Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Hum Genomics ; 18(1): 59, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844983

RESUMO

BACKGROUND: Hereditary hearing loss is a rare hereditary condition that has a significant presence in consanguineous populations. Despite its prevalence, hearing loss is marked by substantial genetic diversity, which poses challenges for diagnosis and screening, particularly in cases with no clear family history or when the impact of the genetic variant requires functional analysis, such as in the case of missense mutations and UTR variants. The advent of next-generation sequencing (NGS) has transformed the identification of genes and variants linked to various conditions, including hearing loss. However, there remains a high proportion of undiagnosed patients, attributable to various factors, including limitations in sequencing coverage and gaps in our knowledge of the entire genome, among other factors. In this study, our objective was to comprehensively identify the spectrum of genes and variants associated with hearing loss in a cohort of 106 affected individuals from the UAE. RESULTS: In this study, we investigated 106 sporadic cases of hearing impairment and performed genetic analyses to identify causative mutations. Screening of the GJB2 gene in these cases revealed its involvement in 24 affected individuals, with specific mutations identified. For individuals without GJB2 mutations, whole exome sequencing (WES) was conducted. WES revealed 33 genetic variants, including 6 homozygous and 27 heterozygous DNA changes, two of which were previously implicated in hearing loss, while 25 variants were novel. We also observed multiple potential pathogenic heterozygous variants across different genes in some cases. Notably, a significant proportion of cases remained without potential pathogenic variants. CONCLUSIONS: Our findings confirm the complex genetic landscape of hearing loss and the limitations of WES in achieving a 100% diagnostic rate, especially in conditions characterized by genetic heterogeneity. These results contribute to our understanding of the genetic basis of hearing loss and emphasize the need for further research and comprehensive genetic analyses to elucidate the underlying causes of this condition.


Assuntos
Conexina 26 , Sequenciamento do Exoma , Perda Auditiva , Humanos , Masculino , Feminino , Perda Auditiva/genética , Perda Auditiva/epidemiologia , Conexina 26/genética , Adulto , Emirados Árabes Unidos/epidemiologia , Criança , Mutação/genética , Adolescente , Sequenciamento de Nucleotídeos em Larga Escala , Testes Genéticos , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Conexinas/genética , Predisposição Genética para Doença , Heterozigoto , Homozigoto
2.
J Med Genet ; 61(8): 783-787, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38719349

RESUMO

BACKGROUND: We aimed to analyse the efficacy and added value of a targeted Israeli expanded carrier screening panel (IL-ECSP), beyond the first-tier test covered by the Israeli Ministry of Health (IMOH) and the second-tier covered by the Health Maintenance Organisations (HMOs). METHODS: A curated variant-based IL-ECSP, tailored to the uniquely diverse Israeli population, was offered at two tertiary hospitals and a major genetics laboratory. The panel includes 1487 variants in 357 autosomal recessive and X-linked genes. RESULTS: We analysed 10 115 Israeli samples during an 18-month period. Of these, 6036 (59.7%) were tested as couples and 4079 (40.3%) were singles. Carriers were most frequently identified with mutations in the following genes: GJB2/GJB6 (1:22 allele frequency), CFTR (1:28), GBA (1:34), TYR (1:39), PAH (1:50), SMN1 (1:52) and HEXA (1:56). Of 3018 couples tested, 753 (25%) had no findings, in 1464 (48.5%) only one partner was a carrier, and in 733 (24.3%) both were carriers of different diseases. We identified 79 (2.6%) at-risk couples, where both partners are carriers of the same autosomal recessive condition, or the female carries an X-linked disease. Importantly, 48.1% of these would not have been detected by ethnically-based screening tests currently provided by the IMOH and HMOs, for example, variants in GBA, TYR, PAH and GJB2/GJB6. CONCLUSION: This is the largest cohort of targeted ECSP testing, tailored to the diverse Israeli population. The IL-ECSP expands the identification of couples at risk and empowers their reproductive choices. We recommend endorsing an expanded targeted panel to the National Genetic Carrier Screening programme.


Assuntos
Conexina 26 , Testes Genéticos , Humanos , Israel/epidemiologia , Feminino , Testes Genéticos/métodos , Masculino , Conexina 26/genética , Conexinas/genética , Triagem de Portadores Genéticos/métodos , Mutação , Cuidado Pré-Concepcional/métodos , Frequência do Gene , Aconselhamento Genético , Heterozigoto , Genes Recessivos , Adulto
3.
BMC Genomics ; 25(1): 359, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605287

RESUMO

Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.


Assuntos
Conexina 30 , Perda Auditiva , Animais , Camundongos , Conexina 26/genética , Conexina 30/genética , Modelos Animais de Doenças , Perda Auditiva/genética , Mutação , Fenótipo
4.
Mol Biol Rep ; 51(1): 662, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767670

RESUMO

BACKGROUND: Hearing loss (HL) is a common sensory impairment worldwide, with genetic and environmental factors contributing to its occurrence. Next Generation Sequencing (NGS) plays a crucial role in identifying the genetic factors involved in this heterogeneous disorder. METHODS AND RESULTS: In this study, a total of 9 unrelated Iranian families, each having at least one affected individual who tested negative for mutations in GJB2, underwent screening using whole exome sequencing (WES). The pathogenicity and novelty of the identified variant was checked using various databases. Co-segregation study was also performed to confirm the presence of the candidate variants in parents. Plus, The pathogenicity of the detected variant was assessed through in silico analysis using a number of mutation prediction software tools. Among the 9 investigated families, hearing loss-causing genes were identified in 6 families. the mutations were observed in USH2A, CLRN1, BSND, SLC26A4, and MITF, with two of the identified mutations being novel. CONCLUSION: Discovering additional variants and broadening the range of mutations associated with hearing impairment has the potential to enhance the diagnostic effectiveness of molecular testing in patient screening, and can also lead to improved counseling aimed at reducing the risk of affected offspring for high-risk couples.


Assuntos
Conexina 26 , Sequenciamento do Exoma , Perda Auditiva , Mutação , Linhagem , Humanos , Irã (Geográfico) , Sequenciamento do Exoma/métodos , Masculino , Feminino , Perda Auditiva/genética , Mutação/genética , Conexina 26/genética , Predisposição Genética para Doença , Adulto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transportadores de Sulfato/genética , Conexinas/genética , Fator de Transcrição Associado à Microftalmia/genética , Criança , Variação Genética/genética , Proteínas da Matriz Extracelular/genética
5.
Audiol Neurootol ; 29(3): 216-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38253033

RESUMO

INTRODUCTION: Despite the high genetic heterogeneity of hearing loss, mutations in the GJB2 gene are a major cause of autosomal recessive nonsyndromic hearing loss (NSHL) worldwide. However, the mutation profile of GJB2 in NSHL is under-investigated in Morocco, especially among simplex cases. This study aimed to identify the spectrum and frequency of GJB2 mutations in the Moroccan population among simplex and multiplex families with NSHL. METHODS: Moroccan families with NSHL were selected according to well-defined criteria. Selected families were screened for GJB2 gene variants using direct sequencing of the entire coding region of GJB2. RESULTS: A total of 145 affected individuals from 115 families with NSHL were included in this study (49 simplex, 66 multiplex). Mutations in the GJB2 gene were noted in 28.69% of the families (33/115), of which 75.75% were multiplex families and 24.24% were simplex. In total, seven different mutations were detected: c.35delG(p.G12fs), c.551G>A(p.R184Q), c.139G>T(p.E47X), c.109G>A(p.V37I), c.167delT(p.L56fs), c.617A>G(p.N206S), c.94C>T(p.R32C). The last three mutations have not previously been reported in Morocco. The most common GJB2 mutation was c.35delG (21.73%), followed by p.V37I (2.60%) and p.E47X (1.73%). CONCLUSIONS: Our study confirms a high prevalence of GJB2 variants in the Moroccan population, particularly the c.35delG mutation. Additionally, we have identified previously unreported or rarely reported mutations, revealing a greater diversity of GJB2 mutations. These findings emphasize the importance of comprehensive screening beyond the 35delG mutation for patients with NSHL, regardless of their family history. Integrating this approach into clinical care will enhance diagnosis and management of hearing loss in the Moroccan population.


Assuntos
Conexina 26 , Conexinas , Mutação , Humanos , Marrocos , Conexina 26/genética , Conexinas/genética , Feminino , Masculino , Surdez/genética , Criança , Adulto , Adolescente , Pré-Escolar , Adulto Jovem , Linhagem
6.
Prenat Diagn ; 44(9): 1043-1052, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38488843

RESUMO

OBJECTIVE: This study aimed to develop and validate a prenatal cell-free DNA (cfDNA) screening method that uses capture-based enrichment to genotype fetal autosomal recessive disorders. This method was applied in pregnancies at high risk of autosomal recessive non-syndromic hearing loss (ARNSHL) to assess its accuracy and effectiveness. METHODS: This assay measured the allele counts in both white blood cell DNA and cfDNA from the blood samples of pregnant women using a capture-based next-generation sequencing method. It then applied a binomial model to infer the fetal genotypes with the maximum likelihood. Ninety-four pregnant couples that were carriers of variants of ARNSHL in GJB2 or SLC26A4 were enrolled. The fetal genotypes deduced using this screening method were compared with the results of genetic diagnosis using amniocentesis. RESULTS: Of the 94 couples, 65 carried more than one variant, resulting in 170 single-nucleotide polymorphism (SNP) loci to be inferred in the fetuses. Of the 170 fetal SNP genotypes, 150 (88.2%) had high confidence calls and 139 (92.7%) of these matched the genotypes obtained by amniocentesis result. Out of the remaining 20 (11.8%) cases with low-confidence calls, only 14 (70.0%) were concordant with genetic diagnosis using amniocentesis. The concordance rate was 100% for sites where the maternal genotype was wild-type homozygous. The discordance was site-biased, with each locus showing a consistent direction of discordance. Genetic diagnosis identified a total of 19 wild-type homozygotes, 46 heterozygotes, 19 compound heterozygotes, and 10 pathogenic homozygotes. This screening method correctly genotyped 81.9% (77/94) of fetuses and demonstrated a sensitivity of 89.7% and a specificity of 89.2% for correctly identifying ARNSHL. CONCLUSION: This capture-based method of prenatal screening by cfDNA demonstrated strong potential for fetal genotyping of autosomal recessive disorders.


Assuntos
Ácidos Nucleicos Livres , Humanos , Feminino , Gravidez , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/análise , Ácidos Nucleicos Livres/genética , Adulto , Genes Recessivos , Teste Pré-Natal não Invasivo/métodos , Polimorfismo de Nucleotídeo Único , Genótipo , Conexina 26/genética , Diagnóstico Pré-Natal/métodos , Masculino , Perda Auditiva/diagnóstico , Perda Auditiva/genética
7.
Cell Mol Life Sci ; 80(6): 148, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37178259

RESUMO

Mutations in GJB2 (Gap junction protein beta 2) are the most common genetic cause of non-syndromic hereditary deafness in humans, especially the 35delG and 235delC mutations. Owing to the homozygous lethality of Gjb2 mutations in mice, there are currently no perfect mouse models carrying Gjb2 mutations derived from patients for mimicking human hereditary deafness and for unveiling the pathogenesis of the disease. Here, we successfully constructed heterozygous Gjb2+/35delG and Gjb2+/235delC mutant mice through advanced androgenic haploid embryonic stem cell (AG-haESC)-mediated semi-cloning technology, and these mice showed normal hearing at postnatal day (P) 28. A homozygous mutant mouse model, Gjb235delG/35delG, was then generated using enhanced tetraploid embryo complementation, demonstrating that GJB2 plays an indispensable role in mouse placenta development. These mice exhibited profound hearing loss similar to human patients at P14, i.e., soon after the onset of hearing. Mechanistic analyses showed that Gjb2 35delG disrupts the function and formation of intercellular gap junction channels of the cochlea rather than affecting the survival and function of hair cells. Collectively, our study provides ideal mouse models for understanding the pathogenic mechanism of DFNB1A-related hereditary deafness and opens up a new avenue for investigating the treatment of this disease.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Camundongos , Animais , Conexinas/genética , Conexina 26/genética , Surdez/genética , Perda Auditiva Neurossensorial/genética , Mutação , Audição
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 945-951, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38733163

RESUMO

Hearing loss constitutes one of the most prevalent conditions within the field of otolaryngology. Recent investigations have revealed that mutations in deafness-associated genes, including point mutations and variations in DNA sequences, can cause hearing impairments. With the ethology of deafness remaining unclear for a substantial portion of the affected population, further screenings for pathogenic mutations are imperative to unveil the underlying mechanisms. On this study, by using next-generation sequencing, we examine 129 commonly implicated deafness-related genes in a Chinese family with hearing loss, revealing a novel heterozygous dominant mutation in the GJB2 gene (GJB2: c.65T>G: p. Lys22Thr). This mutation consistently occurs in affected family members but is not detected in unaffected individuals, strongly suggesting its causative role in hearing loss. Structural analysis indicates potential disruption to the Cx26 gap junction channel's hydrogen bond and electrostatic interactions, aligning with predictions from the PolyPhen and SIFT algorithms. In conclusion, our study provides conclusive evidence that the identified heterozygous GJB2 mutation (GJB2: c.65T>G: p. Lys22Thr), specifically the K22T alteration, is the primary determinant of the family's deafness. This contribution enhances our understanding of the interplay between common deafness-associated genes and hearing loss, offering valuable insights for diagnostic guidance and the formulation of therapeutic strategies for this condition.


Assuntos
Conexina 26 , Perda Auditiva , Adulto , Feminino , Humanos , Masculino , China , Conexina 26/genética , População do Leste Asiático/genética , Genes Dominantes , Perda Auditiva/genética , Heterozigoto , Mutação , Linhagem
9.
Croat Med J ; 65(3): 198-208, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868966

RESUMO

AIM: To determine the spectrum and frequency of disease-causing variants in patients with non-syndromic hearing loss (NSHL) and to investigate the diagnostic yield of the applied genetic methods. METHODS: The study enrolled 306 unrelated patients with childhood-onset, mild-to-profound NSHL referred to Children's Hospital Zagreb for genetic testing between March 2006 and October 2023. The GJB2 variants were analyzed with the multiplex ligation-dependent probe amplification method and Sanger sequencing of the coding region of the GJB2 gene. In 21 patients negative for GJB2 biallelic variants, clinical exome sequencing (CES) was performed. RESULTS: Among 234 disease-associated GJB2 alleles detected, 19 were clinically relevant, of which 18 were reported as pathogenic/likely pathogenic. The c.35delG variant accounted for 73.5% of the mutated alleles. More than half of the patients with biallelic GJB2 variants (64/110, 58.2%) were 35delG homozygotes. Seventeen non-GJB2 variants were found in 10 genes (TECTA, NOG, SLC26A4, PCDH15, TMPRSS3, USH2A, GATA3, MYO15A, SOX10, COL2A1) in 11 participants, and 5 variants (in TECTA, NOG, PCDH15, and SOX10) were novel (29.4%). CONCLUSION: We were able to elucidate the genetic cause of hearing loss in 121 patients, with an overall diagnostic rate of 39.5%. The c.35delG was the most common variant. CES allowed us to diagnose almost half of the patients with HL; to distinguish NSHL from the syndromic form of HL in cases where the phenotype was unclear or where symptoms were absent from an early age; and to discover novel variants.


Assuntos
Conexina 26 , Humanos , Croácia , Criança , Conexina 26/genética , Feminino , Masculino , Pré-Escolar , Adolescente , Lactente , Testes Genéticos , Variação Genética/genética , Conexinas/genética , Mutação , Sequenciamento do Exoma , Perda Auditiva/genética , Alelos , Adulto Jovem , Surdez/genética
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 551-555, 2024 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-38684299

RESUMO

OBJECTIVE: To analyze the types and distribution of pathogenic variants for neonatal genetic diseases in Huzhou, Zhejiang Province. METHODS: One thousand neonates (48 ~ 42 h after birth) born to Huzhou region were selected as the study subjects. Dry blood spot samples were collected from the newborns, and targeted capture high-throughput sequencing was carried out for pathogenic genes underlying 542 inherited diseases. Candidate variants were verified by Sanger sequencing. RESULTS: Among the 1 000 newborns, the male to female ratio was 1.02 : 1.00. No pathogenic variants were detected in 253 cases, whilst 747 cases were found to carry at least one pathogenic variant, which yielded a carrier rate of 74.7%. The most frequently involved pathogenic gene was FLG, followed by GJB2, UGT1A1, USH2A and DUOX2. The variants were classified as homozygous, compound heterozygous, and hemizygous variants. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), 213 neonates were verified to have carried pathogenic and/or likely pathogenic variants, with a positive rate of 21.3%. The most commonly involved genes had included UGT1A1, FLG, GJB2, MEFV and G6PD. CONCLUSION: Newborn screening based on high-throughput sequencing technology can expand the scope of screening and improve the positive predictive value. Genetic counseling based on the results can improve the patients' medical care and reduce neonatal mortality and childhood morbidity, while provide assistance to family members' health management and reproductive decisions.


Assuntos
Conexina 26 , Proteínas Filagrinas , Testes Genéticos , Humanos , Recém-Nascido , Feminino , Masculino , Conexina 26/genética , Testes Genéticos/métodos , China , Sequenciamento de Nucleotídeos em Larga Escala , Conexinas/genética , Triagem Neonatal/métodos , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/diagnóstico , Glucuronosiltransferase/genética , Mutação
11.
Hum Mol Genet ; 30(15): 1429-1442, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33997905

RESUMO

There are >120 forms of non-syndromic deafness associated with identified genetic loci. In particular, mutation of the gap junction beta 2 gene (GJB2), which encodes connexin (CX)26 protein, is the most frequent cause of hereditary deafness worldwide. We previously described an induction method to develop functional CX26 gap junction-forming cells from mouse-induced pluripotent stem cells (iPSCs) and generated in vitro models for GJB2-related deafness. However, functional CX26 gap junction-forming cells derived from human iPSCs or embryonic stem cells (ESCs) have not yet been reported. In this study, we generated human iPSC-derived functional CX26 gap junction-forming cells (iCX26GJCs), which have the characteristics of cochlear supporting cells. These iCX26GJCs had gap junction plaque-like formations at cell-cell borders and co-expressed several markers that are expressed in cochlear supporting cells. Furthermore, we generated iCX26GJCs derived from iPSCs from two patients with the most common GJB2 mutation in Asia, and these cells reproduced the pathology of GJB2-related deafness. These in vitro models may be useful for establishing optimal therapies and drug screening for various mutations in GJB2-related deafness.


Assuntos
Conexina 26/metabolismo , Surdez/genética , Junções Comunicantes/genética , Cóclea/metabolismo , Conexina 26/genética , Conexinas/genética , Surdez/metabolismo , Perda Auditiva Neurossensorial/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação
12.
Hum Genet ; 142(1): 33-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36048236

RESUMO

Genetic variants in GJB2 are the most frequent cause of congenital and childhood hearing loss worldwide. The purpose of this study was to delineate the genetic and phenotypic landscape of GJB2 SNV variants. All possible single-nucleotide substitution variants of the coding region of GJB2 (N = 2043) were manually curated following the ACMG/AMP hearing loss guidelines. As a result, 60 (2.9%), 177 (8.7%), 1499 (73.4%), 301 (14.7%) and 6 (0.3%) of the variants were classified as pathogenic, likely pathogenic, variant of uncertain significance, likely benign, and benign, respectively. 53% (84/158) of the pathogenic/likely pathogenic missense variants were not present in ClinVar. The second transmembrane domain and the 310 helix were highly enriched for pathogenic missense variants, while the intracellular loops were tolerant to variation. The N-terminal tail and the extracellular loop showed high clustering of variants that are associated with syndromic or dominant non-syndromic hearing loss. In conclusion, our study interpreted all possible single-nucleotide substitution coding variants, characterized novel clinically significant variants in GJB2, and revealed significant genotype-phenotype correlations at this common hearing loss locus. Our work provides a prototype for other genes with similarly high genetic and phenotypic heterogeneity.


Assuntos
Surdez , Perda Auditiva , Humanos , Conexinas/genética , Conexina 26/genética , Perda Auditiva/genética , Surdez/genética , Mutação de Sentido Incorreto , Mutação
13.
Am J Med Genet A ; 191(1): 253-258, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36286624

RESUMO

Keratitis-ichthyosis-deafness (KID) syndrome is a rare genetic disease caused by pathogenic variants in connexin 26 (gene GJB2), which is part of the transmembrane channels of the epithelia. Connexin 26 is expressed mainly in the cornea, the sensory epithelium of the inner ear, and in the skin keratinocytes, which are the three main target organs in KID syndrome. Approximately a dozen pathogenic variants have been described to date, including some lethal forms. Patients with lethal pathogenic variants present with severe symptoms from birth and die from sepsis during the first year of life. We present a premature female patient with KID syndrome carrying the lethal p.Ala88Val pathogenic variant in GJB2. In addition to the respiratory distress associated with this variant, our patient presented severe hypercalcemia of unexplained origin refractory to treatment. This abnormality has not been reported earlier in other patients with KID syndrome with the same variant.


Assuntos
Conexinas , Surdez , Humanos , Feminino , Conexina 26/genética , Conexinas/genética , Mutação , Síndrome , Surdez/diagnóstico , Surdez/genética , Surdez/patologia
14.
Ear Hear ; 44(6): 1423-1429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37271870

RESUMO

BACKGROUND: Gap junction protein beta 2 ( GJB2 ) p.V37I mutations are the most important hereditary cause of sensorineural hearing loss (SNHL) in Taiwan. Hearing outcomes are associated with hearing levels at baseline and the duration of follow-up. However, the audiological features of GJB2 p.V37I mutations in the adult population are unknown. The objectives of the present study were to investigate the audiological features, progression rate, and allele frequency of GJB2 p.V37I mutations among an adult Taiwanese population. METHODS: Subjects of this case-control study were chosen from 13,580 participants of the Taiwan Precision Medicine Initiative. The genetic variations of GJB2 p.V37I were determined by polymerase chain reaction. We analyzed existing pure-tone threshold data from 38 individuals who were homozygous or compound heterozygotes for GJB2 p.V37I, 129 who were heterozygotes, and 602 individuals who were wild-type. Phenome-wide association studies (PheWAS) analysis was also performed to identify phenotypes associated with GJB2 p.V37I. RESULTS: The minor allele frequency of GJB2 p.V37I was 0.92% in our study population. The mean hearing level of participants with a p.V37I mutation indicated moderate to severe hearing loss with 38.2% ± 22.3% binaural hearing impairment. GJB2 p.V37I was associated with an increased risk of hearing disability (odds ratio: 21.46, 95% confidence interval: 8.62 to 53.44, p < 0.001) in an autosomal recessive pattern. In addition, PheWAS discovered a significant association between GJB2 p.V37I and fracture of the humerus. GJB2 p.V37I is a pathogenic and prevalent variant of SNHL among the adult population. CONCLUSIONS: The present study recommends patients with known GJB2 p.V37I mutations receive regular audiometric evaluation and genetic counseling. Early assistive listening device intervention is suggested to improve the quality of hearing.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Adulto , Humanos , Estudos de Casos e Controles , Conexina 26/genética , Conexinas/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação
15.
Ear Hear ; 44(1): 232-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36149380

RESUMO

OBJECTIVES: Genetic screening can benefit early detection and intervention for hearing loss. The frequency of common deafness-associated variants in general populations is highly important for genetic screening and genetic counseling tailored to different ethnic backgrounds. We aimed to analyze the frequency of common deafness-associated variants in a large population-based Chinese newborn cohort and to explore the population-specific features in diverse populations worldwide. DESIGN: This population-based cohort study analyzed the frequency of common deafness-associated variants in 3,555,336 newborns in the Chinese Newborn Concurrent Hearing and Genetic Screening cohort. Participants were newborn infants born between January 2007 and September 2020. Limited genetic screening for 20 variants in 4 common deafness-associated genes and newborn hearing screening were offered concurrently to all newborns in the Chinese Newborn Concurrent Hearing and Genetic Screening cohort. Sequence information of 141,456 individuals was also analyzed from seven ethnic populations from the Genome Aggregation Database for 20 common deafness-related variants. Statistical analysis was performed using R. RESULTS: A total of 3,555,326 Chinese neonates completed the Newborn Concurrent Hearing and Genetic Screening were included for analysis. We reported the distinct landscape of common deafness-associated variants in this large population-based cohort. We found that the carrier frequencies of GJB2 , SLC26A4 , GJB3 , and MT-RNR were 2.53%, 2.05%, 0.37%, and 0.25%, respectively. Furthermore, GJB2 c.235delC was the most common variant with an allele frequency of 0.99% in the Chinese newborn population. We also demonstrated nine East-Asia-enriched variants, one Ashkenazi Jewish-enriched variant, and one European/American-enriched variant for hearing loss. CONCLUSIONS: We showed the distinct landscape of common deafness-associated variants in the Chinese newborn population and provided insights into population-specific features in diverse populations. These data can serve as a powerful resource for otolaryngologists and clinical geneticists to inform population-adjusted genetic screening programs for hearing loss.


Assuntos
Surdez , Perda Auditiva , Lactente , Humanos , Recém-Nascido , Conexinas/genética , Conexina 26/genética , Mutação , Estudos de Coortes , Transportadores de Sulfato/genética , Perda Auditiva/diagnóstico , China/epidemiologia , Surdez/epidemiologia , Surdez/genética , Surdez/diagnóstico
16.
Med Sci Monit ; 29: e938165, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593740

RESUMO

BACKGROUND The GJB2 gene is reported to be the main hereditary factor responsible for non-syndromic hearing impairment in infants. Several kinds of hearing loss have been linked to elevated inflammatory markers. This study aimed to evaluate serum levels of IL-2, IL-4, IL-6, IL-10, IL-17, alpha-TNF, and γ-IFN and the severity of hearing loss. MATERIAL AND METHODS Ninety newborns were divided into 3 groups: severe hearing impairment (31 infants), moderate hearing impairment (30 infants), and normal hearing (29 infants). Hearing screening was performed using otoacoustic emissions test. Mutations of the GJB2 gene were detected with Sanger sequencing. The patients had DNFB1 mutation. Seven blood inflammatory markers were tested using Cytometric Bead Array. We performed the t test to examine differences in expression of 7 inflammatory markers between sexes in the groups. The correlation between indicators within groups was studied using the Pearson correlation test. Correlation of different indicators among groups was studied using the Spearman correlation test. RESULTS When compared among the 3 groups (severe, moderate hearing impairment, and normal hearing group), we found that IL-10 had a positive correlation with the severity of GJB2-associated hearing loss, which was statistically significant (P<0.05). CONCLUSIONS This research aimed to assess the relationship of 7 serum inflammatory markers with GJB2-associated hearing loss in infants. Inflammatory marker IL-10 had a positive correlation with the severity of GJB2-associated infant hearing loss, and it might have the potential to become a future therapeutic target.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Lactente , Recém-Nascido , Conexinas/genética , Conexina 26/genética , Interleucina-10/genética , Perda Auditiva/genética , Mutação/genética , Biomarcadores , Perda Auditiva Neurossensorial/genética
17.
Eur Arch Otorhinolaryngol ; 280(9): 4057-4063, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36928321

RESUMO

PURPOSE: Although recessive mutations in GJB2 are the common genetic etiology of sensorineural hearing impairment (SNHI), variants in LRTOMT gene were also identified, mostly in Middle East and North African populations. METHODS: Using Sanger sequencing we screened the exon 7 of LRTOMT in a cohort of 128 unrelated Mauritanian children with congenital deafness. RESULTS: Only one biallelic missense mutation, predicted as pathogenic (c.179 T > C;p.Leu60Pro) was found at homozygous state in four families. This variant, not reported before, showed a deleterious effect by SIFT (score: 0.01) and a disease-causing effect by Mutation Taster (prob: 1). Exploration of the encoded protein 3D structure revealed a disruption from an organized α helix (in the normal protein structure) into a random conformation. Early fitting of a cochlear implant seemed to improve the audition ability of the mutation carrier. CONCLUSION: Further screening using a panel of deafness genes may expose other variants underlying hearing impairment in our population.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Criança , Humanos , Conexina 26/genética , Conexinas/genética , Surdez/genética , Surdez/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Mauritânia , Mutação
18.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108562

RESUMO

Hearing loss is the most prevalent sensory disorder worldwide. The majority of congenital nonsyndromic hearing loss (NSHL) cases are caused by hereditary factors. Previously, the majority of NSHL studies focused on the GJB2 gene; however, with the availability of next-generation sequencing (NGS) methods, the number of novel variants associated with NSHL has increased. The purpose of this study was to design effective genetic screening for a Hungarian population based on a pilot study with 139 NSHL patients. A stepwise, comprehensive genetic approach was developed, including bidirectional capillary sequencing, multiplex ligation-dependent probe amplification (MLPA), and an NGS panel of 108 hearing loss genes. With our results, a genetic diagnosis was possible for 92 patients. Sanger sequencing and MLPA identified the genetic background of 50% of these diagnosed cases, and the NGS panel identified another 16%. The vast majority (92%) of the diagnosed cases showed autosomal recessive inheritance and 76% were attributed to GJB2. The implementation of this stepwise analysis markedly increased our diagnostic yield and proved to be cost-effective as well.


Assuntos
Perda Auditiva , Humanos , Hungria , Projetos Piloto , Mutação , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Conexina 26/genética , Conexinas/genética
19.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069086

RESUMO

We aimed to investigate whether the degree of hearing loss with GJB2 mutations could be predicted by distinguishing between truncating and non-truncating mutations and whether the genotype could predict the hearing loss level. Additionally, we examined the progression of hearing loss in individuals monitored for over 2 years for an average of 6.9 years. The proportion of truncating mutations was higher in patients with profound and severe hearing loss, but it was not accurate enough to predict the degree of hearing loss. Via genotype analysis, mutations of the p.Arg143Trp variants were associated with profound hearing loss, while mutations of the p.Leu79Cysfs*3 allele exhibited a wide range of hearing loss, suggesting that specific genotypes can predict the hearing loss level. Notably, there were only three cases of progression in four ears, all of which involved the p.Leu79Cysfs*3 mutation. Over the long-term follow-up, 4000 Hz was significant, and there was a trend of progression at 250 Hz, suggesting that close monitoring at these frequencies during follow-up may be crucial to confirm progression. The progression of hearing loss was observed in moderate or severe hearing loss cases at the time of the initial diagnosis, emphasizing that children with this level of hearing loss need regular follow-ups.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Criança , Humanos , Conexina 26/genética , Conexinas/genética , Surdez/genética , Seguimentos , Genótipo , Audição , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Fenótipo
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 815-820, 2023 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-37368382

RESUMO

OBJECTIVE: To analyze the clinical significance of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province. METHODS: Results of audiological examinations, including transient evoked otoacoustic emission and automatic discriminative auditory brainstem evoked potentials, for 6 723 newborns born in Yuncheng area from January 1, 2021 to December 31, 2021, were retrospectively analyzed. Those who failed one of the tests were considered to have failed the examination. A deafness-related gene testing kit was used to detect 15 hot spot variants of common deafness-associated genes in China including GJB2, SLC26A4, GJB3, and mtDNA12S rRNA. Neonates who had passed the audiological examinations and those who had not were compared using a chi-square test. RESULTS: Among the 6 723 neonates, 363 (5.40%) were found to carry variants. These have included 166 cases (2.47%) with GJB2 gene variants, 136 cases (2.03%) with SLC26A4 gene variants, 26 cases (0.39%) with mitochondrial 12S rRNA gene variants, and 33 cases (0.49%) with GJB3 gene variants. Among the 6 723 neonates, 267 had failed initial hearing screening, among which 244 had accepted a re-examination, for which 14 cases (5.73%) had failed again. This has yielded an approximate prevalence of hearing disorder of 0.21% (14/6 723). Among 230 newborns who had passed the re-examination, 10 (4.34%) were found to have carried a variant. By contrast, 4 out of the 14 neonates (28.57%) who had failed the re-examination had carried a variant, and there was a significant difference between the two groups (P < 0.05). CONCLUSION: Genetic screening can provide an effective supplement to newborn hearing screening, and the combined screening can provide a best model for the prevention of hearing loss, which can enable early detection of deafness risks, targeted prevention measures, and genetic counseling to provide accurate prognosis for the newborns.


Assuntos
Conexinas , Surdez , Recém-Nascido , Humanos , Conexinas/genética , Estudos Retrospectivos , Surdez/diagnóstico , Surdez/genética , Conexina 26/genética , Triagem Neonatal/métodos , Mutação , Testes Genéticos/métodos , China/epidemiologia , Audição , Análise Mutacional de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA