Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.473
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Hippocampus ; 34(7): 342-356, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38780087

RESUMO

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Assuntos
Giro Denteado , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Sacarose , Animais , Masculino , Ratos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memória/fisiologia , Memória/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , RNA Mensageiro/metabolismo , Autoadministração , Sacarose/administração & dosagem
2.
J Neurosci Res ; 102(8): e25371, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39078068

RESUMO

Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.


Assuntos
Carnosina , Lipopolissacarídeos , Lymnaea , Memória de Longo Prazo , Animais , Lymnaea/efeitos dos fármacos , Carnosina/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Lipopolissacarídeos/farmacologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
3.
J Pharmacol Exp Ther ; 390(1): 14-28, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38272671

RESUMO

Abuse of novel arylcyclohexylamines (ACX) poses risks for toxicities, including adverse neurocognitive effects. In vivo effects of ring-substituted analogs of phencyclidine (PCP), eticyclidine (PCE), and ketamine are understudied. Adult male National Institutes of Health Swiss mice were used to assess locomotor effects of PCP and its 3-OH, 3-MeO, 3-Cl, and 4-MeO analogs, PCE and its 3-OH and 3-MeO analogs, and ketamine and its deschloro and 2F-deschloro analogs, in comparison with those of methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), and two benzofuran analogs of MDMA. PCP-like interoceptive effects for all of these ACXs were determined using a food-reinforced drug discrimination procedure in adult male Sprague Dawley rats. A novel operant assay of rule-governed behavior incorporating aspects of attentional set-shifting was used to profile psychosis-like neurocognitive effects of PCP and 3-Cl-PCP in rats, in comparison with cocaine and morphine. PCP-like ACXs were more effective locomotor stimulants than the amphetamines, PCE-like ACXs were as effective as the amphetamines, and ketamine-like ACXs were less effective than the amphetamines. Addition of -Cl, -OH, or -OMe at the 3-position on the aromatic ring did not impact locomotor effectiveness, but addition of -OMe at the 4-position reduced locomotor effectiveness. Lethal effects were induced by drugs with -OH at the 3-position or -OMe at the 3- or 4-position. All novel ACXs substituted at least partially for PCP, and PCP and 3-Cl-PCP elicited dose-dependent psychosis-like neurocognitive deficits in the rule-governed behavior task not observed with cocaine or morphine. Novel ACXs exhibit substantial abuse liability and toxicities not necessarily observed with their parent drugs. SIGNIFICANCE STATEMENT: Novel arylcyclohexylamine analogs of PCP, PCE, and ketamine are appearing on the illicit market, and abuse of these drugs poses risks for toxicities, including adverse neurocognitive effects. These studies demonstrate that the novel ACXs exhibit PCP-like abuse liability in the drug discrimination assay, elicit varied locomotor stimulant and lethal effects in mice, and induce psychosis-like neurocognitive effects in rats.


Assuntos
Fenciclidina , Ratos Sprague-Dawley , Animais , Masculino , Camundongos , Fenciclidina/análogos & derivados , Fenciclidina/toxicidade , Ratos , Psicoses Induzidas por Substâncias/etiologia , Cicloexilaminas , Atividade Motora/efeitos dos fármacos , Cognição/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/toxicidade , Ketamina/análogos & derivados , Ketamina/toxicidade , Transtornos Relacionados ao Uso de Substâncias/psicologia , Abuso de Fenciclidina
4.
Neurobiol Learn Mem ; 213: 107961, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025429

RESUMO

In an animal model of compulsive drug use, a subset of rats continues to self-administer cocaine despite footshock consequences and is considered punishment resistant. We recently found that punishment resistance is associated with habits that persist under conditions that typically encourage a transition to goal-directed control. Given that random ratio (RR) and random interval (RI) schedules of reinforcement influence whether responding is goal-directed or habitual, we investigated the influence of these schedules on punishment resistance for cocaine or food. Male and female Sprague Dawley rats were trained to self-administer either intravenous cocaine or food pellets on a seeking-taking chained schedule of reinforcement, with the seeking lever requiring completion of either an RR20 or RI60 schedule. Rats were then given four days of punishment testing with footshock administered at the completion of seeking on a random one-third of trials. For cocaine-trained rats, the RI60 schedule led to greater punishment resistance (i.e., more trials completed) than the RR20 schedule in males and females. For food-trained rats, the RI60 schedule led to greater punishment resistance (i.e., higher reward rates) than the RR20 schedule in female rats, although male rats showed punishment resistance on both RR20 and RI60 schedules. For both cocaine and food, we found that seeking responses were suppressed to a greater degree than reward rate with the RI60 schedule, whereas response rate and reward rate were equally suppressed with the RR20 schedule. This dissociation between punishment effects on reward rate and response rate with the RI60 schedule can be explained by the nonlinear relation between these variables on RI schedules, but it does not account for the enhanced resistance to punishment. Overall, the results show greater punishment resistance with the RI60 schedule as compared to the RR20 schedule, indicating that schedules of reinforcement are an influencing factor on resistance to negative consequences.


Assuntos
Cocaína , Punição , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Animais , Masculino , Feminino , Cocaína/administração & dosagem , Cocaína/farmacologia , Ratos , Condicionamento Operante/efeitos dos fármacos , Reforço Psicológico , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia
5.
Behav Pharmacol ; 35(7): 378-385, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052019

RESUMO

OBJECTIVES: There has been substantial and growing interest in the therapeutic utility of drugs acting at serotonin 2A subtype (5-HT 2A ) receptors, increasing the need for characterization of potential beneficial and adverse effects of such compounds. Although numerous studies have evaluated the possible rewarding and reinforcing effects of 5-HT 2A receptor agonists, there have been relatively few studies on potential aversive effects. METHODS: The current study investigated punishing effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in four rhesus monkeys responding under a choice procedure in which responding on one lever delivered a sucrose pellet alone and responding on the other lever delivered a sucrose pellet plus an intravenous infusion of a range of doses of fentanyl (0.1-3.2 µg/kg/infusion), histamine (3.2-100 µg/kg/infusion), or DOM (3.2-100 µg/kg/infusion). RESULTS: When fentanyl was available, responding for a pellet plus an infusion increased dose dependently in all subjects, indicating a positive reinforcing effect of fentanyl. When histamine was available, responding for a pellet plus an infusion decreased in three of four subjects, indicating a punishing effect of histamine. Whether available before or after histamine, DOM did not systematically alter choice across the range of doses tested. CONCLUSION: These results suggest that the 5-HT 2A receptor agonist DOM has neither positive reinforcing nor punishing effects under a choice procedure that is sensitive to both processes.


Assuntos
Comportamento de Escolha , 2,5-Dimetoxi-4-Metilanfetamina , Relação Dose-Resposta a Droga , Fentanila , Macaca mulatta , Animais , Fentanila/farmacologia , Masculino , Comportamento de Escolha/efeitos dos fármacos , 2,5-Dimetoxi-4-Metilanfetamina/farmacologia , Histamina/farmacologia , Punição , Condicionamento Operante/efeitos dos fármacos , Reforço Psicológico , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Feminino
6.
Behav Pharmacol ; 35(4): 147-155, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651979

RESUMO

Previous exposure to drugs of abuse produces impairments in studies of reversal learning, delay discounting and response inhibition tasks. While these studies contribute to the understanding of normal decision-making and how it is impaired by drugs of abuse, they do not fully capture how decision-making impacts the ability to delay gratification for greater long-term benefit. To address this issue, we used a diminishing returns task to study decision-making in rats that had previously self-administered cocaine. This task was designed to test the ability of the rat to choose to delay gratification in the short-term to obtain more reward over the course of the entire behavioral session. Rats were presented with two choices. One choice had a fixed amount of time delay needed to obtain reward [i.e. fixed delay (FD)], while the other choice had a progressive delay (PD) that started at 0 s and progressively increased by 1 s each time the PD option was selected. During the 'reset' variation of the task, rats could choose the FD option to reset the time delay associated with the PD option. Consistent with previous results, we found that prior cocaine exposure reduced rats' overall preference for the PD option in post-task reversal testing during 'no-reset' sessions, suggesting that cocaine exposure made rats more sensitive to the increasing delay of the PD option. Surprisingly, however, we found that rats that had self-administered cocaine 1-month prior, adapted behavior during 'reset' sessions by delaying gratification to obtain more reward in the long run similar to control rats.


Assuntos
Cocaína , Desvalorização pelo Atraso , Recompensa , Autoadministração , Animais , Cocaína/farmacologia , Cocaína/administração & dosagem , Masculino , Desvalorização pelo Atraso/efeitos dos fármacos , Ratos , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Tomada de Decisões/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/psicologia , Ratos Long-Evans , Fatores de Tempo
7.
Addict Biol ; 29(5): e13393, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706098

RESUMO

Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational and cognitive processes involved in regulating the pursuit and consumption of food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal disrupted their ability to exert flexible goal-directed control over reward seeking. Specifically, morphine-withdrawn rats were impaired in using current reward value to select actions both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case, rats were only impaired in using reward value to select actions in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.


Assuntos
Objetivos , Morfina , Motivação , Recompensa , Síndrome de Abstinência a Substâncias , Animais , Síndrome de Abstinência a Substâncias/psicologia , Motivação/efeitos dos fármacos , Masculino , Morfina/farmacologia , Ratos , Dependência de Morfina/psicologia , Entorpecentes/farmacologia , Condicionamento Operante/efeitos dos fármacos
8.
Addict Biol ; 29(8): e13428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087789

RESUMO

The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviours that can be modelled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that Kv7/KCNQ channels may contribute to the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drugs is not known. Here, we tested the ability of retigabine (ezogabine), a Kv7 channel opener, to regulate instrumental behaviour in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a conditioned place preference (CPP) assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine pretreatment attenuated the SA of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared with sucrose-SA, cocaine-SA was associated with reductions in the expression of the Kv7.5 subunit in the nucleus accumbens, without alterations in Kv7.2 and Kv7.3. Therefore, these studies reveal a reward-specific reduction in SA behaviour and support the notion that Kv7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.


Assuntos
Carbamatos , Cocaína , Fenilenodiaminas , Ratos Sprague-Dawley , Autoadministração , Sacarose , Animais , Fenilenodiaminas/farmacologia , Fenilenodiaminas/administração & dosagem , Carbamatos/farmacologia , Carbamatos/administração & dosagem , Cocaína/farmacologia , Cocaína/administração & dosagem , Masculino , Ratos , Sacarose/administração & dosagem , Sacarose/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Canais de Potássio KCNQ/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem
9.
Addict Biol ; 29(10): e13442, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39380306

RESUMO

Increased allocation of behaviour to substance abuse at the expense of personal and social rewards is a hallmark of addiction that is reflected in several of DSM-5 criteria for diagnosis of substance use disorder. Previous studies focused on refining the self-administration (SA) model to better emulate an addictive state in laboratory animals. Here, we employed concurrent SA of sucrose pellets and morphine as two competing natural and drug rewards, respectively, to validate the feasibility of capturing pathological behavioural allocation in rats. A custom-made three-lever operant chamber was used. With one active and one inactive lever presented, rats were trained to self-administer morphine (0.5 mg/kg/infusion; 2 h/day) under a fixed-ratio 1 (FR-1) schedule until a stable response was achieved. Next, they were trained to self-administer morphine in the presence of a third lever dispensing sucrose pellets (20 mg) under FR-1. Concurrent morphine-sucrose SA sessions (2 h/day) were continued until stable morphine taking behaviour was re-established. In another experiment, rats first established stable sucrose pellet SA (2 h/day, FR-1) and then were trained to take morphine (0.5 mg/kg/infusion; 2 h/day). Subsequently, all rats underwent extinction training, in which morphine was replaced with saline while sucrose pellets were still available upon lever pressing, followed by cue-induced reinstatement of morphine seeking behaviour. Results showed that rats retained morphine SA when sucrose pellets were also available, but they showed binge-like sucrose intake when morphine was removed during the extinction sessions. However, morphine SA did not develop in rats that had previously established sucrose pellet SA. In conclusion, morphine SA developed even in the presence of a potent competing nondrug reward in rats. Adding an effort-based contingent delivery of a natural reward to the standard SA model, this protocol may provide an improved model of drug addiction in laboratory animals.


Assuntos
Comportamento de Escolha , Condicionamento Operante , Modelos Animais de Doenças , Morfina , Recompensa , Autoadministração , Animais , Masculino , Ratos , Condicionamento Operante/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Sacarose/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides , Comportamento Aditivo , Ratos Sprague-Dawley , Esquema de Reforço , Dependência de Morfina , Entorpecentes , Analgésicos Opioides/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos
10.
Addict Biol ; 29(8): e13429, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109814

RESUMO

The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that negative allosteric modulation of CB1R signalling would reduce the reinforcing properties of morphine and decrease behaviours associated with opioid misuse. By employing intravenous self-administration in mice, we studied the effects of GAT358, a functionally-biased CB1R negative allosteric modulator (NAM), on morphine intake, relapse-like behaviour and motivation to work for morphine infusions. GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under a fixed ratio 1 schedule of reinforcement. GAT358 also decreased morphine-seeking behaviour after forced abstinence. Moreover, GAT358 dose dependently decreased the motivation to obtain morphine infusions under a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration was reward specific. Furthermore, GAT58 did not produce motor ataxia in the rotarod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease misuse of opioids.


Assuntos
Morfina , Receptor CB1 de Canabinoide , Autoadministração , Animais , Morfina/farmacologia , Morfina/administração & dosagem , Receptor CB1 de Canabinoide/efeitos dos fármacos , Camundongos , Regulação Alostérica/efeitos dos fármacos , Masculino , Comportamento de Procura de Droga/efeitos dos fármacos , Recidiva , Reforço Psicológico , Motivação/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Administração Intravenosa , Condicionamento Operante/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
J Integr Neurosci ; 23(4): 83, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682231

RESUMO

BACKGROUND: Much of the existing animal literature on the devaluation task suggests that prior repeated exposure to drugs of abuse during adulthood can impair goal-directed action, but the literature on human drug users is mixed. Also, the initiation of drug use often occurs during adolescence, but examinations of the effects of drug exposure during adolescence on behavior in the devaluation task are lacking. METHODS: We examined whether repeated exposure during adolescence to amphetamine (3 mg/kg injections every-other day from post-natal day 27-45) or ketamine (twice daily 30 mg/kg injections from post-natal day 35-44) would impair behavior in a devaluation test when tested drug-free in adulthood. Rats were trained to press a left lever with a steady cue-light above it for one reinforcer and a right lever with a flashing cue-light above it for a different reinforcer. We tested whether any impairments in goal-directed action could be overcome by compensation between strategies by giving rats information based on lever-location and cue-lights during the test that was either congruent (allowing compensation) or incongruent (preventing compensation between strategies) with the configurations during training. RESULTS: Our results provided no evidence for impairment of goal-directed action during adulthood after adolescent amphetamine or ketamine exposure. CONCLUSIONS: We discuss possible reasons for this discrepancy with the prior literature, including (1) the age of exposure and (2) the pattern in the previous literature that most previous demonstrations of drug exposure impairing devaluation in laboratory animals may be attributed to either drug-associated cues present in the testing environment and/or accelerated habit learning in tasks that predispose laboratory animals towards habit formation with extended training (with training procedures that should resist the formation of habits in the current experiment). However, additional research is needed to examine the effects of these factors, as well a potential role for the particular doses and washout periods to determine the cause of our finding of no devaluation impairment after drug exposure.


Assuntos
Anfetamina , Ketamina , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Anfetamina/farmacologia , Anfetamina/administração & dosagem , Masculino , Ratos , Condicionamento Operante/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Ratos Long-Evans , Comportamento Animal/efeitos dos fármacos , Fatores Etários , Sinais (Psicologia)
12.
J Neurosci ; 41(4): 711-725, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33268547

RESUMO

Elucidation of the mechanism of dopamine signaling to ERK that underlies plasticity in dopamine D1 receptor-expressing neurons leading to acquired cocaine preference is incomplete. NCS-Rapgef2 is a novel cAMP effector, expressed in neuronal and endocrine cells in adult mammals, that is required for D1 dopamine receptor-dependent ERK phosphorylation in mouse brain. In this report, we studied the effects of abrogating NCS-Rapgef2 expression on cAMP-dependent ERK→Egr-1/Zif268 signaling in cultured neuroendocrine cells; in D1 medium spiny neurons of NAc slices; and in either male or female mouse brain in a region-specific manner. NCS-Rapgef2 gene deletion in the NAc in adult mice, using adeno-associated virus-mediated expression of cre recombinase, eliminated cocaine-induced ERK phosphorylation and Egr-1/Zif268 upregulation in D1-medium spiny neurons and cocaine-induced behaviors, including locomotor sensitization and conditioned place preference. Abrogation of NCS-Rapgef2 gene expression in mPFC and BLA, by crossing mice bearing a floxed Rapgef2 allele with a cre mouse line driven by calcium/calmodulin-dependent kinase IIα promoter also eliminated cocaine-induced phospho-ERK activation and Egr-1/Zif268 induction, but without effect on the cocaine-induced behaviors. Our results indicate that NCS-Rapgef2 signaling to ERK in dopamine D1 receptor-expressing neurons in the NAc, but not in corticolimbic areas, contributes to cocaine-induced locomotor sensitization and conditioned place preference. Ablation of cocaine-dependent ERK activation by elimination of NCS-Rapgef2 occurred with no effect on phosphorylation of CREB in D1 dopaminoceptive neurons of NAc. This study reveals a new cAMP-dependent signaling pathway for cocaine-induced behavioral adaptations, mediated through NCS-Rapgef2/phospho-ERK activation, independently of PKA/CREB signaling.SIGNIFICANCE STATEMENT ERK phosphorylation in dopamine D1 receptor-expressing neurons exerts a pivotal role in psychostimulant-induced neuronal gene regulation and behavioral adaptation, including locomotor sensitization and drug preference in rodents. In this study, we examined the role of dopamine signaling through the D1 receptor via a novel pathway initiated through the cAMP-activated guanine nucleotide exchange factor NCS-Rapgef2 in mice. NCS-Rapgef2 in the NAc is required for activation of ERK and Egr-1/Zif268 in D1 dopaminoceptive neurons after acute cocaine administration, and subsequent enhanced locomotor response and drug seeking behavior after repeated cocaine administration. This novel component in dopamine signaling provides a potential new target for intervention in psychostimulant-shaped behaviors, and new understanding of how D1-medium spiny neurons encode the experience of psychomotor stimulant exposure.


Assuntos
Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , AMP Cíclico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos , Feminino , Fatores de Troca do Nucleotídeo Guanina/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Estriado Ventral/efeitos dos fármacos
13.
J Neurosci ; 41(7): 1566-1581, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33372063

RESUMO

Corticosteroids (CORT) have been widely used in anti-inflammatory medication. Chronic CORT treatment can cause mesocorticolimbic system dysfunctions, which are known to play a key role for the development of psychiatric disorders. The VTA is a critical site in the mesocorticolimbic pathway and is responsible for motivation and reward-seeking behaviors. However, the mechanism by which chronic CORT alters VTA dopamine neuronal activity is largely unknown. We treated periadolescent male mice with vehicle, 1 d, or 7 d CORT in the drinking water, examined behavioral impacts with light/dark box, elevated plus maze, operant chamber, and open field tests, measured the effects of CORT on VTA dopamine neuronal activity using patch-clamp electrophysiology and dopamine concentration using fast-scan cyclic voltammetry, and tested the effects of dopamine D2 receptor (D2R) blockade by intra-VTA infusion of a D2R antagonist. CORT treatment induced anxiety-like behavior as well as decreased food-seeking behaviors. We show that chronic CORT treatment decreased excitability and excitatory synaptic transmission onto VTA dopamine neurons. Furthermore, chronic CORT increased somatodendritic dopamine concentration. The D2R antagonist sulpiride restored decreased excitatory transmission and excitability of VTA dopamine neurons. Furthermore, sulpiride decreased anxiety-like behavior and rescued food-seeking behavior in mice with chronic CORT exposure. Together, 7 d CORT treatment induces anxiety-like behavior and impairs food-seeking in a mildly aversive environment. D2R signaling in the VTA might be a potential target to ameliorate chronic CORT-induced anxiety and reward-seeking deficits.SIGNIFICANCE STATEMENT With widespread anti-inflammatory effects throughout the body, corticosteroids (CORT) have been used in a variety of therapeutic conditions. However, long-term CORT treatment causes cognitive impairments and neuropsychiatric disorders. The impact of chronic CORT on the mesolimbic system has not been elucidated. Here, we demonstrate that 7 d CORT treatment increases anxiety-like behavior and attenuates food-seeking behavior in a mildly aversive environment. By elevating local dopamine concentration in the VTA, a region important for driving motivated behavior, CORT treatment suppresses excitability and synaptic transmission onto VTA dopamine neurons. Intriguingly, blockade of D2 receptor signaling in the VTA restores neuronal excitability and food-seeking and alleviates anxiety-like behaviors. Our findings provide a potential therapeutic target for CORT-induced reward deficits.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/psicologia , Corticosterona/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Recompensa , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motivação/efeitos dos fármacos , Técnicas de Patch-Clamp , Sulpirida/farmacologia , Área Tegmentar Ventral/citologia
14.
Cereb Cortex ; 31(4): 1927-1952, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33253368

RESUMO

The hippocampus plays a key role in contextual conditioning and has been proposed as an important component of the cocaine addiction brain circuit. To gain knowledge about cocaine-induced alterations in this circuit, we used focused ion beam milling/scanning electron microscopy to reveal and quantify the three-dimensional synaptic organization of the neuropil of the stratum radiatum of the rat CA1, under normal circumstances and after cocaine-self administration (SA). Most synapses are asymmetric (excitatory), macular-shaped, and in contact with dendritic spine heads. After cocaine-SA, the size and the complexity of the shape of both asymmetric and symmetric (inhibitory) synapses increased but no changes were observed in the synaptic density. This work constitutes the first detailed report on the 3D synaptic organization in the stratum radiatum of the CA1 field of cocaine-SA rats. Our data contribute to the elucidation of the normal and altered synaptic organization of the hippocampus, which is crucial for better understanding the neurobiological mechanisms underlying cocaine addiction.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/ultraestrutura , Cocaína/administração & dosagem , Imageamento Tridimensional/métodos , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Animais , Região CA1 Hipocampal/patologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Masculino , Microscopia Eletrônica de Varredura/métodos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Endogâmicos Lew , Autoadministração/métodos , Sinapses/patologia
15.
Addict Biol ; 27(1): e13078, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363290

RESUMO

Familial transmission of alcohol use disorder reflects genetic and environmental factors. Paternal alcohol exposure may affect rodent offspring via epigenetic modifications transmitted through the male germ line. While such exposure alters alcohol sensitivity in mouse offspring, no studies examined if it impacts the development of operant alcohol self-administration in rats. We exposed male (sires) Wistar rats to chronic intermittent ethanol in vapour chambers (16 h/day; 5 days/week) or to air for 6 weeks. Eight weeks later, rats were mated with alcohol-naive females. Adult alcohol- and control-sired F1 offspring were assessed in acquisition of alcohol self-administration in which increasing alcohol concentrations (2.5%, 5% and 10%, v/v) were delivered after one lever press (fixed ratio 1 or FR1). Prior to alcohol sessions, rats were trained to lever press for food delivery under an FR1 schedule of reinforcement. DNA methylation levels of the brain derived neurotrophic factor (Bdnf) gene were measured in sperm, nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) in sires and in offspring. Alcohol-exposed sires had lower Bdnf DNA methylation levels in NAc and greater methylation levels in mPFC. Although this pattern was not recapitulated in offspring, alcohol-sired offspring of both sexes did show aberrant Bdnf DNA methylation patterns compared to control-sired offspring. Alcohol-sired offspring self-administered less alcohol (5% and 10%) with no group differences in food responding. Results indicate that paternal alcohol exposure prior to conception protects against alcohol's initial reinforcing effects but the pattern of dysregulated Bdnf methylation in reward-related circuitry did not mimic changes seen in sires.


Assuntos
Alcoolismo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metilação de DNA , Etanol/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Epigênese Genética , Feminino , Masculino , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Reforço Psicológico , Autoadministração
16.
Pharmacol Rev ; 71(2): 225-266, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898855

RESUMO

All preclinical procedures for analgesic drug discovery involve two components: 1) a "pain stimulus" (the principal independent variable), which is delivered to an experimental subject with the intention of producing a pain state; and 2) a "pain behavior" (the principal dependent variable), which is measured as evidence of that pain state. Candidate analgesics are then evaluated for their effectiveness to reduce the pain behavior, and results are used to prioritize drugs for advancement to clinical testing. This review describes a taxonomy of preclinical procedures organized into an "antinociception matrix" by reference to their types of pain stimulus (noxious, inflammatory, neuropathic, disease related) and pain behavior (unconditioned, classically conditioned, operant conditioned). Particular emphasis is devoted to pain behaviors and the behavioral principals that govern their expression, pharmacological modulation, and preclinical-to-clinical translation. Strengths and weaknesses are compared and contrasted for procedures using each type of behavioral outcome measure, and the following four recommendations are offered to promote strategic use of these procedures for preclinical-to-clinical analgesic drug testing. First, attend to the degree of homology between preclinical and clinical outcome measures, and use preclinical procedures with behavioral outcome measures homologous to clinically relevant outcomes in humans. Second, use combinations of preclinical procedures with complementary strengths and weaknesses to optimize both sensitivity and selectivity of preclinical testing. Third, take advantage of failed clinical translation to identify drugs that can be back-translated preclinically as active negative controls. Finally, increase precision of procedure labels by indicating both the pain stimulus and the pain behavior in naming preclinical procedures.


Assuntos
Analgésicos/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Dor/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
17.
J Neurosci ; 40(4): 880-893, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31818977

RESUMO

The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScope in situ hybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1 and VPPV neurons in relapse. We show that VPGad1 neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1 neurons. This convergence of striatopallidal inputs at the level of individual LHGad1 neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPV neurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1 neurons control relapse during renewal via projections to LH. VPPV neurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENT Relapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.


Assuntos
Prosencéfalo Basal/fisiologia , Comportamento de Procura de Droga/fisiologia , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Etanol/administração & dosagem , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Recidiva , Recompensa
18.
J Neurosci ; 40(4): 825-842, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31801810

RESUMO

The extracellular glycan polysialic acid linked to neural cell adhesion molecule (PSA-NCAM) is principally expressed in the developing brain and the adult neurogenic regions. Although colocalization of PSA-NCAM with cholecystokinin (CCK) was found in the adult brain, the role of PSA-NCAM remains unclear. In this study, we aimed to elucidate the functional significance of PSA-NCAM in the CA1 region of the male mouse hippocampus. Combined fluorescence in situ hybridization and immunohistochemistry showed that few vesicular glutamate transporter 3-negative/CCK-positive (VGluT3-/CCK+) cells were colocalized with PSA-NCAM, but most of the VGluT3+/CCK+ cells were colocalized with PSA-NCAM. The somata of PSA-NCAM+/CCK+ cells were highly innervated by serotonergic boutons than those of PSA-NCAM-/CCK+ cells. The expression ratios of 5-HT3A receptors and p11, a serotonin receptor-interacting protein, were higher in PSA-NCAM+/CCK+ cells than in PSA-NCAM-/CCK+ cells. Pharmacological digestion of PSA-NCAM impaired the efficacy of antidepressant fluoxetine (FLX), a selective serotonin reuptake inhibitor, but not the efficacy of benzodiazepine anxiolytic diazepam. A Western blot showed that restraint stress decreased the expressions of p11 and mature brain-derived neurotrophic factor (BDNF), and FLX increased them. Interestingly, the FLX-induced elevation of expression of p11, but not mature BDNF, was impaired by the digestion of PSA-NCAM. Quantitative reverse transcription-polymerase chain reaction showed that restraint stress reduced the expression of polysialyltransferase ST8Sia IV and FLX elevated it. Collectively, PSA-NCAM colocalized with VGluT3+/CCK+ cells in the CA1 region of the hippocampus may play a unique role in the regulation of antidepressant efficacy via the serotonergic pathway.SIGNIFICANCE STATEMENT Polysialic acid (PSA) is composed of eight or more α2,8-linked sialic acids. Here, we examined the functional significance of polysialic acid linked to the neural cell adhesion molecule (PSA-NCAM) in the adult mouse hippocampus. Few vesicular glutamate transporter 3-negative/cholecystokinin-positive (VGluT3-/CCK+) cells were colocalized with PSA-NCAM, but most of the VGluT3+/CCK+ cells were colocalized with PSA-NCAM. The expression ratios of 5-HT3A receptors and p11, a serotonin receptor-interacting protein, were higher in PSA-NCAM+/CCK+ cells than in PSA-NCAM-/CCK+ cells. The efficacy of antidepressants, but not anxiolytics, was impaired by the digestion of PSA-NCAM. The antidepressant-induced increase in p11 expression was inhibited following PSA-NCAM digestion. We hence hypothesize that PSA-NCAM colocalized with VGluT3+/CCK+ cells may play a unique role in regulating antidepressant efficacy.


Assuntos
Antidepressivos/farmacologia , Colecistocinina/metabolismo , Depressão/metabolismo , Hipocampo/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
19.
J Neurosci ; 40(17): 3465-3477, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32184221

RESUMO

Nicotine addiction, through smoking, is the principal cause of preventable mortality worldwide. Human genome-wide association studies have linked polymorphisms in the CHRNA5-CHRNA3-CHRNB4 gene cluster, coding for the α5, α3, and ß4 nicotinic acetylcholine receptor (nAChR) subunits, to nicotine addiction. ß4*nAChRs have been implicated in nicotine withdrawal, aversion, and reinforcement. Here we show that ß4*nAChRs also are involved in non-nicotine-mediated responses that may predispose to addiction-related behaviors. ß4 knock-out (KO) male mice show increased novelty-induced locomotor activity, lower baseline anxiety, and motivational deficits in operant conditioning for palatable food rewards and in reward-based Go/No-go tasks. To further explore reward deficits we used intracranial self-administration (ICSA) by directly injecting nicotine into the ventral tegmental area (VTA) in mice. We found that, at low nicotine doses, ß4KO self-administer less than wild-type (WT) mice. Conversely, at high nicotine doses, this was reversed and ß4KO self-administered more than WT mice, whereas ß4-overexpressing mice avoided nicotine injections. Viral expression of ß4 subunits in medial habenula (MHb), interpeduncular nucleus (IPN), and VTA of ß4KO mice revealed dose- and region-dependent differences: ß4*nAChRs in the VTA potentiated nicotine-mediated rewarding effects at all doses, whereas ß4*nAChRs in the MHb-IPN pathway, limited VTA-ICSA at high nicotine doses. Together, our findings indicate that the lack of functional ß4*nAChRs result in deficits in reward sensitivity including increased ICSA at high doses of nicotine that is restored by re-expression of ß4*nAChRs in the MHb-IPN. These data indicate that ß4 is a critical modulator of reward-related behaviors.SIGNIFICANCE STATEMENT Human genetic studies have provided strong evidence for a relationship between variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster and nicotine addiction. Yet, little is known about the role of ß4 nicotinic acetylcholine receptor (nAChR) subunit encoded by this cluster. We investigated the implication of ß4*nAChRs in anxiety-, food reward- and nicotine reward-related behaviors. Deletion of the ß4 subunit gene resulted in an addiction-related phenotype characterized by low anxiety, high novelty-induced response, lack of sensitivity to palatable food rewards and increased intracranial nicotine self-administration at high doses. Lentiviral vector-induced re-expression of the ß4 subunit into either the MHb or IPN restored a "stop" signal on nicotine self-administration. These results suggest that ß4*nAChRs provide a promising novel drug target for smoking cessation.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Nicotina/administração & dosagem , Receptores Nicotínicos/metabolismo , Recompensa , Autocontrole , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Motivação/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Agonistas Nicotínicos/administração & dosagem , Receptores Nicotínicos/genética , Autoadministração
20.
J Neurosci ; 40(33): 6379-6388, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32493711

RESUMO

The perception of time is critical to adaptive behavior. While prefrontal cortex and basal ganglia have been implicated in interval timing in the seconds to minutes range, little is known about the role of the mediodorsal thalamus (MD), which is a key component of the limbic cortico-basal ganglia-thalamocortical loop. In this study, we tested the role of the MD in timing, using an operant temporal production task in male mice. In this task, that the expected timing of available rewards is indicated by lever pressing. Inactivation of the MD with muscimol produced rightward shifts in peak pressing on probe trials as well as increases in peak spread, thus significantly altering both temporal accuracy and precision. Optogenetic inhibition of glutamatergic projection neurons in the MD also resulted in similar changes in timing. The observed effects were found to be independent of significant changes in movement. Our findings suggest that the MD is a critical component of the neural circuit for interval timing, without playing a direct role in regulating ongoing performance.SIGNIFICANCE STATEMENT The mediodorsal nucleus (MD) of the thalamus is strongly connected with the prefrontal cortex and basal ganglia, areas which have been implicated in interval timing. Previous work has shown that the MD contributes to working memory and learning of action-outcome contingencies, but its role in behavioral timing is poorly understood. Using an operant temporal production task, we showed that inactivation of the MD significantly impaired timing behavior.


Assuntos
Condicionamento Operante/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tempo/fisiologia , Animais , Condicionamento Operante/efeitos dos fármacos , Agonistas de Receptores de GABA-A/administração & dosagem , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Muscimol/administração & dosagem , Optogenética , Desempenho Psicomotor/efeitos dos fármacos , Recompensa , Percepção do Tempo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA