RESUMO
Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.
Assuntos
Carcinoma Hepatocelular/etiologia , Colestase/complicações , Fibras na Dieta/metabolismo , Disbiose/complicações , Fermentação , Microbioma Gastrointestinal , Neoplasias Hepáticas/etiologia , Animais , Carcinoma Hepatocelular/microbiologia , Linhagem Celular Tumoral , Colestase/microbiologia , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , Inulina/efeitos adversos , Neoplasias Hepáticas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Primary biliary cholangitis is a rare, chronic cholestatic liver disease characterized by the destruction of interlobular bile ducts, leading to cholestasis and liver fibrosis. Whether elafibranor, an oral, dual peroxisome proliferator-activated receptor (PPAR) α and δ agonist, may have benefit as a treatment for primary biliary cholangitis is unknown. METHODS: In this multinational, phase 3, double-blind, placebo-controlled trial, we randomly assigned (in a 2:1 ratio) patients with primary biliary cholangitis who had had an inadequate response to or unacceptable side effects with ursodeoxycholic acid to receive once-daily elafibranor, at a dose of 80 mg, or placebo. The primary end point was a biochemical response (defined as an alkaline phosphatase level of <1.67 times the upper limit of the normal range, with a reduction of ≥15% from baseline, and normal total bilirubin levels) at week 52. Key secondary end points were normalization of the alkaline phosphatase level at week 52 and a change in pruritus intensity from baseline through week 52 and through week 24, as measured on the Worst Itch Numeric Rating Scale (WI-NRS; scores range from 0 [no itch] to 10 [worst itch imaginable]). RESULTS: A total of 161 patients underwent randomization. A biochemical response (the primary end point) was observed in 51% of the patients (55 of 108) who received elafibranor and in 4% (2 of 53) who received placebo, for a difference of 47 percentage points (95% confidence interval [CI], 32 to 57; P<0.001). The alkaline phosphatase level normalized in 15% of the patients in the elafibranor group and in none of the patients in the placebo group at week 52 (difference, 15 percentage points; 95% CI, 6 to 23; P = 0.002). Among patients who had moderate-to-severe pruritus (44 patients in the elafibranor group and 22 in the placebo group), the least-squares mean change from baseline through week 52 on the WI-NRS did not differ significantly between the groups (-1.93 vs. -1.15; difference, -0.78; 95% CI, -1.99 to 0.42; P = 0.20). Adverse events that occurred more frequently with elafibranor than with placebo included abdominal pain, diarrhea, nausea, and vomiting. CONCLUSIONS: Treatment with elafibranor resulted in significantly greater improvements in relevant biochemical indicators of cholestasis than placebo. (Funded by GENFIT and Ipsen; ELATIVE ClinicalTrials.gov number, NCT04526665.).
Assuntos
Chalconas , Fármacos Gastrointestinais , Cirrose Hepática Biliar , Receptores Ativados por Proliferador de Peroxissomo , Propionatos , Humanos , Administração Oral , Fosfatase Alcalina/sangue , Bilirrubina/sangue , Chalconas/administração & dosagem , Chalconas/efeitos adversos , Chalconas/uso terapêutico , Colestase/sangue , Colestase/tratamento farmacológico , Colestase/etiologia , Método Duplo-Cego , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/uso terapêutico , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/agonistas , PPAR alfa/agonistas , PPAR delta/agonistas , Propionatos/administração & dosagem , Propionatos/efeitos adversos , Propionatos/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Resultado do Tratamento , Ácido Ursodesoxicólico/efeitos adversos , Ácido Ursodesoxicólico/uso terapêutico , Colagogos e Coleréticos/administração & dosagem , Colagogos e Coleréticos/efeitos adversos , Colagogos e Coleréticos/uso terapêuticoRESUMO
In 1959, Ivar Sperber contrasted bile formation with that of urine and proposed that water flow into the canalicular conduit is in response to an osmotic, not a hydrostatic, gradient. Early attempts to support the hypothesis using a bile acid, sodium taurocholate, and the hormone secretin to stimulate bile flow led to conflicting data and a moratorium on attempts to further develop the initial proposal. However, current data amplify the initial proposal and indicate both paracellular and transcellular water flow into hepatic ductules and the canalicular conduit in response to an osmotic gradient. Also, the need to further modify the initial proposal became apparent with the recognition that bile acid aggregates (micelles), which form in the canalicular conduit, generate lecithin-cholesterol vesicles that contain water unrelated to an osmotic gradient. As part of this development is the recent introduction of the fluorescent localization after photobleaching technique for direct determination of hepatic duct flow and clarification of the role of biomarkers such as mannitol and polyethylene glycol 900. With the new paradigm, these biomarkers may prove useful for quantifying paracellular and transcellular water flow, respectively. SIGNIFICANCE STATEMENT: It is essential to identify and characterize all the sites for water flow during hepatic bile formation to obtain more precision in evaluating the causes and possible therapeutic approaches to cholestatic syndromes. Updating the Sperber proposal provides a new paradigm that addresses the advances in knowledge that have occurred.
Assuntos
Bile , Colestase , Humanos , Fígado , Ácidos e Sais Biliares , ÁguaRESUMO
Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.
Assuntos
Colestase , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Animais , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologiaRESUMO
Cholestatic injuries are accompanied by ductular reaction, initiated by proliferation and activation of biliary epithelial cells (BECs), leading to fibrosis. Sortilin (encoded by Sort1) facilitates IL-6 secretion and leukemia inhibitory factor (LIF) signaling. This study investigated the interplay between sortilin and IL-6 and LIF in cholestatic injury-induced ductular reaction, morphogenesis of new ducts, and fibrosis. Cholestatic injury was induced by bile duct ligation (BDL) in wild-type and Sort1-/- mice, with or without augmentation of IL-6 or LIF. Mice with BEC sortilin deficiency (hGFAPcre.Sort1fl/fl) and control mice were subjected to BDL and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet (DDC) induced cholestatic injury. Sort1-/- mice displayed reduced BEC proliferation and expression of BEC-reactive markers. Administration of LIF or IL-6 restored BEC proliferation in Sort1-/- mice, without affecting BEC-reactive or inflammatory markers. Sort1-/- mice also displayed impaired morphogenesis, which was corrected by LIF treatment. Similarly, hGFAPcre.Sort1fl/fl mice exhibited reduced BEC proliferation, but similar reactive and inflammatory marker expression. Serum IL-6 and LIF were comparable, yet liver pSTAT3 was reduced, indicating that sortilin is essential for co-activation of LIF receptor/gp130 signaling in BECs, but not for IL-6 secretion. hGFAPcre.Sortfl/fl mice displayed impaired morphogenesis and diminished fibrosis after BDL and DDC. In conclusion, sortilin-mediated engagement of LIF signaling in BECs promoted ductular reaction and morphogenesis during cholestatic injury. This study indicates that BEC sortilin is pivotal for the development of fibrosis.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Ductos Biliares , Colestase , Células Epiteliais , Fibrose , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Ductos Biliares/patologia , Proliferação de Células , Colestase/patologia , Colestase/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de SinaisRESUMO
Macrophage autophagy dysfunction aggravates liver injury by activating inflammasomes, which can cleave pro-IL-1ß to its active, secreted form. We investigated whether the vitamin D/vitamin D receptor (VDR) axis could up-regulate macrophage autophagy function to inhibit the activation of inflammasome-dependent IL-1ß during cholestasis. Paricalcitol (PAL; VDR agonist) was intraperitoneally injected into bile duct-ligated mice for 5 days. Up-regulation of VDR expression by PAL reduced liver injury by reducing the oxidative stress-induced inflammatory reaction in macrophages. Moreover, PAL inhibited inflammasome-dependent IL-1ß generation. Mechanistically, the knockdown of VDR increased IL-1ß generation, whereas VDR overexpression exerted the opposite effect following tert-butyl hydroperoxide treatment. The inflammasome antagonist glyburide, the caspase-1-specific inhibitor YVAD, and the reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC) blocked the increase in Vdr shRNA-induced IL-1ß production. Interestingly, up-regulation of VDR also enhanced macrophage autophagy. Autophagy reduction impaired the up-regulation of VDR-inhibited macrophage inflammasome-generated IL-1ß, whereas autophagy induction showed a synergistic effect with VDR overexpression through ROS-p38 mitogen-activated protein kinase (MAPK) pathway. This result was confirmed by p38 MAPK inhibitor, MAPK activator, and ROS inhibitor NAC. Collectively, PAL triggered macrophage autophagy by suppressing activation of the ROS-p38 MAPK pathway, which, in turn, suppressed inflammasome-generated cleaved, active forms of IL-1ß, eventually leading to reduced inflammation. Thus, triggering the VDR may be a potential target for the anti-inflammatory treatment of cholestatic liver disease.
Assuntos
Colestase , Inflamassomos , Animais , Camundongos , Acetilcisteína , Autofagia/fisiologia , Colestase/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismoRESUMO
BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS: We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS: Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.
Assuntos
Colangite Esclerosante , Colestase , Colite , Humanos , Colangite Esclerosante/patologia , Osteopontina , Cirrose Hepática/patologia , Ductos Biliares/patologia , Colestase/patologia , Macrófagos/patologiaRESUMO
BACKGROUND AND AIMS: High levels of serum matrix metalloproteinase-7 (MMP-7) have been linked to biliary atresia (BA), with wide variation in concentration cutoffs. We investigated the accuracy of serum MMP-7 as a diagnostic biomarker in a large North American cohort. APPROACH AND RESULTS: MMP-7 was measured in serum samples of 399 infants with cholestasis in the Prospective Database of Infants with Cholestasis study of the Childhood Liver Disease Research Network, 201 infants with BA and 198 with non-BA cholestasis (age median: 64 and 59 days, p = 0.94). MMP-7 was assayed on antibody-bead fluorescence (single-plex) and time resolved fluorescence energy transfer assays. The discriminative performance of MMP-7 was compared with other clinical markers. On the single-plex assay, MMP-7 generated an AUROC of 0.90 (CI: 0.87-0.94). At cutoff 52.8 ng/mL, it produced sensitivity = 94.03%, specificity = 77.78%, positive predictive value = 64.46%, and negative predictive value = 96.82% for BA. AUROC for gamma-glutamyl transferase = 0.81 (CI: 0.77-0.86), stool color = 0.68 (CI: 0.63-0.73), and pathology = 0.84 (CI: 0.76-0.91). Logistic regression models of MMP-7 with other clinical variables individually or combined showed an increase for MMP-7+gamma-glutamyl transferase AUROC to 0.91 (CI: 0.88-0.95). Serum concentrations produced by time resolved fluorescence energy transfer differed from single-plex, with an optimal cutoff of 18.2 ng/mL. Results were consistent within each assay technology and generated similar AUROCs. CONCLUSIONS: Serum MMP-7 has high discriminative properties to differentiate BA from other forms of neonatal cholestasis. MMP-7 cutoff values vary according to assay technology. Using MMP-7 in the evaluation of infants with cholestasis may simplify diagnostic algorithms and shorten the time to hepatoportoenterostomy.
Assuntos
Atresia Biliar , Biomarcadores , Metaloproteinase 7 da Matriz , Humanos , Metaloproteinase 7 da Matriz/sangue , Atresia Biliar/diagnóstico , Atresia Biliar/sangue , Biomarcadores/sangue , Lactente , Feminino , Masculino , Recém-Nascido , Estudos de Coortes , Colestase/diagnóstico , Colestase/sangue , Estudos ProspectivosRESUMO
BACKGROUND AND AIMS: Cell death and inflammation play critical roles in chronic tissue damage caused by cholestatic liver injury leading to fibrosis and cirrhosis. Liver cirrhosis is often associated with kidney damage, which is a severe complication with poor prognosis. Interferon regulatory factor 3 (IRF3) is known to regulate apoptosis and inflammation, but its role in cholestasis remains obscure. In this study. APPROACH AND RESULTS: We discovered increased IRF3 phosphorylation in the liver of patients with primary biliary cholangitis and primary sclerosing cholangitis. In the bile duct ligation model of obstructive cholestasis in mice, we found that tissue damage was associated with increased phosphorylated IRF3 (p-IRF3) in the liver and kidney. IRF3 knockout ( Irf3-/- ) mice showed significantly attenuated liver and kidney damage and fibrosis compared to wide-type mice after bile duct ligation. Cell-death pathways, including apoptosis, necroptosis, and pyroptosis, inflammasome activation, and inflammatory responses were significantly attenuated in Irf3-/- mice. Mechanistically, we show that bile acids induced p-IRF3 in vitro in hepatocytes. In vivo , activated IRF3 positively correlated with increased expression of its target gene, Z-DNA-Binding Protein-1 (ZBP1), in the liver and kidney. Importantly, we also found increased ZBP1 in the liver of patients with primary biliary cholangitis and primary sclerosing cholangitis. We discovered that ZBP1 interacted with receptor interacting protein 1 (RIP1), RIP3, and NLRP3, thereby revealing its potential role in the regulation of cell-death and inflammation pathways. In conclusion. CONCLUSIONS: Our data indicate that bile acid-induced p-IRF3 and the IRF3-ZBP1 axis play a central role in the pathogenesis of cholestatic liver and kidney injury.
Assuntos
Colangite Esclerosante , Colestase , Cirrose Hepática Biliar , Animais , Humanos , Camundongos , Apoptose , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/patologia , Colangite Esclerosante/patologia , Colestase/metabolismo , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Rim/patologia , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática Biliar/complicações , FosforilaçãoRESUMO
BACKGROUND AND AIMS: Parenteral nutrition-associated cholestasis (PNAC) is an important complication in patients with intestinal failure with reduced LRH-1 expression. Here, we hypothesized that LRH-1 activation by its agonist, dilauroylphosphatidylcholine (DLPC), would trigger signal transducer and activator of transcription 6 (STAT6) signaling and hepatic macrophage polarization that would mediate hepatic protection in PNAC. APPROACH AND RESULTS: PNAC mouse model (oral DSSx4d followed by PNx14d; DSS-PN) was treated with LRH-1 agonist DLPC (30 mg/kg/day) intravenously. DLPC treatment prevented liver injury and cholestasis while inducing hepatic mRNA expression of Nr5a2 (nuclear receptor subfamily 5 group A member 2), Abcb11 (ATP binding cassette subfamily B member 11), Abcg5 (ATP-binding cassette [ABC] transporters subfamily G member 5), Abcg8 (ATP-binding cassette [ABC] transporters subfamily G member 8), nuclear receptor subfamily 0, and ATP-binding cassette subfamily C member 2 ( Abcc2) mRNA, all of which were reduced in PNAC mice. To determine the mechanism of the DLPC effect, we performed RNA-sequencing analysis of the liver from Chow, DSS-PN, and DSS-PN/DLPC mice, which revealed DLPC upregulation of the anti-inflammatory STAT6 pathway. In intrahepatic mononuclear cells or bone-marrow derived macrophages (BMDM) from PNAC mice, DLPC treatment prevented upregulation of pro-inflammatory (M1) genes, suppressed activation of NFκB and induced phosphorylation of STAT6 and its target genes, indicating M2 macrophage polarization. In vitro, incubation of DLPC with cultured macrophages showed that the increased Il-1b and Tnf induced by exposure to lipopolysaccharides or phytosterols was reduced significantly, which was associated with increased STAT6 binding to promoters of its target genes. Suppression of STAT6 expression by siRNA in THP-1 cells exposed to lipopolysaccharides, phytosterols, or both resulted in enhanced elevation of IL-1B mRNA expression. Furthermore, the protective effect of DLPC in THP-1 cells was abrogated by STAT6 siRNA. CONCLUSIONS: These results indicate that activation of LRH-1 by DLPC may protect from PNAC liver injury through STAT6-mediated macrophage polarization.
Assuntos
Colestase , Fosfatidilcolinas , Fitosteróis , Humanos , Camundongos , Animais , Lipoproteínas/metabolismo , Fator de Transcrição STAT6/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Colestase/etiologia , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células de Kupffer/metabolismo , RNA Interferente Pequeno , RNA Mensageiro/metabolismo , Nutrição Parenteral/efeitos adversos , Trifosfato de AdenosinaRESUMO
Cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), lead to inflammation and severe hepatic damage with limited therapeutic options. This study assessed the efficacy of the inverse RORγt agonist, GSK805, both in vitro using the hepatic stellate cell-line LX-2 and in vivo using male bile duct-ligated BALB/c mice. In vitro, 0.3 µM GSK805 reduced alpha-smooth muscle actin expression in LX-2 cells. In vivo, GSK805 significantly decreased IL-23R, TNF-α, and IFN-γ expression in cholestatic liver. Despite high concentrations of GSK805 in the liver, no significant reduction in fibrosis was noticed. GSK805 significantly increased aspartate aminotransferase and alanine aminotransferase activity in the blood, while levels of glutamate dehydrogenase, alkaline phosphatase, and bilirubin were not substantially increased. Importantly, GSK805 did neither increase an animal distress score nor substantially reduce body weight, burrowing activity, or nesting behavior. These results suggest that a high liver concentration of GSK805 is achieved by daily oral administration and that this drug modulates inflammation in cholestatic mice without impairing animal well-being.
Assuntos
Camundongos Endogâmicos BALB C , Animais , Camundongos , Masculino , Humanos , Actinas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linhagem Celular , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Colestase/metabolismo , Colestase/tratamento farmacológicoRESUMO
End-ischemic normothermic mechanical perfusion (NMP) could provide a curative treatment to reduce cholestatic liver injury from donation after circulatory death (DCD) in donors. However, the underlying mechanism remains elusive. Our previous study demonstrated that air-ventilated NMP could improve functional recovery of DCD in a preclinical NMP rat model. Here, metabolomics analysis revealed that air-ventilated NMP alleviated DCD- and cold preservation-induced cholestatic liver injury, as shown by the elevated release of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and γ-glutamyl transferase (GGT) in the perfusate (p < .05) and the reduction in the levels of bile acid metabolites, including ω-muricholic acid, glycohyodeoxycholic acid, glycocholic acid, and glycochenodeoxycholate (GCDC) in the perfused livers (p < .05). In addition, the expression of the key bile acid metabolism enzyme UDP-glucuronosyltransferase 1A1 (UGT1A1), which is predominantly expressed in hepatocytes, was substantially elevated in the DCD rat liver, followed by air-ventilated NMP (p < .05), and in vitro, this increase was induced by decreased GCDC and hypoxia-reoxygenation in the hepatic cells HepG2 and L02 (p < .05). Knockdown of UGT1A1 in hepatic cells by siRNA aggravated hepatic injury caused by GCDC and hypoxia-reoxygenation, as indicated by the ALT and AST levels in the supernatant. Mechanistically, UGT1A1 is transcriptionally regulated by peroxisome proliferator-activator receptor-γ (PPAR-γ) under hypoxia-physoxia. Taken together, our data revealed that air-ventilated NMP could alleviate DCD- and cold preservation-induced cholestatic liver injury through PPAR-γ/UGT1A1 axis. Based on the results from this study, air-ventilated NMP confers a promising approach for predicting and alleviating cholestatic liver injury through PPAR-γ/UGT1A1 axis.
Assuntos
PPAR gama , Animais , Ratos , PPAR gama/metabolismo , PPAR gama/genética , Masculino , Humanos , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Fígado/metabolismo , Fígado/patologia , Colestase/metabolismo , Perfusão , Ratos Sprague-Dawley , Preservação de Órgãos/métodos , Transplante de FígadoRESUMO
Toll-like receptors (TLRs) and other pattern-recognition receptors (PRRs) sense microbial ligands and initiate signaling to induce inflammatory responses. Although the quality of inflammatory responses is influenced by internalization of TLRs, the role of endosomal maturation in clearing receptors and terminating inflammatory responses is not well understood. Here, we report that Drosophila and mammalian Vps33B proteins play critical roles in the maturation of phagosomes and endosomes following microbial recognition. Vps33B was necessary for clearance of endosomes containing internalized PRRs, failure of which resulted in enhanced signaling and expression of inflammatory mediators. Lack of Vps33B had no effect on trafficking of endosomes containing non-microbial cargo. These findings indicate that Vps33B function is critical for determining the fate of signaling endosomes formed following PRR activation. Exaggerated inflammatory responses dictated by persistence of receptors in aberrant endosomal compartments could therefore contribute to symptoms of ARC syndrome, a disease linked to loss of Vps33B.
Assuntos
Artrogripose/imunologia , Colestase/imunologia , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Infecções por Escherichia coli/imunologia , Inflamação/imunologia , Macrófagos/fisiologia , Insuficiência Renal/imunologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Artrogripose/genética , Células Cultivadas , Colestase/genética , Drosophila , Proteínas de Drosophila/genética , Técnicas de Inativação de Genes , Camundongos , Transporte Proteico , RNA Interferente Pequeno/genética , Insuficiência Renal/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMO
Homozygous VPS50 variants have been previously described in two unrelated patients with a neurodevelopmental disorder with microcephaly, seizures and neonatal cholestasis. VPS50 encodes a subunit that is unique to the heterotetrameric endosome-associated recycling protein (EARP) complex. The other subunits of the EARP complex, such as VPS51, VPS52 and VPS53, are also shared by the Golgi-associated retrograde protein complex. We report on an 18-month-old female patient with biallelic VPS50 variants. She carried a paternally inherited heterozygous nonsense c.13A>T; p.(Lys5*) variant. By long-read genome sequencing, we characterised a structural variant with a 4.3 Mb inversion flanked by deletions at both breakpoints on the maternal allele. The ~428 kb deletion at the telomeric inversion breakpoint encompasses the entire VPS50 gene. We demonstrated a deficiency of VPS50 in patient-derived fibroblasts, confirming the loss-of-function nature of both VPS50 variants. VPS53 and VPS52 protein levels were significantly reduced and absent, respectively, in fibroblasts of the patient. These data show that VPS50 and/or EARP deficiency and the associated functional defects underlie the phenotype in patients with VPS50 pathogenic variants. The VPS50-related core phenotype comprises severe developmental delay, postnatal microcephaly, hypoplastic corpus callosum, neonatal low gamma-glutamyl transpeptidase cholestasis and failure to thrive. The disease is potentially fatal in early childhood.
Assuntos
Códon sem Sentido , Proteínas de Transporte Vesicular , Humanos , Feminino , Lactente , Códon sem Sentido/genética , Proteínas de Transporte Vesicular/genética , Microcefalia/genética , Microcefalia/patologia , Fenótipo , Colestase/genética , Colestase/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologiaRESUMO
Drug-induced liver injury (DILI) is an adverse reaction to medications and other xenobiotics that leads to liver dysfunction. Based on differential clinical patterns of injury, DILI is classified into hepatocellular, cholestatic, and mixed types; although hepatocellular DILI is associated with inflammation, necrosis, and apoptosis, cholestatic DILI is associated with bile plugs and bile duct paucity. Ursodeoxycholic acid (UDCA) has been empirically used as a supportive drug mainly in cholestatic DILI, but both curative and prophylactic beneficial effects have been observed for hepatocellular DILI as well, according to preliminary clinical studies. This could reflect the fact that UDCA has a plethora of beneficial effects potentially useful to treat the wide range of injuries with different etiologies and pathomechanisms occurring in both types of DILI, including anticholestatic, antioxidant, anti-inflammatory, antiapoptotic, antinecrotic, mitoprotective, endoplasmic reticulum stress alleviating, and immunomodulatory properties. In this review, a revision of the literature has been performed to evaluate the efficacy of UDCA across the whole DILI spectrum, and these findings were associated with the multiple mechanisms of UDCA hepatoprotection. This should help better rationalize and systematize the use of this versatile and safe hepatoprotector in each type of DILI scenarios.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Hepatopatias , Humanos , Ácido Ursodesoxicólico/uso terapêutico , Ácido Ursodesoxicólico/farmacologia , Colestase/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Necrose/tratamento farmacológico , FígadoRESUMO
MDR3 (multidrug resistance 3) deficiency in humans (MDR2 in mice) causes progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 is a lethal disease characterized by an early onset of intrahepatic cholestasis progressing to liver cirrhosis, a preneoplastic condition, putting individuals at risk of hepatocellular carcinoma (HCC). Hepatocyte-like organoids from MDR2-deficient mice (MDR2KO) were used in this work to study the molecular alterations caused by the deficiency of this transporter. Proteomic analysis by mass spectrometry allowed characterization of 279 proteins that were differentially expressed in MDR2KO compared with wild-type organoids. Functional enrichment analysis indicated alterations in three main cellular functions: (1) interaction with the extracellular matrix, (2) remodeling intermediary metabolism, and (3) cell proliferation and differentiation. The affected cellular processes were validated by orthogonal molecular biology techniques. Our results point to molecular mechanisms associated with PFIC3 that may drive the progression to liver cirrhosis and HCC and suggest proteins and cellular processes that could be targeted for the development of early detection strategies for these severe liver diseases.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Carcinoma Hepatocelular , Colestase Intra-Hepática , Colestase , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Carcinoma Hepatocelular/patologia , Colestase/genética , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Knockout , ProteômicaRESUMO
Many inherited conditions cause hepatocellular cholestasis in infancy, including progressive familial intrahepatic cholestasis (PFIC), a heterogeneous group of diseases with highly overlapping symptoms. In our study, six unrelated Tunisian infants with PFIC suspicion were the subject of a panel-target sequencing followed by an exhaustive bioinformatic and modeling investigations. Results revealed five disease-causative variants including known ones: (the p.Asp482Gly and p.Tyr354 * in the ABCB11 gene and the p.Arg446 * in the ABCC2 gene), a novel p.Ala98Cys variant in the ATP-binding cassette subfamily G member 5 (ABCG5) gene and a first homozygous description of the p.Gln312His in the ABCB11 gene. The p.Gln312His disrupts the interaction pattern of the bile salt export pump as well as the flexibility of the second intracellular loop domain harboring this residue. As for the p.Ala98Cys, it modulates both the interactions within the first nucleotide-binding domain of the bile transporter and its accessibility. Two additional potentially modifier variants in cholestasis-associated genes were retained based on their pathogenicity (p.Gly758Val in the ABCC2 gene) and functionality (p.Asp19His in the ABCG8 gene). Molecular findings allowed a PFIC2 diagnosis in five patients and an unexpected diagnosis of sisterolemia in one case. The absence of genotype/phenotype correlation suggests the implication of environmental and epigenetic factors as well as modifier variants involved directly or indirectly in the bile composition, which could explain the cholestasis phenotypic variability.
Assuntos
Colestase Intra-Hepática , Colestase , Lactente , Humanos , Recém-Nascido , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Colestase/genética , Estudos de Associação Genética , Mutação , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Lipoproteínas/genéticaRESUMO
Genetic cholestatic liver diseases are caused by (often rare) mutations in a multitude of different genes. While these diseases differ in pathobiology, clinical presentation and prognosis, they do have several commonalities due to their cholestatic nature. These Clinical Practice Guidelines (CPGs) offer a general approach to genetic testing and management of cholestatic pruritus, while exploring diagnostic and treatment approaches for a subset of genetic cholestatic liver diseases in depth. An expert panel appointed by the European Association for the Study of the Liver has created recommendations regarding diagnosis and treatment, based on the best evidence currently available in the fields of paediatric and adult hepatology, as well as genetics. The management of these diseases generally takes place in a tertiary referral centre, in order to provide up-to-date approaches and expertise. These CPGs are intended to support hepatologists (for paediatric and adult patients), residents and other healthcare professionals involved in the management of these patients with concrete recommendations based on currently available evidence or, if not available, on expert opinion.
Assuntos
Colestase Intra-Hepática , Humanos , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/terapia , Europa (Continente) , Testes Genéticos/métodos , Adulto , Colestase/genética , Colestase/diagnóstico , Colestase/terapia , Gastroenterologia/métodos , Gastroenterologia/normasRESUMO
BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.
Assuntos
Proteínas de Transporte , Colestase , Nefropatias , Hepatopatias , Glicoproteínas de Membrana , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Camundongos , Animais , Colestase/complicações , Colestase/metabolismo , Rim/metabolismo , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ductos Biliares/metabolismo , Hepatopatias/metabolismo , SódioRESUMO
BACKGROUND & AIMS: Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS: Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS: Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS: SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION: We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.