Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 674
Filtrar
1.
Nature ; 631(8019): 232-239, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811722

RESUMO

Mitochondria play a pivotal part in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane through a series of respiratory complexes1-4. Despite extensive in vitro structural studies, determining the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of loss of the native environment during purification. Here we directly image porcine mitochondria using an in situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states. We identify four main supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2 and I2III4IV2, which potentially expand into higher-order arrays on the inner membranes. These diverse supercomplexes are largely formed by 'protein-lipids-protein' interactions, which in turn have a substantial impact on the local geometry of the surrounding membranes. Our in situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. Structural comparison of supercomplexes from mitochondria treated under different conditions indicates a possible correlation between conformational states of complexes I and III, probably in response to environmental changes. By preserving the native membrane environment, our approach enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, from atomic-level details to the broader subcellular context.


Assuntos
Respiração Celular , Complexo III da Cadeia de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Animais , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/química , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/ultraestrutura , Modelos Moleculares , Fosforilação Oxidativa , Suínos , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
2.
Nature ; 615(7954): 934-938, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949187

RESUMO

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Assuntos
Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons , Complexo II de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Membranas Mitocondriais , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/ultraestrutura , Mitocôndrias/química , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/ultraestrutura , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Evolução Molecular
3.
Mol Cell ; 75(6): 1131-1146.e6, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31492636

RESUMO

The mitochondrial electron transport chain complexes are organized into supercomplexes (SCs) of defined stoichiometry, which have been proposed to regulate electron flux via substrate channeling. We demonstrate that CoQ trapping in the isolated SC I+III2 limits complex (C)I turnover, arguing against channeling. The SC structure, resolved at up to 3.8 Å in four distinct states, suggests that CoQ oxidation may be rate limiting because of unequal access of CoQ to the active sites of CIII2. CI shows a transition between "closed" and "open" conformations, accompanied by the striking rotation of a key transmembrane helix. Furthermore, the state of CI affects the conformational flexibility within CIII2, demonstrating crosstalk between the enzymes. CoQ was identified at only three of the four binding sites in CIII2, suggesting that interaction with CI disrupts CIII2 symmetry in a functionally relevant manner. Together, these observations indicate a more nuanced functional role for the SCs.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/química , Mitocôndrias Cardíacas/enzimologia , Animais , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Ovinos
4.
Biochem Soc Trans ; 52(4): 1647-1659, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39177070

RESUMO

Mitochondrial respiration is major source of chemical energy for all free-living eukaryotes. Nevertheless, the mechanisms of the respiratory complexes and supercomplexes remain poorly understood. Here, I review recent structural and functional investigations of plant supercomplex I + III2 from Arabidopsis thaliana and Vigna radiata. I discuss commonalities, open questions and implications for complex I, complex III2 and supercomplexes in plants and non-plants. Studies across further clades will enhance our understanding of respiration and the potential universal mechanisms of its complexes and supercomplexes.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Mitocôndrias/metabolismo , Plantas/metabolismo , Plantas/enzimologia , Fabaceae/metabolismo
5.
Nature ; 557(7703): 123-126, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695868

RESUMO

Alternative complex III (ACIII) is a key component of the respiratory and/or photosynthetic electron transport chains of many bacteria1-3. Like complex III (also known as the bc1 complex), ACIII catalyses the oxidation of membrane-bound quinol and the reduction of cytochrome c or an equivalent electron carrier. However, the two complexes have no structural similarity4-7. Although ACIII has eluded structural characterization, several of its subunits are known to be homologous to members of the complex iron-sulfur molybdoenzyme (CISM) superfamily 8 , including the proton pump polysulfide reductase9,10. We isolated the ACIII from Flavobacterium johnsoniae with native lipids using styrene maleic acid copolymer11-14, both as an independent enzyme and as a functional 1:1 supercomplex with an aa3-type cytochrome c oxidase (cyt aa3). We determined the structure of ACIII to 3.4 Å resolution by cryo-electron microscopy and constructed an atomic model for its six subunits. The structure, which contains a [3Fe-4S] cluster, a [4Fe-4S] cluster and six haem c units, shows that ACIII uses known elements from other electron transport complexes arranged in a previously unknown manner. Modelling of the cyt aa3 component of the supercomplex revealed that it is structurally modified to facilitate association with ACIII, illustrating the importance of the supercomplex in this electron transport chain. The structure also resolves two of the subunits of ACIII that are anchored to the lipid bilayer with N-terminal triacylated cysteine residues, an important post-translational modification found in numerous prokaryotic membrane proteins that has not previously been observed structurally in a lipid bilayer.


Assuntos
Microscopia Crioeletrônica , Grupo dos Citocromos c/química , Grupo dos Citocromos c/ultraestrutura , Citocromos a3/química , Citocromos a3/ultraestrutura , Citocromos a/química , Citocromos a/ultraestrutura , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Flavobacterium/enzimologia , Cisteína/química , Cisteína/metabolismo , Grupo dos Citocromos c/metabolismo , Citocromos a/metabolismo , Citocromos a3/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/análogos & derivados , Heme/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxirredução , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876763

RESUMO

Complex II, also known as succinate dehydrogenase (SQR) or fumarate reductase (QFR), is an enzyme involved in both the Krebs cycle and oxidative phosphorylation. Mycobacterial Sdh1 has recently been identified as a new class of respiratory complex II (type F) but with an unknown electron transfer mechanism. Here, using cryoelectron microscopy, we have determined the structure of Mycobacterium smegmatis Sdh1 in the presence and absence of the substrate, ubiquinone-1, at 2.53-Å and 2.88-Å resolution, respectively. Sdh1 comprises three subunits, two that are water soluble, SdhA and SdhB, and one that is membrane spanning, SdhC. Within these subunits we identified a quinone-binding site and a rarely observed Rieske-type [2Fe-2S] cluster, the latter being embedded in the transmembrane region. A mutant, where two His ligands of the Rieske-type [2Fe-2S] were changed to alanine, abolished the quinone reduction activity of the Sdh1. Our structures allow the proposal of an electron transfer pathway that connects the substrate-binding and quinone-binding sites. Given the unique features of Sdh1 and its essential role in Mycobacteria, these structures will facilitate antituberculosis drug discovery efforts that specifically target this complex.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Flavoproteínas/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Flavoproteínas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Ubiquinona/química , Ubiquinona/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836592

RESUMO

Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) c In Saccharomyces cerevisiae and some other organisms, these complexes assemble into larger CIII2CIV1/2 supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the S. cerevisiae supercomplex cyt. c-mediated QH2:O2 oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. c show the positively charged cyt. c bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. c travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. c must diffuse in three dimensions, formation of the CIII2CIV1/2 supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. c This mechanism enables the CIII2CIV1/2 supercomplex to increase QH2:O2 oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.


Assuntos
Citocromos c/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Citocromos c/química , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Cinética , Mitocôndrias/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PLoS Pathog ; 17(2): e1009211, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524071

RESUMO

The mitochondrion is critical for the survival of apicomplexan parasites. Several major anti-parasitic drugs, such as atovaquone and endochin-like quinolones, act through inhibition of the mitochondrial electron transport chain at the coenzyme Q:cytochrome c oxidoreductase complex (Complex III). Despite being an important drug target, the protein composition of Complex III of apicomplexan parasites has not been elucidated. Here, we undertake a mass spectrometry-based proteomic analysis of Complex III in the apicomplexan Toxoplasma gondii. Along with canonical subunits that are conserved across eukaryotic evolution, we identify several novel or highly divergent Complex III components that are conserved within the apicomplexan lineage. We demonstrate that one such subunit, which we term TgQCR11, is critical for parasite proliferation, mitochondrial oxygen consumption and Complex III activity, and establish that loss of this protein leads to defects in Complex III integrity. We conclude that the protein composition of Complex III in apicomplexans differs from that of the mammalian hosts that these parasites infect.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Toxoplasma/metabolismo , Animais , Western Blotting , Células Cultivadas , Complexo III da Cadeia de Transporte de Elétrons/química , Imunofluorescência , Humanos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Smegmamorpha , Toxoplasma/genética
9.
Chem Rev ; 121(4): 2020-2108, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33464892

RESUMO

This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.


Assuntos
Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Animais , Catálise , Humanos , Membranas/química , Membranas/enzimologia , Simulação de Dinâmica Molecular , Fotossíntese , Conformação Proteica , Respiração , Rhodobacter capsulatus , Termodinâmica
10.
Chem Rev ; 121(15): 9644-9673, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34184881

RESUMO

In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.


Assuntos
Membrana Celular/enzimologia , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae , Transporte de Elétrons , Prótons , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia
11.
Proc Natl Acad Sci U S A ; 117(17): 9329-9337, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32291341

RESUMO

The organization of the mitochondrial electron transport chain proteins into supercomplexes (SCs) is now undisputed; however, their assembly process, or the role of differential expression isoforms, remain to be determined. In Saccharomyces cerevisiae, cytochrome c oxidase (CIV) forms SCs of varying stoichiometry with cytochrome bc1 (CIII). Recent studies have revealed, in normoxic growth conditions, an interface made exclusively by Cox5A, the only yeast respiratory protein that exists as one of two isoforms depending on oxygen levels. Here we present the cryo-EM structures of the III2-IV1 and III2-IV2 SCs containing the hypoxic isoform Cox5B solved at 3.4 and 2.8 Å, respectively. We show that the change of isoform does not affect SC formation or activity, and that SC stoichiometry is dictated by the level of CIII/CIV biosynthesis. Comparison of the CIV5B- and CIV5A-containing SC structures highlighted few differences, found mainly in the region of Cox5. Additional density was revealed in all SCs, independent of the CIV isoform, in a pocket formed by Cox1, Cox3, Cox12, and Cox13, away from the CIII-CIV interface. In the CIV5B-containing hypoxic SCs, this could be confidently assigned to the hypoxia-induced gene 1 (Hig1) type 2 protein Rcf2. With conserved residues in mammalian Hig1 proteins and Cox3/Cox12/Cox13 orthologs, we propose that Hig1 type 2 proteins are stoichiometric subunits of CIV, at least when within a III-IV SC.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica/métodos , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Hipóxia/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Isoformas de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
12.
Nature ; 537(7622): 644-648, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27654913

RESUMO

Mitochondrial electron transport chain complexes are organized into supercomplexes responsible for carrying out cellular respiration. Here we present three architectures of mammalian (ovine) supercomplexes determined by cryo-electron microscopy. We identify two distinct arrangements of supercomplex CICIII2CIV (the respirasome)-a major 'tight' form and a minor 'loose' form (resolved at the resolution of 5.8 Å and 6.7 Å, respectively), which may represent different stages in supercomplex assembly or disassembly. We have also determined an architecture of supercomplex CICIII2 at 7.8 Å resolution. All observed density can be attributed to the known 80 subunits of the individual complexes, including 132 transmembrane helices. The individual complexes form tight interactions that vary between the architectures, with complex IV subunit COX7a switching contact from complex III to complex I. The arrangement of active sites within the supercomplex may help control reactive oxygen species production. To our knowledge, these are the first complete architectures of the dominant, physiologically relevant state of the electron transport chain.


Assuntos
Respiração Celular , Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/ultraestrutura , Complexo I de Transporte de Elétrons/ultraestrutura , Animais , Sítios de Ligação , Domínio Catalítico , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Coração , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ovinos
13.
Mol Cell Proteomics ; 19(7): 1161-1178, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332106

RESUMO

Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins, but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labeling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labeled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly because of the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8Δ mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Marcação por Isótopo/métodos , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida , Reagentes de Ligações Cruzadas/química , Complexo I de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação Oxidativa , Ligação Proteica , Mapas de Interação de Proteínas , Proteômica , Complexo Piruvato Desidrogenase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Massas em Tandem
14.
Biochem J ; 478(17): 3253-3263, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402504

RESUMO

The reaction centre light-harvesting 1 (RC-LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC-LH1 complex from Rhodospirillum rubrum at 2.5 Šresolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αß-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC-LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC-LH1 complex.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos de Proteínas Captadores de Luz/química , Rhodospirillum rubrum/química , Proteínas de Bactérias/isolamento & purificação , Bacterioclorofilas/química , Benzoquinonas/química , Sítios de Ligação , Cristalização , Complexo III da Cadeia de Transporte de Elétrons/química , Ligação de Hidrogênio , Hidroquinonas/química , Ligantes , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Fosfolipídeos/química , Conformação Proteica em alfa-Hélice
15.
J Mol Cell Cardiol ; 161: 23-38, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331972

RESUMO

A serious consequence of myocardial ischemia-reperfusion injury (I/R) is oxidative damage, which causes mitochondrial dysfunction. The cascading ROS can propagate and potentially induce heme bleaching and protein cysteine sulfonation (PrSO3H) of the mitochondrial electron transport chain. Herein we studied the mechanism of I/R-mediated irreversible oxidative injury of complex III in mitochondria from rat hearts subjected to 30-min of ischemia and 24-h of reperfusion in vivo. In the I/R region, the catalytic activity of complex III was significantly impaired. Spectroscopic analysis indicated that I/R mediated the destruction of hemes b and c + c1 in the mitochondria, supporting I/R-mediated complex III impairment. However, no significant impairment of complex III activity and heme damage were observed in mitochondria from the risk region of rat hearts subjected only to 30-min ischemia, despite a decreased state 3 respiration. In the I/R mitochondria, carbamidomethylated C122/C125 of cytochrome c1 via alkylating complex III with a down regulation of HCCS was exclusively detected, supporting I/R-mediated thioether defect of heme c1. LC-MS/MS analysis showed that I/R mitochondria had intensely increased complex III PrSO3H levels at the C236 ligand of the [2Fe2S] cluster of the Rieske iron­sulfur protein (uqcrfs1), thus impairing the electron transport activity. MS analysis also indicated increased PrSO3H of the hinge protein at C65 and of cytochrome c1 at C140 and C220, which are confined in the intermembrane space. MS analysis also showed that I/R extensively enhanced the PrSO3H of the core 1 (uqcrc1) and core 2 (uqcrc2) subunits in the matrix compartment, thus supporting the conclusion that complex III releases ROS to both sides of the inner membrane during reperfusion. Analysis of ischemic mitochondria indicated a modest reduction from the basal level of complex III PrSO3H detected in the mitochondria of sham control hearts, suggesting that the physiologic hyperoxygenation and ROS overproduction during reperfusion mediated the enhancement of complex III PrSO3H. In conclusion, reperfusion-mediated heme damage with increased PrSO3H controls oxidative injury to complex III and aggravates mitochondrial dysfunction in the post-ischemic heart.


Assuntos
Cisteína/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Derivados de Benzeno/química , Bovinos , Cisteína/química , Citocromos c1/química , Citocromos c1/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Heme/química , Masculino , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Isquemia Miocárdica/metabolismo , Ácido Peroxinitroso/química , Ratos Sprague-Dawley , Superóxido Dismutase/genética
16.
Biochemistry ; 60(46): 3497-3506, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34266238

RESUMO

Two major subclasses of mononuclear non-heme ferrous enzymes use two electron-donating organic cofactors (α-ketoglutarate or pterin) to activate O2 to form FeIV═O intermediates that further react with their substrates through hydrogen atom abstraction or electrophilic aromatic substitution. New spectroscopic methodologies have been developed, enabling the study of the active sites in these enzymes and their oxygen intermediates. Coupled to electronic structure calculations, the results of these spectroscopies provide fundamental insight into mechanism. This Perspective summarizes the results of these studies in elucidating the mechanism of dioxygen activation to form the FeIV═O intermediate and the geometric and electronic structure of this intermediate that enables its high reactivity and selectivity in product formation.


Assuntos
Cisteína Dioxigenase/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/metabolismo , Domínio Catalítico , Cisteína Dioxigenase/química , Complexo III da Cadeia de Transporte de Elétrons/química , Ácidos Cetoglutáricos/química , Pterinas/metabolismo , Superóxidos/metabolismo
17.
BMC Cancer ; 21(1): 427, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865346

RESUMO

BACKGROUND: Associations between mitochondrial genetic abnormalities (variations and copy number, i.e. mtDNAcn, change) and elevated ROS have been reported in cancer compared to normal cells. Since excessive levels of ROS can trigger apoptosis, treating cancer cells with ROS-stimulating agents may enhance their death. This study aimed to investigate the link between baseline ROS levels and mitochondrial genetic abnormalities, and how mtDNA abnormalities might be used to predict cancer cells' response to ROS-stimulating therapy. METHODS: Intracellular and mitochondrial specific-ROS levels were measured using the DCFDA and MitoSOX probes, respectively, in four cancer and one non-cancerous cell lines. Cells were treated with ROS-stimulating agents (cisplatin and dequalinium) and the IC50s were determined using the MTS assay. Sanger sequencing and qPCR were conducted to screen the complete mitochondrial genome for variations and to relatively quantify mtDNAcn, respectively. Non-synonymous variations were subjected to 3-dimensional (3D) protein structural mapping and analysis. RESULTS: Our data revealed novel significant associations between the total number of variations in the mitochondrial respiratory chain (MRC) complex I and III genes, mtDNAcn, ROS levels, and ROS-associated drug response. Furthermore, functional variations in complexes I/III correlated significantly and positively with mtDNAcn, ROS levels and drug resistance, indicating they might mechanistically influence these parameters in cancer cells. CONCLUSIONS: Our findings suggest that mtDNAcn and complexes I/III functional variations have the potential to be efficient biomarkers to predict ROS-stimulating therapy efficacy in the future.


Assuntos
Antineoplásicos/farmacologia , DNA Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Sítios de Ligação , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
18.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299598

RESUMO

In this work we introduce a novel filtering and molecular modeling pipeline based on a fingerprint and descriptor similarity procedure, coupled with molecular docking and molecular dynamics (MD), to select potential novel quoinone outside inhibitors (QoI) of cytochrome bc1 with the aim of determining the same or different chromophores to usual. The study was carried out using the yeast cytochrome bc1 complex with its docked ligand (stigmatellin), using all the fungicides from FRAC code C3 mode of action, 8617 Drugbank compounds and 401,624 COCONUT compounds. The introduced drug repurposing pipeline consists of compound similarity with C3 fungicides and molecular docking (MD) simulations with final QM/MM binding energy determination, while aiming for potential novel chromophores and perserving at least an amide (R1HN(C=O)R2) or ester functional group of almost all up to date C3 fungicides. 3D descriptors used for a similarity test were based on the 280 most stable Padel descriptors. Hit compounds that passed fingerprint and 3D descriptor similarity condition and had either an amide or an ester group were submitted to docking where they further had to satisfy both Chemscore fitness and specific conformation constraints. This rigorous selection resulted in a very limited number of candidates that were forwarded to MD simulations and QM/MM binding affinity estimations by the ORCA DFT program. In this final step, stringent criteria based on (a) sufficiently high frequency of H-bonds; (b) high interaction energy between protein and ligand through the whole MD trajectory; and (c) high enough QM/MM binding energy scores were applied to further filter candidate inhibitors. This elaborate search pipeline led finaly to four Drugbank synthetic lead compounds (DrugBank) and seven natural (COCONUT database) lead compounds-tentative new inhibitors of cytochrome bc1. These eleven lead compounds were additionally validated through a comparison of MM/PBSA free binding energy for new leads against those obtatined for 19 QoIs.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Avaliação Pré-Clínica de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/química , Proteínas de Saccharomyces cerevisiae/química
19.
J Biol Chem ; 294(32): 12007-12019, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31182483

RESUMO

Cytochrome bc1 complexes (cyt bc1), also known as complex III in mitochondria, are components of the cellular respiratory chain and of the photosynthetic apparatus of non-oxygenic photosynthetic bacteria. They catalyze electron transfer (ET) from ubiquinol to cytochrome c and concomitantly translocate protons across the membrane, contributing to the cross-membrane potential essential for a myriad of cellular activities. This ET-coupled proton translocation reaction requires a gating mechanism that ensures bifurcated electron flow. Here, we report the observation of the Rieske iron-sulfur protein (ISP) in a mobile state, as revealed by the crystal structure of cyt bc1 from the photosynthetic bacterium Rhodobacter sphaeroides in complex with the fungicide azoxystrobin. Unlike cyt bc1 inhibitors stigmatellin and famoxadone that immobilize the ISP, azoxystrobin causes the ISP-ED to separate from the cyt b subunit and to remain in a mobile state. Analysis of anomalous scattering signals from the iron-sulfur cluster of the ISP suggests the existence of a trajectory for electron delivery. This work supports and solidifies the hypothesis that the bimodal conformation switch of the ISP provides a gating mechanism for bifurcated ET, which is essential to the Q-cycle mechanism of cyt bc1 function.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Pirimidinas/química , Estrobilurinas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Dissulfetos/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mutagênese , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pirimidinas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rhodobacter sphaeroides/metabolismo , Estrobilurinas/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(6): 1323-1328, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115711

RESUMO

Oxygenic respiration and photosynthesis based on quinone redox reactions face a danger of wasteful energy dissipation by diversion of the productive electron transfer pathway through the generation of reactive oxygen species (ROS). Nevertheless, the widespread quinone oxido-reductases from the cytochrome bc family limit the amounts of released ROS to a low, perhaps just signaling, level through an as-yet-unknown mechanism. Here, we propose that a metastable radical state, nonreactive with oxygen, safely holds electrons at a local energetic minimum during the oxidation of plastohydroquinone catalyzed by the chloroplast cytochrome b6f This intermediate state is formed by interaction of a radical with a metal cofactor of a catalytic site. Modulation of its energy level on the energy landscape in photosynthetic vs. respiratory enzymes provides a possible mechanism to adjust electron transfer rates for efficient catalysis under different oxygen tensions.


Assuntos
Complexo Citocromos b6f/química , Complexo III da Cadeia de Transporte de Elétrons/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Oxigênio/química , Fotossíntese , Rhodobacter capsulatus , Spinacia oleracea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA