Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(4): e3002075, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040348

RESUMO

Astrocytes crucially contribute to synaptic physiology and information processing. One of their key characteristics is to express high levels of connexins (Cxs), the gap junction-forming protein. Among them, Cx30 displays specific properties since it is postnatally expressed and dynamically upregulated by neuronal activity and modulates cognitive processes by shaping synaptic and network activities, as recently shown in knockout mice. However, it remains unknown whether local and selective upregulation of Cx30 in postnatal astrocytes within a physiological range modulates neuronal activities in the hippocampus. We here show in mice that, whereas Cx30 upregulation increases the connectivity of astroglial networks, it decreases spontaneous and evoked synaptic transmission. This effect results from a reduced neuronal excitability and translates into an alteration in the induction of synaptic plasticity and an in vivo impairment in learning processes. Altogether, these results suggest that astroglial networks have a physiologically optimized size to appropriately regulate neuronal functions.


Assuntos
Astrócitos , Conexina 43 , Camundongos , Animais , Conexina 30/metabolismo , Astrócitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Regulação para Cima , Conexinas/genética , Conexinas/metabolismo , Camundongos Knockout , Hipocampo/metabolismo
2.
Glia ; 72(10): 1915-1929, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38982826

RESUMO

During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.


Assuntos
Citoesqueleto de Actina , Astrócitos , Movimento Celular , Conexina 30 , Astrócitos/metabolismo , Animais , Movimento Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Conexina 30/metabolismo , Células Cultivadas , Camundongos , Microscopia de Força Atômica/métodos , Camundongos Endogâmicos C57BL
3.
BMC Genomics ; 25(1): 359, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605287

RESUMO

Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.


Assuntos
Conexina 30 , Perda Auditiva , Animais , Camundongos , Conexina 26/genética , Conexina 30/genética , Modelos Animais de Doenças , Perda Auditiva/genética , Mutação , Fenótipo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389674

RESUMO

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Assuntos
Astrócitos/fisiologia , Conexina 30/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Animais , Diferenciação Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Interneurônios/enzimologia , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Recombinação Genética , Tamoxifeno/farmacologia
5.
Dev Dyn ; 252(2): 239-246, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106826

RESUMO

In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.


Assuntos
Conexinas , Surdez , Humanos , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Cóclea/metabolismo , Conexina 30/genética , Conexina 30/metabolismo , Surdez/genética
6.
J Neurosci ; 42(42): 7875-7884, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261265

RESUMO

Cochlear amplification enables the enormous dynamic range of hearing through amplifying cochlear responses to low- to moderate-level sounds and compressing them to loud sounds. Amplification is attributed to voltage-dependent electromotility of mechanosensory outer hair cells (OHCs) driven by changing voltages developed across their cell membranes. At low frequencies, these voltage changes are dominated by intracellular receptor potentials (RPs). However, OHC membranes have electrical low-pass filter properties that attenuate high-frequency RPs, which should potentially attenuate amplification of high-frequency cochlear responses and impede high-frequency hearing. We made in vivo intracellular and extracellular electrophysiological measurements from the organ of Corti of male and female mice of the CBA/J strain, with excellent high-frequency hearing, and from the CD-1 mouse strain, which has sensitive hearing below 12 kHz but loses high-frequency hearing within a few weeks postpartum. The CD-1 mouse strain was transfected with an A88V mutation of the connexin 30 gap-junction protein. By blocking the action of the GJ protein to reduce input resistance, the mutation increased the OHC extracellular RP (ERP) magnitude and rescued high-frequency hearing. However, by increasing the organ of Corti resistance, the mutation rescued high-frequency hearing through preserving the OHC extracellular RP (ERP) magnitude. We measured the voltage developed across the basolateral membranes of OHCs, which controls their electromotility, for low- to high-frequency sounds in male and female mice of the CD-1 strain that expressed the A88V mutation. We demonstrate that ERPs, not RPs, drive OHC motility and cochlear amplification at high frequencies because at high frequencies, ERPs are not frequency attenuated, exceed RPs in magnitude, and are appropriately timed to provide cochlear amplification.SIGNIFICANCE STATEMENT Cochlear amplification, which enables the enormous dynamic range of hearing, is attributed to voltage-dependent electromotility of the mechanosensory outer hair cells (OHCs) driven by sound-induced voltage changes across their membranes. OHC intracellular receptor potentials are electrically low-pass filtered, which should hinder high-frequency hearing. We measured the intracellular and extracellular voltages that control OHC electromotility in vivo in a mouse strain with impaired high-frequency hearing. A gap-junction mutation of the strain rescued high-frequency hearing, increased organ of Corti resistance, and preserved large OHC extracellular receptor potentials but reduced OHC intracellular receptor potentials and impaired low-frequency hearing. We concluded intracellular potentials drive OHC motility at low frequencies and extracellular receptor potentials drive OHC motility and cochlear amplification at high frequencies.


Assuntos
Cóclea , Células Ciliadas Auditivas Externas , Animais , Feminino , Masculino , Camundongos , Cóclea/fisiologia , Conexina 30/genética , Conexina 30/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Camundongos Endogâmicos CBA , Mutação/genética , Junções Comunicantes
7.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30804003

RESUMO

Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine-tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non-sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non-sensory cells of the greater epithelial ridge cause, via ATP-induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience-independent Ca2+ signals from sensory and non-sensory cells.


Assuntos
Vias Aferentes , Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Cóclea/fisiologia , Conexina 30/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Sinalização do Cálcio , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores Purinérgicos P2X3/fisiologia , Sinapses/fisiologia
8.
J Biol Chem ; 296: 100404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577799

RESUMO

Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αßγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of ß- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of ß- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.


Assuntos
Clatrina/metabolismo , Conexina 30/farmacologia , Canais Epiteliais de Sódio/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Oócitos/fisiologia , Animais , Endocitose , Canais Epiteliais de Sódio/metabolismo , Humanos , Oócitos/citologia , Técnicas de Patch-Clamp/métodos , Transdução de Sinais , Xenopus laevis
9.
Glia ; 70(7): 1359-1379, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35394085

RESUMO

Microglial control of activity-dependent plasticity and synaptic remodeling in neuronal networks has been the subject of intense research in the past several years. Although microglia-neuron interactions have been extensively studied, less is known about how microglia influence astrocyte-dependent control over neuronal structure and function. Here, we explored a role for microglia in regulating the structure and function of the astrocyte syncytium in mouse hippocampus. After depleting microglia using a CSF1R antagonist (PLX5622, Plexxikon), we observed severe disruption of astrocyte syncytial isopotentiality and dye coupling. A decrease in astrocyte-specific gap junction connexin (Cx) 30 and 43 expression, at least partially accounts for these microglia-dependent changes in astrocytes. Because neuronal function requires intact astrocyte coupling, we also evaluated the effects of microglia depletion on synaptic transmission in the hippocampus. Without microglia, the strength of synaptic transmission was reduced at baseline and after long-term potentiation (LTP). Conversely, priming microglia with systemic injections of lipopolysaccharide enhanced CA3-CA1 synaptic transmission. This microglia-induced scaling of synaptic transmission was associated with increased expression of post-synaptic scaffold proteins (Homer1) in CA1. However, astrocyte network function was not affected by microglia priming, indicating that microglia-dependent effects on astrocytes and neurons vary across functional states. Through manipulation of microglia in the brain, our results reveal the importance of microglia in homeostatic regulation of the astrocyte syncytium and scaling of synaptic transmission. These novel mechanisms uncover a new direction for future studies interrogating microglia function in various physiological and pathological contexts.


Assuntos
Astrócitos , Microglia , Animais , Astrócitos/metabolismo , Conexina 30/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
10.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555685

RESUMO

Connexin 30 (Cx30), which forms gap junctions between astrocytes, regulates cell adhesion and migration, and modulates glutamate transport. Cx30 is upregulated on activated astroglia in central nervous system inflammatory lesions, including spinal cord lesions in mutant superoxide dismutase 1 (mSOD1) transgenic amyotrophic lateral sclerosis (ALS) model mice. Here, we investigated the role of Cx30 in mSOD1 mice. Cx30 was highly expressed in the pre-onset stage in mSOD1 mice. mSOD1 mice with knockout (KO) of the Cx30 gene (Cx30KO-mSOD1 mice) showed delayed disease onset and tended to have an extended survival period (log-rank, p = 0.09). At the progressive and end stages of the disease, anterior horn cells were significantly preserved in Cx30KO-mSOD1 mice. In lesions of these mice, glial fibrillary acidic protein/C3-positive inflammatory astroglia were decreased. Additionally, the activation of astrocytes in Cx30KO-mSOD1 mice was reduced compared with mSOD1 mice by gene expression microarray. Furthermore, expression of connexin 43 at the pre-onset stage was downregulated in Cx30KO-mSOD1 mice. These findings suggest that reduced expression of astroglial Cx30 at the early disease stage in ALS model mice protects neurons by attenuating astroglial inflammation.


Assuntos
Esclerose Lateral Amiotrófica , Conexina 30 , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Conexina 30/genética , Modelos Animais de Doenças , Progressão da Doença , Inflamação/metabolismo , Camundongos Transgênicos , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
11.
J Biol Chem ; 295(49): 16499-16509, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887797

RESUMO

Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology.


Assuntos
Conexina 26/química , Conexina 30/química , Microscopia de Força Atômica , Sequência de Aminoácidos , Conexina 26/genética , Conexina 26/imunologia , Conexina 26/metabolismo , Conexina 30/genética , Conexina 30/imunologia , Conexina 30/metabolismo , Microscopia Crioeletrônica , Junções Comunicantes/metabolismo , Células HeLa , Histidina/genética , Histidina/imunologia , Histidina/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Oligopeptídeos/genética , Oligopeptídeos/imunologia , Oligopeptídeos/metabolismo , Multimerização Proteica
12.
Glia ; 69(9): 2178-2198, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33973274

RESUMO

Astrocytes play important roles in brain function via dynamic structural and functional interactions with neurons. Yet the underlying mechanisms remain poorly defined. A typical feature of astrocytes is the high expression of connexins, which mediate their extensive intercellular communication and regulate their structural properties. In particular, connexin 30 (Cx30), one of the two connexins abundantly expressed by astrocytes, was recently shown to be a critical regulator of excitatory synaptic transmission by controlling the astroglial coverage of synapses. However, the role of Cx30 in the regulation of inhibitory synaptic transmission and excitatory/inhibitory balance remains elusive. Here, we investigated the role of astroglial Cx30 on the electrophysiological and morphological properties of five classes of hippocampal CA1 stratum oriens and pyramidale neurons, defined by the unsupervised Ward's clustering. Using Cx30 knockout mice, we found that Cx30 alters specific properties of some subsets of CA1 interneurons, such as resting membrane potential and sag ratio, while other parameters, such as action potential threshold and saturation frequency, were more frequently altered among the different classes of neurons. The excitation-inhibition balance was also differentially and selectively modulated among the different neuron subtypes. Only slight morphological differences were observed on reconstructed neurons. Altogether, these data indicate that Cx30 differentially alters the electrophysiological and morphological properties of hippocampal cell populations, and modulates both their excitatory and inhibitory inputs. Astrocytes, via Cx30, are thus active modulators of both excitatory and inhibitory synapses in the hippocampus.


Assuntos
Astrócitos , Hipocampo , Animais , Astrócitos/metabolismo , Conexina 30/genética , Conexina 30/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
13.
J Cell Sci ; 132(2)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30559251

RESUMO

Mutations in the genes that encode the gap junction proteins connexin 26 (Cx26, encoded by GJB2) and Cx30 (GJB6) are the leading cause of hereditary hearing loss. That said, the Cx30 p.Ala88Val (A88V) mutant causes Clouston syndrome, but not hearing loss. Here, we report that the Cx30-A88V mutant, despite being toxic to inner ear-derived HEI-OC1 cells, conferred remarkable long-term protection against age-related high frequency hearing loss in Cx30A88V/A88V mice. During early development, there were no overt structural differences in the cochlea between genotypes, including a normal complement of hair cells; however, the supporting cell Cx30 gap junction plaques in mutant mice were reduced in size. In adulthood, Cx30A88V/A88V mutant mice had a reduction of cochlear Cx30 mRNA and protein, yet a full complement of hair cells. Conversely, the age-related high frequency hearing loss in Cx30+/+ and Cx30+/A88V mice was due to extensive loss of outer hair cells. Our data suggest that the Cx30-A88V mutant confers long-term hearing protection and prevention of hair cell death, possibly via a feedback mechanism that leads to the reduction of total Cx30 gap junction expression in the cochlea.


Assuntos
Cóclea/metabolismo , Conexina 30/metabolismo , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Perda Auditiva/prevenção & controle , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Linhagem Celular , Conexina 30/genética , Junções Comunicantes/genética , Perda Auditiva/genética , Perda Auditiva/metabolismo , Camundongos , Camundongos Mutantes
14.
Development ; 145(4)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29475972

RESUMO

Astrocytes undergo intense morphological maturation during development, changing from individual sparsely branched cells to polarized and tremendously ramified cells. Connexin 30, an astroglial gap-junction channel-forming protein expressed postnatally, regulates in situ the extension and ramification of astroglial processes. However, the involvement of connexin 30 in astroglial polarization, which is known to control cell morphology, remains unexplored. We found that connexin 30, independently of gap-junction-mediated intercellular biochemical coupling, alters the orientation of astrocyte protrusion, centrosome and Golgi apparatus during polarized migration in an in vitro wound-healing assay. Connexin 30 sets the orientation of astroglial motile protrusions via modulation of the laminin/ß1 integrin/Cdc42 polarity pathway. Connexin 30 indeed reduces laminin levels, inhibits the redistribution of the ß1-integrin extracellular matrix receptors, and inhibits the recruitment and activation of the small Rho GTPase Cdc42 at the leading edge of migrating astrocytes. In vivo, connexin 30, the expression of which is developmentally regulated, also contributes to the establishment of hippocampal astrocyte polarity during postnatal maturation. This study thus reveals that connexin 30 controls astroglial polarity during development.


