Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.174
Filtrar
1.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103644

RESUMO

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Assuntos
Mutação , Sialiltransferases , Humanos , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Simulação por Computador , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Mutação Puntual , Conformação Proteica em Folha beta , Transporte Proteico , Algoritmo Florestas Aleatórias , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/genética , Sialiltransferases/metabolismo
2.
J Biol Chem ; 299(10): 105192, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625589

RESUMO

Point mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease and augment LRRK2's kinase activity. However, cellular pathways that endogenously enhance LRRK2 kinase function have not been identified. While overexpressed Rab29 draws LRRK2 to Golgi membranes to increase LRRK2 kinase activity, there is little evidence that endogenous Rab29 performs this function under physiological conditions. Here, we identify Rab38 as a novel physiologic regulator of LRRK2 in melanocytes. In mouse melanocytes, which express high levels of Rab38, Rab32, and Rab29, knockdown (or CRISPR knockout) of Rab38, but not Rab32 or Rab29, decreases phosphorylation of multiple LRRK2 substrates, including Rab10 and Rab12, by both endogenous LRRK2 and exogenous Parkinson's disease-mutant LRRK2. In B16-F10 mouse melanoma cells, Rab38 drives LRRK2 membrane association and overexpressed kinase-active LRRK2 shows striking pericentriolar recruitment, which is dependent on the presence of endogenous Rab38 but not Rab32 or Rab29. Consistently, knockdown or mutation of BLOC-3, the guanine nucleotide exchange factor for Rab38 and Rab32, inhibits Rab38's regulation of LRRK2. Deletion or mutation of LRRK2's Rab38-binding site in the N-terminal armadillo domain decreases LRRK2 membrane association, pericentriolar recruitment, and ability to phosphorylate Rab10. In sum, our data identify Rab38 as a physiologic regulator of LRRK2 function and lend support to a model in which LRRK2 plays a central role in Rab GTPase coordination of vesicular trafficking.


Assuntos
Membranas Intracelulares , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Melanócitos , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Melanócitos/metabolismo , Mutação , Doença de Parkinson/metabolismo , Fosforilação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Expressão Gênica , Domínios Proteicos , Ligação Proteica , Membranas Intracelulares/metabolismo
3.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
4.
Biol Pharm Bull ; 47(6): 1136-1143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38866522

RESUMO

Ceramide (Cer) is synthesized de novo in the bilayer of the endoplasmic reticulum and transported to the cytosolic leaflet of the trans-Golgi apparatus for sphingomyelin (SM) synthesis. As the active site of SM synthase (SMS) is located on the luminal side of the Golgi membrane, Cer translocates to the lumen via transbilayer movement for SM synthesis. However, the mechanism of transbilayer movement is not fully understood. As the Cer-related translocases seem to localize near the SMS, the protein was identified using proximity-dependent biotin identification proteomics. Phospholipid scramblase 1 (PLSCR1), which is thought to act as a scramblase for phosphatidylserine and phosphatidylethanolamine, was identified as a protein proximal to the SMS isoforms SMS1 and SMS2. Although five isoforms of PLSCR have been reported in humans, only PLSCR1, PLSCR3, and PLSCR4 are expressed in HEK293T cells. Confocal microscopic analysis showed that PLSCR1 and PLSCR4 partially co-localized with p230, a trans-Golgi network marker, where SMS isoforms are localized. We established CRISPR/Cas9-mediated PLSCR1, PLSCR3, and PLSCR4 single-knockout cells and PLSCR1, 3, 4 triple knockout HEK293T cells. Liquid chromatography-tandem mass spectrometry revealed that the levels of species with distinct acyl chains in Cer and SM were not significantly different in single knockout cells or in the triple knockout cells compared to the wild-type cells. Our findings suggest that PLSCR1 is localized in the vicinity of SMS isoforms, however is not involved in the transbilayer movement of Cer for SM synthesis.


Assuntos
Proteínas de Transferência de Fosfolipídeos , Esfingomielinas , Transferases (Outros Grupos de Fosfato Substituídos) , Humanos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Células HEK293 , Esfingomielinas/metabolismo , Esfingomielinas/biossíntese , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/enzimologia
5.
Mol Cell ; 62(4): 491-506, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27203176

RESUMO

ULK1 and ULK2 are thought to be essential for initiating autophagy, and Ulk1/2-deficient mice die perinatally of autophagy-related defects. Therefore, we used a conditional knockout approach to investigate the roles of ULK1/2 in the brain. Although the mice showed neuronal degeneration, the neurons showed no accumulation of P62(+)/ubiquitin(+) inclusions or abnormal membranous structures, which are observed in mice lacking other autophagy genes. Rather, neuronal death was associated with activation of the unfolded protein response (UPR) pathway. An unbiased proteomics approach identified SEC16A as an ULK1/2 interaction partner. ULK-mediated phosphorylation of SEC16A regulated the assembly of endoplasmic reticulum (ER) exit sites and ER-to-Golgi trafficking of specific cargo, and did not require other autophagy proteins (e.g., ATG13). The defect in ER-to-Golgi trafficking activated the UPR pathway in ULK-deficient cells; both processes were reversed upon expression of SEC16A with a phosphomimetic substitution. Thus, the regulation of ER-to-Golgi trafficking by ULK1/2 is essential for cellular homeostasis.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Encéfalo/enzimologia , Retículo Endoplasmático/enzimologia , Fibroblastos/enzimologia , Complexo de Golgi/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/deficiência , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Encéfalo/patologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/patologia , Feminino , Genótipo , Complexo de Golgi/patologia , Células HEK293 , Homeostase , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Interferência de RNA , Fatores de Tempo , Transfecção , Resposta a Proteínas não Dobradas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
J Biol Chem ; 298(9): 102281, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863437

RESUMO

Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.


Assuntos
Endossomos , Complexo de Golgi , Proteínas rab de Ligação ao GTP , Animais , Cricetinae , Endossomos/enzimologia , Complexo de Golgi/enzimologia , Células HEK293 , Humanos , Células PC12 , Domínios Proteicos , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
J Biol Chem ; 296: 100315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33485966

RESUMO

Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.


Assuntos
Adenosina Trifosfatases/genética , Bicamadas Lipídicas/metabolismo , Toxoplasma/genética , Toxoplasmose/genética , Adenosina Trifosfatases/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citometria de Fluxo , Glicerofosfolipídeos/metabolismo , Complexo de Golgi/química , Complexo de Golgi/enzimologia , Humanos , Bicamadas Lipídicas/química , Lipídeos/química , Lipídeos/genética , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia
8.
Hum Mol Genet ; 28(13): 2133-2142, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30806661

RESUMO

Hereditary multiple osteochondromas (HMO) is a rare autosomal dominant skeletal disorder, caused by heterozygous variants in either EXT1 or EXT2, which encode proteins involved in the biogenesis of heparan sulphate. Pathogenesis and genotype-phenotype correlations remain poorly understood. We studied 114 HMO families (158 affected individuals) with causative EXT1 or EXT2 variants identified by Sanger sequencing, or multiplex ligation-dependent probe amplification and qPCR. Eighty-seven disease-causative variants (55 novel and 32 known) were identified including frameshift (42%), nonsense (32%), missense (11%), splicing (10%) variants and genomic rearrangements (5%). Informative clinical features were available for 42 EXT1 and 27 EXT2 subjects. Osteochondromas were more frequent in EXT1 as compared to EXT2 patients. Anatomical distribution of lesions showed significant differences based on causative gene. Microscopy analysis for selected EXT1 and EXT2 variants verified that EXT1 and EXT2 mutants failed to co-localize each other and loss Golgi localization by surrounding the nucleus and/or assuming a diffuse intracellular distribution. In a cell viability study, cells expressing EXT1 and EXT2 mutants proliferated more slowly than cells expressing wild-type proteins. This confirms the physiological relevance of EXT1 and EXT2 Golgi co-localization and the key role of these proteins in the cell cycle. Taken together, our data expand genotype-phenotype correlations, offer further insights in the pathogenesis of HMO and open the path to future therapies.


Assuntos
Exostose Múltipla Hereditária/genética , N-Acetilglucosaminiltransferases/genética , Proliferação de Células , Sobrevivência Celular , Feminino , Estudos de Associação Genética , Complexo de Golgi/enzimologia , Células HEK293 , Humanos , Masculino , Mutação , N-Acetilglucosaminiltransferases/análise
9.
Exp Cell Res ; 390(2): 111961, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209306

RESUMO

N-alpha-acetyltransferase 80 (NAA80) was recently demonstrated to acetylate the N-terminus of actin, with NAA80 knockout cells showing actin cytoskeleton-related phenotypes, such as increased formation of membrane protrusions and accelerated migration. Here we report that NAA80 knockout cells additionally display fragmentation of the Golgi apparatus. We further employed rescue assays to demonstrate that this phenotype is connected to the ability of NAA80 to modify actin. Thus, re-expression of NAA80, which leads to re-establishment of actin's N-terminal acetyl group, rescued the Golgi fragmentation, whereas a catalytic dead NAA80 mutant could neither restore actin Nt-acetylation nor Golgi structure. The Golgi phenotype of NAA80 KO cells was shared by both migrating and non-migrating cells and live-cell imaging indicated increased Golgi dynamics in migrating NAA80 KO cells. Finally, we detected a drastic increase in the amount of F-actin in cells lacking NAA80, suggesting a causal relationship between this effect and the observed re-organization of Golgi structure. The findings further underscore the importance of actin Nt-acetylation and provide novel insight into its cellular roles, suggesting a mechanistic link between actin modification state and Golgi organization.


Assuntos
Acetiltransferases/genética , Citoesqueleto de Actina/enzimologia , Actinas/genética , Actinas/metabolismo , Complexo de Golgi/enzimologia , Processamento de Proteína Pós-Traducional , Acetilação , Acetiltransferases/deficiência , Citoesqueleto de Actina/ultraestrutura , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Fenótipo , Imagem com Lapso de Tempo
10.
Proc Natl Acad Sci U S A ; 115(36): 8984-8989, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30126980

RESUMO

The glycosyltransferases of the mammalian Golgi complex must recycle between the stacked cisternae of that organelle to maintain their proper steady-state localization. This trafficking is mediated by COPI-coated vesicles, but how the glycosyltransferases are incorporated into these transport vesicles is poorly understood. Here we show that the N-terminal cytoplasmic tails (N-tails) of a number of cis Golgi glycosyltransferases which share a ϕ-(K/R)-X-L-X-(K/R) sequence bind directly to the δ- and ζ-subunits of COPI. Mutations of this N-tail motif impair binding to the COPI subunits, leading to mislocalization of the transferases to lysosomes. The physiological importance of these interactions is illustrated by mucolipidosis III patients with missense mutations in the N-tail of GlcNAc-1-phosphotransferase that cause the transferase to be rapidly degraded in lysosomes. These studies establish that direct binding of the N-tails of mammalian cis Golgi glycosyltransferases with COPI subunits is essential for recycling within the Golgi.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Glucosiltransferases/metabolismo , Complexo de Golgi/enzimologia , Motivos de Aminoácidos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Glucosiltransferases/genética , Complexo de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Mucolipidoses/enzimologia , Mucolipidoses/genética , Mutação de Sentido Incorreto , Domínios Proteicos
11.
J Biol Chem ; 294(28): 10954-10968, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152060

RESUMO

Neurite outgrowth requires coordinated cytoskeletal rearrangements in the growth cone and directional membrane delivery from the neuronal soma. As an essential Rho guanine nucleotide exchange factor (GEF), TRIO is necessary for cytoskeletal dynamics during neurite outgrowth, but its participation in the membrane delivery is unclear. Using co-localization studies, live-cell imaging, and fluorescence recovery after photobleaching analysis, along with neurite outgrowth assay and various biochemical approaches, we here report that in mouse cerebellar granule neurons, TRIO protein pools at the Golgi and regulates membrane trafficking by controlling the directional maintenance of both RAB8 (member RAS oncogene family 8)- and RAB10-positive membrane vesicles. We found that the spectrin repeats in Golgi-resident TRIO confer RAB8 and RAB10 activation by interacting with and activating the RAB GEF RABIN8. Constitutively active RAB8 or RAB10 could partially restore the neurite outgrowth of TRIO-deficient cerebellar granule neurons, suggesting that TRIO-regulated membrane trafficking has an important functional role in neurite outgrowth. Our results also suggest cross-talk between Rho GEF and Rab GEF in controlling both cytoskeletal dynamics and membrane trafficking during neuronal development. They further highlight how protein pools localized to specific organelles regulate crucial cellular activities and functions. In conclusion, our findings indicate that TRIO regulates membrane trafficking during neurite outgrowth in coordination with its GEF-dependent function in controlling cytoskeletal dynamics via Rho GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/metabolismo , Crescimento Neuronal/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Movimento Celular , Cerebelo/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neuritos/fisiologia , Neurônios/metabolismo , Fosfoproteínas/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
12.
J Cell Sci ; 131(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30111580

RESUMO

Rab GTPases are key regulators of intracellular trafficking, and cycle between a GTP-bound active state and a GDP-bound inactive state. This cycle is regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several efforts have been made in connecting the correct GEFs and GAPs to their specific Rab. Here, we aimed to identify GAPs for Rab7b, the small GTPase involved in transport from late endosomes to the trans-Golgi. An siRNA screen targeting proteins containing TBC domains critical for Rab GAPs was performed and coupled to a phenotypic read-out that visualized the distribution of Rab7b. Silencing of TBC1D5 provided the strongest phenotype and this protein was subsequently validated in various in vitro and cell-based assays. TBC1D5 localizes to Rab7b-positive vesicles, interacts with Rab7b and has GAP activity towards Rab7b in vitro, which is further increased by retromer proteins. Similarly to the constitutively active mutant of Rab7b, inactivation of TBC1D5 also reduces the number of CI-MPR- and sortilin-positive vesicles. Together, the results show that TBC1D5 is a GAP for Rab7b in the control of endosomal transport to the trans-Golgi.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/enzimologia , Endossomos/genética , Proteínas Ativadoras de GTPase/genética , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Humanos , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
13.
Biochem Soc Trans ; 48(3): 1129-1138, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32573677

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/enzimologia , Glicosilfosfatidilinositóis/biossíntese , Complexo de Golgi/enzimologia , Animais , Humanos , Masculino , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/metabolismo , Neurogênese , Domínios Proteicos , Dobramento de Proteína , Transporte Proteico , Espermatogênese
14.
FEMS Yeast Res ; 20(1)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942998

RESUMO

One strategy for overcoming infectious diseases caused by drug-resistant fungi involves combining drugs rendered inactive by resistance with agents targeting the drug resistance mechanism. The antifungal activity of n-dodecanol disappears as incubation time passes. In Saccharomyces cerevisiae, anethole, a principal component of anise oil, prolongs the transient antifungal effect of dodecanol by downregulating genes of multidrug efflux pumps, mainly PDR5. However, the detailed mechanisms of dodecanol's antifungal action and the anethole-induced prolonged antifungal action of dodecanol are unknown. Screening of S. cerevisiae strains lacking genes related to Ca2+ homeostasis and signaling identified a pmr1Δ strain lacking Golgi Ca2+-ATPase as more sensitive to dodecanol than the parental strain. Dodecanol and the dodecanol + anethole combination significantly increased intracellular Ca2+ levels in both strains, but the mutant failed to clear intracellular Ca2+ accumulation. Further, dodecanol and the drug combination reduced PMR1 expression and did not lead to specific localization of Pmr1p in the parental strain after 4-h treatment. By contrast with the parental strain, dodecanol did not stimulate PDR5 expression in pmr1Δ. Based on these observations, we propose that the antifungal activity of dodecanol is related to intracellular Ca2+ accumulation, possibly dependent on PMR1 function, with anethole enabling Ca2+ accumulation by restricting dodecanol efflux.


Assuntos
Anisóis/farmacologia , ATPases Transportadoras de Cálcio/genética , Cálcio/metabolismo , Dodecanol/farmacologia , Deleção de Genes , Chaperonas Moleculares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Derivados de Alilbenzenos , Anisóis/química , Antifúngicos/química , Antifúngicos/farmacologia , ATPases Transportadoras de Cálcio/efeitos dos fármacos , ATPases Transportadoras de Cálcio/metabolismo , Dodecanol/química , Sinergismo Farmacológico , Citometria de Fluxo , Complexo de Golgi/enzimologia , Chaperonas Moleculares/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , RNA Fúngico/química , RNA Fúngico/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
15.
PLoS Biol ; 15(4): e2000653, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28394935

RESUMO

The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of ß-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated ß-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of ß-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.


Assuntos
Actinas/metabolismo , Sinapses Imunológicas/enzimologia , Isoenzimas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Profilinas/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Linfócitos T/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Células Cultivadas , Cisteína/metabolismo , Ativação Enzimática , Complexo de Golgi/enzimologia , Complexo de Golgi/imunologia , Complexo de Golgi/metabolismo , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Proteínas Luminescentes/antagonistas & inibidores , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Profilinas/genética , Proteína Quinase C/química , Proteína Quinase C/genética , Proteína Quinase C-theta , Transporte Proteico , Pseudópodes , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia
16.
Bioorg Med Chem ; 28(11): 115492, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291147

RESUMO

Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell-cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Complexo de Golgi/enzimologia , Manosidases/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Manosidases/metabolismo , Estrutura Molecular , Imagem Óptica , Esferoides Celulares/metabolismo , Relação Estrutura-Atividade
17.
Biochem J ; 476(16): 2321-2346, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462439

RESUMO

Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIß isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell-matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIß, PI4KIIα and PI4KIIß, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Complexo de Golgi/enzimologia , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Secretórias/enzimologia , Animais , Complexo de Golgi/patologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/patologia , Vesículas Secretórias/patologia
18.
Chem Pharm Bull (Tokyo) ; 68(8): 753-761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741916

RESUMO

The genes GLB1 and GALC encode GLB1 isoform 1 and galactocerebrosidase, respectively, which exhibit ß-galactosidase activity in human lysosomes. GLB1 isoform 1 has been reported to play roles in rare lysosomal storage diseases. Further, its ß-galactosidase activity is the most widely used biomarker of senescent and aging cells; hence, it is called senescence-associated ß-galactosidase. Galactocerebrosidase plays roles in Krabbe disease. We previously reported a novel ß-galactosidase activity in the Golgi apparatus of human cells; however, the protein responsible for this activity could not be identified. Inhibitor-derived chemical probes can serve as powerful tools to identify the responsible protein. In this study, we first constructed a cell-based high-throughput screening (HTS) system for Golgi ß-galactosidase inhibitors, and then screened inhibitors from two compound libraries using the HTS system, in vitro assay, and cytotoxicity assay. An isoflavone derivative was identified among the final Golgi ß-galactosidase inhibitor compound hits. Molecular docking simulations were performed to redesign the isoflavone derivative into a more potent inhibitor, and six designed derivatives were then synthesized. One of the derivatives, ARM07, exhibited potent inhibitory activity against ß-galactosidase, with an IC50 value of 14.8 µM and competitive inhibition with Ki value of 13.3 µM. Furthermore, the in vitro and cellular inhibitory activities of ARM07 exceeded those of deoxygalactonojirimycin. ARM07 may contribute to the development of affinity-based chemical probes to identify the protein responsible for the newly discovered Golgi ß-galactosidase activity. The therapeutic relevance of ARM07 against lysosomal storage diseases and its effect on senescent cells should be evaluated further.


Assuntos
Inibidores Enzimáticos/síntese química , Complexo de Golgi/enzimologia , Isoflavonas/química , beta-Galactosidase/antagonistas & inibidores , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Isoflavonas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
19.
Traffic ; 18(8): 519-529, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28471037

RESUMO

Oxysterol-binding protein (OSBP) localizes to endoplasmic reticulum (ER)-Golgi contact sites where it transports cholesterol and phosphatidylinositol 4-phosphate (PI-4P), and activates lipid transport and biosynthetic activities. The PI-4P phosphatase Sac1 cycles between the ER and Golgi apparatus where it potentially regulates OSBP activity. Here we examined whether the ER-Golgi distribution of endogenous or ectopically expressed Sac1 influences OSBP activity. OSBP and Sac1 co-localized at apparent ER-Golgi contact sites in response to 25-hydroxycholesterol (25OH), cholesterol depletion and p38 MAPK inhibitors. A Sac1 mutant that is unable to exit the ER did not localize with OSBP, suggesting that sterol perturbations cause Sac1 transport to the Golgi apparatus. Ectopic expression of Sac1 in the ER or Golgi apparatus, or Sac1 silencing, did not affect OSBP localization to ER-Golgi contact sites, OSBP-dependent activation of sphingomyelin synthesis, or cholesterol esterification in the ER. p38 MAPK inhibition and retention of Sac1 in the Golgi apparatus also caused OSBP phosphorylation and OSBP-dependent activation of sphingomyelin synthesis at ER-Golgi contacts. These results demonstrate that Sac1 expression in either the ER or Golgi apparatus has a minimal impact on the PI-4P that regulates OSBP activity or recruitment to contact sites.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico , Retículo Endoplasmático/enzimologia , Inativação Gênica , Complexo de Golgi/enzimologia , Células HeLa , Humanos , Hidroxicolesteróis/metabolismo , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Traffic ; 18(7): 465-484, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28382714

RESUMO

The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 "anti-ligases" that appear to work in a dominant-negative fashion to stabilize their cognate substrates against ubiquitin-dependent proteasomal and lysosomal degradation. We then used the ligase-deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post-Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the "ubiquitome" of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase-DUb fusions.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Membrana Celular/metabolismo , Enzimas Desubiquitinantes/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/enzimologia , Complexo de Golgi/enzimologia , Lisossomos/enzimologia , Plasmídeos , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA