Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(11): 2894-2894.e1, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788692

RESUMO

Plant cells share a number of biological condensates with cells from other eukaryotes. There are, however, a growing number of plant-specific condensates that support different cellular functions. Condensates operating in different plant tissues contribute to aspects of development and stress responses. To view this SnapShot, open or download the PDF.


Assuntos
Condensados Biomoleculares , Células Vegetais , Plantas , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Células Vegetais/química , Células Vegetais/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/química , Plantas/metabolismo
2.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552623

RESUMO

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Retículo Endoplasmático , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Ratos , Transporte Biológico , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas do Citoesqueleto/metabolismo , Separação de Fases
3.
Mol Cell ; 84(2): 309-326.e7, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38096828

RESUMO

Membraneless organelles formed by phase separation of proteins and nucleic acids play diverse cellular functions. Whether and, if yes, how membraneless organelles in ways analogous to membrane-based organelles also undergo regulated fusion and fission is unknown. Here, using a partially reconstituted mammalian postsynaptic density (PSD) condensate as a paradigm, we show that membraneless organelles can undergo phosphorylation-dependent fusion and fission. Without phosphorylation of the SAPAP guanylate kinase domain-binding repeats, the upper and lower layers of PSD protein mixtures form two immiscible sub-compartments in a phase-in-phase organization. Phosphorylation of SAPAP leads to fusion of the two sub-compartments into one condensate accompanied with an increased Stargazin density in the condensate. Dephosphorylation of SAPAP can reverse this event. Preventing SAPAP phosphorylation in vivo leads to increased separation of proteins from the lower and upper layers of PSD sub-compartments. Thus, analogous to membrane-based organelles, membraneless organelles can also undergo regulated fusion and fission.


Assuntos
Condensados Biomoleculares , Densidade Pós-Sináptica , Animais , Fosforilação , Densidade Pós-Sináptica/metabolismo , Fenômenos Fisiológicos Celulares , Ligação Proteica , Organelas/metabolismo , Mamíferos
4.
Mol Cell ; 84(2): 244-260.e7, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38101414

RESUMO

Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.


Assuntos
Condensados Biomoleculares , Cromatina , Fator 3-alfa Nuclear de Hepatócito , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Heterocromatina , Humanos
5.
Mol Cell ; 84(3): 429-446.e17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215753

RESUMO

Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.


Assuntos
Nucleossomos , Poli ADP Ribosilação , Nucleossomos/genética , Poli ADP Ribosilação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Microscopia Crioeletrônica , Condensados Biomoleculares , Reparo do DNA , Histonas/genética , Histonas/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo
6.
Mol Cell ; 84(14): 2698-2716.e9, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059370

RESUMO

The cell interior is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cellular physiology. Cellular stress responses almost universally lead to inhibition of translation, resulting in polysome collapse and release of mRNA. The released mRNA molecules condense with RNA-binding proteins to form ribonucleoprotein (RNP) condensates known as processing bodies and stress granules. Here, we show that polysome collapse and condensation of RNA transiently fluidize the cytoplasm, and coarse-grained molecular dynamic simulations support this as a minimal mechanism for the observed biophysical changes. Increased mesoscale diffusivity correlates with the efficient formation of quality control bodies (Q-bodies), membraneless organelles that compartmentalize misfolded peptides during stress. Synthetic, light-induced RNA condensation also fluidizes the cytoplasm. Together, our study reveals a functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to enable efficient response of cells to stress conditions.


Assuntos
Citoplasma , Polirribossomos , Ribonucleoproteínas , Polirribossomos/metabolismo , Citoplasma/metabolismo , Humanos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Simulação de Dinâmica Molecular , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Condensados Biomoleculares/metabolismo , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética
7.
Nature ; 632(8025): 647-655, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112699

RESUMO

Biomolecular condensates enable cell compartmentalization by acting as membraneless organelles1. How cells control the interactions of condensates with other cellular structures such as membranes to drive morphological transitions remains poorly understood. We discovered that formation of a tight-junction belt, which is essential for sealing epithelial tissues, is driven by a wetting phenomenon that promotes the growth of a condensed ZO-1 layer2 around the apical membrane interface. Using temporal proximity proteomics in combination with imaging and thermodynamic theory, we found that the polarity protein PATJ mediates a transition of ZO-1 into a condensed surface layer that elongates around the apical interface. In line with the experimental observations, our theory of condensate growth shows that the speed of elongation depends on the binding affinity of ZO-1 to the apical interface and is constant. Here, using PATJ mutations, we show that ZO-1 interface binding is necessary and sufficient for tight-junction belt formation. Our results demonstrate how cells exploit the collective biophysical properties of protein condensates at membrane interfaces to shape mesoscale structures.


Assuntos
Condensados Biomoleculares , Membrana Celular , Junções Íntimas , Molhabilidade , Animais , Cães , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Compartimento Celular , Membrana Celular/metabolismo , Membrana Celular/química , Epitélio , Células HEK293 , Células Madin Darby de Rim Canino , Mutação , Ligação Proteica , Termodinâmica , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/química , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteômica
8.
EMBO J ; 43(2): 277-303, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177504

RESUMO

Biomolecular condensates (BMCs) play important roles in diverse biological processes. Many viruses form BMCs which have been implicated in various functions critical for the productive infection of host cells. The adenovirus L1-52/55 kilodalton protein (52K) was recently shown to form viral BMCs that coordinate viral genome packaging and capsid assembly. Although critical for packaging, we do not know how viral condensates are regulated during adenovirus infection. Here we show that phosphorylation of serine residues 28 and 75 within the N-terminal intrinsically disordered region of 52K modulates viral condensates in vitro and in cells, promoting liquid-like properties. Furthermore, we demonstrate that phosphorylation of 52K promotes viral genome packaging and the production of infectious progeny particles. Collectively, our findings provide insights into how viral condensate properties are regulated and maintained in a state conducive to their function in viral progeny production. In addition, our findings have implications for antiviral strategies aimed at targeting the regulation of viral BMCs to limit viral multiplication.


Assuntos
Condensados Biomoleculares , Vírus , Fosforilação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
9.
Proc Natl Acad Sci U S A ; 121(12): e2316610121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489385

RESUMO

Many biomolecular condensates, including transcriptional condensates, are formed in elastic mediums. In this work, we study the nonequilibrium condensate dynamics in a chromatin-like environment modeled as a heterogeneous elastic medium. We demonstrate that the ripening process in such an elastic medium exhibits a temporal power-law scaling of the average condensate radius, depending on the local stiffness distribution and different from Ostwald ripening. Moreover, we incorporate an active process to model the dissolution of transcriptional condensates upon RNA accumulation. Intriguingly, three types of kinetics of condensate growth emerge, corresponding to constitutively expressed, transcriptional-bursting, and silenced genes. Furthermore, the simulated burst frequency decreases exponentially with the local stiffness, through which we infer a lognormal distribution of local stiffness in living cells using the transcriptome-wide distribution of burst frequency. Under the inferred stiffness distribution, the simulated distributions of bursting kinetic parameters agree reasonably well with the experimental data. Our findings reveal the interplay between biomolecular condensates and elastic mediums, yielding far-reaching implications for gene expression.


Assuntos
Condensados Biomoleculares , Corpos Nucleares , Cromatina , Elasticidade , Cinética
10.
Proc Natl Acad Sci U S A ; 121(22): e2403013121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781207

RESUMO

Biomolecular condensates are cellular compartments that concentrate biomolecules without an encapsulating membrane. In recent years, significant advances have been made in the understanding of condensates through biochemical reconstitution and microscopic detection of these structures. Quantitative visualization and biochemical assays of biomolecular condensates rely on surface passivation to minimize background and artifacts due to condensate adhesion. However, the challenge of undesired interactions between condensates and glass surfaces, which can alter material properties and impair observational accuracy, remains a critical hurdle. Here, we introduce an efficient, broadly applicable, and simple passivation method employing self-assembly of the surfactant Pluronic F127 (PF127). The method greatly reduces nonspecific binding across a range of condensates systems for both phase-separated droplets and biomolecules in dilute phase. Additionally, by integrating PF127 passivation with the Biotin-NeutrAvidin system, we achieve controlled multipoint attachment of condensates to surfaces. This not only preserves condensate properties but also facilitates long-time fluorescence recovery after photobleaching imaging and high-precision single-molecule analyses. Using this method, we have explored the dynamics of polySIM molecules within polySUMO/polySIM condensates at the single-molecule level. Our observations suggest a potential heterogeneity in the distribution of available polySIM-binding sites within the condensates.


Assuntos
Avidina , Condensados Biomoleculares , Biotina , Poloxâmero , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Poloxâmero/química , Biotina/química , Biotina/metabolismo , Avidina/química , Avidina/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Propriedades de Superfície , Tensoativos/química , Tensoativos/metabolismo , Imagem Individual de Molécula/métodos
11.
Proc Natl Acad Sci U S A ; 121(33): e2405964121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39121161

RESUMO

Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Ubiquitinação , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Ubiquitina/metabolismo , Ubiquitina/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/isolamento & purificação , Proteínas Ubiquitinadas/química , Separação de Fases
12.
Semin Cell Dev Biol ; 156: 176-189, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268555

RESUMO

In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Condensados Biomoleculares , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doenças Neurodegenerativas/metabolismo , Mutação/genética , RNA
13.
J Cell Sci ; 137(4)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38264908

RESUMO

Activator of G-protein signaling 3 (AGS3; also known as GPSM1), a receptor-independent activator of G-protein signaling, oscillates among defined subcellular compartments and biomolecular condensates (BMCs) in a regulated manner that is likely related to the functional diversity of the protein. We determined the influence of cell stress on the cellular distribution of AGS3 and core material properties of AGS3 BMCs. Cellular stress (oxidative, pHi and thermal) induced the formation of AGS3 BMCs in HeLa and COS-7 cells, as determined by fluorescent microscopy. Oxidative stress-induced AGS3 BMCs were distinct from G3BP1 stress granules and from RNA processing BMCs defined by the P-body protein Dcp1a. Immunoblots indicated that cellular stress shifted AGS3, but not the stress granule protein G3BP1 to a membrane pellet fraction following cell lysis. The stress-induced generation of AGS3 BMCs was reduced by co-expression of the signaling protein Gαi3, but not the AGS3-binding partner DVL2. Fluorescent recovery following photobleaching of individual AGS3 BMCs indicated that there are distinct diffusion kinetics and restricted fluidity for AGS3 BMCs. These data suggest that AGS3 BMCs represent a distinct class of stress granules that serve as a previously unrecognized signal processing node.


Assuntos
Condensados Biomoleculares , Proteínas de Transporte , Proteínas de Transporte/metabolismo , DNA Helicases , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA , Humanos , Animais
14.
PLoS Pathog ; 20(8): e1012413, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146259

RESUMO

Microbes exhibit remarkable adaptability to environmental fluctuations. Signaling mechanisms, such as two-component systems and secondary messengers, have long been recognized as critical for sensing and responding to environmental cues. However, recent research has illuminated the potential of a physical adaptation mechanism in signaling-phase separation, which may represent a ubiquitous mechanism for compartmentalizing biochemistry within the cytoplasm in the context of bacteria that frequently lack membrane-bound organelles. This review considers the broader prospect that phase separation may play critical roles as rapid stress sensing and response mechanisms within pathogens. It is well established that weak multivalent interactions between disordered regions, coiled-coils, and other structured domains can form condensates via phase separation and be regulated by specific environmental parameters in some cases. The process of phase separation itself acts as a responsive sensor, influenced by changes in protein concentration, posttranslational modifications, temperature, salts, pH, and oxidative stresses. This environmentally triggered phase separation can, in turn, regulate the functions of recruited biomolecules, providing a rapid response to stressful conditions. As examples, we describe biochemical pathways organized by condensates that are essential for cell physiology and exhibit signaling features. These include proteins that organize and modify the chromosome (Dps, Hu, SSB), regulate the decay, and modification of RNA (RNase E, Hfq, Rho, RNA polymerase), those involved in signal transduction (PopZ, PodJ, and SpmX) and stress response (aggresomes and polyphosphate granules). We also summarize the potential of proteins within pathogens to function as condensates and the potential and challenges in targeting biomolecular condensates for next-generation antimicrobial therapeutics. Together, this review illuminates the emerging significance of biomolecular condensates in microbial signaling, stress responses, and regulation of cell physiology and provides a framework for microbiologists to consider the function of biomolecular condensates in microbial adaptation and response to diverse environmental conditions.


Assuntos
Bactérias , Condensados Biomoleculares , Transdução de Sinais , Estresse Fisiológico , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Bactérias/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas de Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos
15.
Nat Chem Biol ; 20(4): 452-462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191942

RESUMO

Biomolecular condensates are membraneless compartments that impart spatial and temporal organization to cells. Condensates can undergo maturation, transitioning from dynamic liquid-like states into solid-like states associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Huntington's disease. Despite their important roles, many aspects of condensate biology remain incompletely understood, requiring tools for acutely manipulating condensate-relevant processes within cells. Here we used the BCL6 BTB domain and its ligands BI-3802 and BI-3812 to create a chemical genetic platform, BTBolig, allowing inducible condensate formation and dissolution. We also developed optogenetic and chemical methods for controlled induction of condensate maturation, where we surprisingly observed recruitment of chaperones into the condensate core and formation of dynamic biphasic condensates. Our work provides insights into the interaction of condensates with proteostasis pathways and introduces a suite of chemical-genetic approaches to probe the role of biomolecular condensates in health and disease.


Assuntos
Condensados Biomoleculares , Doença de Huntington , Humanos , Doença de Huntington/genética , Optogenética , Proteostase
16.
Chem Rev ; 124(13): 8550-8595, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38885177

RESUMO

Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.


Assuntos
Condensados Biomoleculares , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Proteínas/química , Proteínas/metabolismo , Humanos , Transição de Fase
17.
Bioessays ; 46(3): e2300203, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175843

RESUMO

Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.


Assuntos
Condensados Biomoleculares , RNA , RNA/genética , Ribonucleoproteínas/metabolismo , Autofagia
18.
Nucleic Acids Res ; 52(9): 5301-5319, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381071

RESUMO

Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.


Assuntos
Proteínas de Ligação a DNA , Neurônios Motores , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Homeostase , Neurônios Motores/metabolismo , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
19.
J Cell Sci ; 136(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149872

RESUMO

Liquid-liquid phase separation is a major mechanism for organizing macromolecules, particularly proteins with intrinsically disordered regions, in compartments not limited by a membrane or a scaffold. The cell can therefore be perceived as a complex emulsion containing many of these membraneless organelles, also referred to as biomolecular condensates, together with numerous membrane-bound organelles. It is currently unclear how such a complex concoction operates to allow for intracellular trafficking, signaling and metabolic processes to occur with high spatiotemporal precision. Based on experimental observations of synaptic vesicle condensates - a membraneless organelle that is in fact packed with membranes - we present here the framework of dipping contacts: a novel type of contact site between membraneless organelles and membranes. In this Hypothesis, we propose that our framework of dipping contacts can serve as a foundation to investigate the interface that couples the diffusion and material properties of condensates to biochemical processes occurring in membranes. The identity and regulation of this interface is especially critical in the case of neurodegenerative diseases, where aberrant inclusions of misfolded proteins and damaged organelles underlie cellular pathology.


Assuntos
Condensados Biomoleculares , Organelas , Organelas/metabolismo , Proteínas/metabolismo , Membranas , Membranas Mitocondriais
20.
J Virol ; 98(3): e0015324, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421168

RESUMO

Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE: Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.


Assuntos
Condensados Biomoleculares , Vírus Sincicial Respiratório Humano , Humanos , Animais , Bovinos , Linhagem Celular , Hibridização in Situ Fluorescente , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribossomos/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA