, and TgKv1.5-/- (Kv1.5-/- with smooth muscle-specific expression Kv1.5 channels) mice were studied following transaortic constriction (TAC). Measurements of left ventricular (LV) fractional shortening (FS) in base and apex, and myocardial blood flow (MBF) were completed with standard and contrast echocardiography. Ribonucleic Acid deep sequencing was performed on LV apex and base from WT and Kv1.5-/- (control and TAC). Changes in gene expression were confirmed by real-time-polymerase chain reaction. MBF was increased with chromonar or by smooth muscle expression of Kv1.5 channels in the TgKv1.5-/-. TAC-induced systolic apical ballooning in Kv1.5-/-, shown as negative FS (P < 0.05 vs. base), which was not observed in WT, Kv1.5-/- with chromonar, or TgKv1.5-/-. Following TAC in Kv1.5-/-, MBF was lower in LV apex than in base. Increasing MBF with either chromonar or in TgKv1.5-/- normalized perfusion and function between LV apex and base (P = NS). Some genetic changes during TTS were reversed by chromonar, suggesting these were independent of TAC and more related to TTS. CONCLUSION: Abnormalities in flow regulation between the LV apex and base cause TTS. When perfusion is normalized between the two regions, normal ventricular function is restored.
Assuntos
Cardiomiopatia de Takotsubo , Animais , Camundongos , Cromonar , Circulação Coronária/fisiologia , Ecocardiografia , Isquemia Miocárdica , MiocárdioRESUMO
Patients with takotsubo syndrome (TTS) may present coronary slow flow (CSF) in angiography performed in the acute myocardial infarction (MI). However, the detailed clinical relevance and its long-term impact remain poorly understood. Among 7771 MI patients hospitalized between 2012 and 2019, TTS was identified in 82 (1.1%) subjects. The epicardial blood flow was assessed with thrombolysis in myocardial infarction (TIMI) scale and corrected TIMI frame count (TFC), whereas myocardial perfusion with TIMI myocardial perfusion grade (TMPG). CSF was defined as TIMI-2 or corrected TFC > 27 frames in at least one epicardial vessel. CSF was identified in 33 (40.2%) TTS patients. In the CSF-TTS versus normal-flow-TTS group, lower values of left ventricular ejection fraction on admission (33.5 (25-40) vs. 40 (35-45)%, p = 0.019), more frequent midventricular TTS (27.3 vs. 8.2%, p = 0.020) and the coexistence of both physical and emotional triggers (9.1 vs. 0%, p = 0.032) were noted. Within a median observation of 55 months, higher all-cause mortality was found in CSF-TTS compared with normal-flow TTS (30.3 vs. 10.2%, p = 0.024). CSF was identified as an independent predictor of long-term mortality (hazard ratio 10.09, 95% confidence interval 2.12-48.00, p = 0.004). CSF identified in two-fifths of TTS patients was associated with unfavorable long-term outcomes.