Assuntos
Astrócitos/citologia , Encéfalo/citologia , Polaridade Celular/fisiologia , Conexina 30/metabolismo , Animais , Astrócitos/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Ensaios de Migração Celular , Imunofluorescência , Camundongos
15.
Cereb Cortex ; 30(2): 753-766, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31271200

RESUMO

Astrocytes play key roles in brain functions through dynamic interactions with neurons. One of their typical features is to express high levels of connexins (Cxs), Cx43 and Cx30, the gap junction (GJ)-forming proteins. Cx30 is involved in basic cognitive processes and shapes synaptic and network activities, as shown by recent studies in transgenic animals. Yet it remains unknown whether astroglial Cx30 expression, localization, and functions are endogenously and dynamically regulated by neuronal activity and could therefore play physiological roles in neurotransmission. We here show that neuronal activity increased hippocampal Cx30 protein levels via a posttranslational mechanism regulating lysosomal degradation. Neuronal activity also increased Cx30 protein levels at membranes and perisynaptic processes, as revealed by superresolution imaging. This translated at the functional level in the activation of Cx30 hemichannels and in Cx30-mediated remodeling of astrocyte morphology independently of GJ biochemical coupling. Altogether, these data show activity-dependent dynamics of Cx30 expression, perisynaptic localization, and functions.


Assuntos
Astrócitos/fisiologia , Conexina 30/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Animais , Astrócitos/citologia , Feminino , Hipocampo/citologia , Lisossomos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise
16.
J Hum Genet ; 65(10): 855-864, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32467589

RESUMO

Non-syndromic hearing loss (NSHL) is characterized by a vast genetic heterogeneity; some syndromic forms as Usher syndrome (USH) have onset as isolated deafness and then evolve later in life. We developed an NGS targeted gene-panel containing 59 genes and a customized bioinformatic pipeline for the analysis of DNA samples from clinically highly selected subjects with sensorineural hearing loss, previously resulted negative for GJB2 mutations/GJB6 deletions. Among the 217 tested subjects, 24 (11.1%) were found to carry mutations in genes involved both in NSHL and USH. For 6 out of 24 patients a diagnosis of USH was performed. Eleven subjects out of 24 had hearing loss without vestibular or ocular dysfunction and, due to their young age, it was not possible to establish whether their phenotype could be NSHL or USH. Seven subjects were diagnosed with NSHL, due to their age and phenotype. A total of 41 likely pathogenic/pathogenic mutations were identified, among which 17 novel ones. We report a high frequency of mutations in genes involved both in NSHL and in USH in a cohort of individuals tested for seemingly isolated deafness. Our data also highlight a wider than expected phenotypic variability in the USH phenotype.


Assuntos
Surdez/genética , Heterogeneidade Genética , Mutação , Síndromes de Usher/genética , Adolescente , Adulto , Proteínas Relacionadas a Caderinas , Caderinas/genética , Criança , Pré-Escolar , Conexina 26/genética , Conexina 30/genética , Feminino , Estudos de Associação Genética , Perda Auditiva Neurossensorial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo , Adulto Jovem
17.
Mol Cell Biochem ; 470(1-2): 157-164, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462383

RESUMO

Connexin 30 (Cx30), a tumour-suppressive gap junctional protein, impacts on insulin-like growth factor receptor 1-mediated progression and stemness of glioma. Of late, metabolic reprogramming, a recently adjudged hall mark of malignancy, could reasonably associated with the changes in gap junctional communication in glioma. This newly recognized hallmark of reprogramming of metabolism to maintain the rapid proliferation necessitates further probing to establish the stronger hall marks. Hence, the current study attempted to link the association between the expression of Cx30 with glucose uptake and glucose metabolism in glioma. We have transfected Cx30 in C6 glioma cells, characterized by a low level of intercellular communication and developed xenografts to study the status of glucose transporters (GLUTs), hexokinase 2 and Pyruvate dehydrogenase kinase 1 (PDK 1) along with human glioma tissues by RT-PCR and immunoblotting. The results showed a significant increase in the levels of GLUTs, hexokinase 2 and PDK 1 in C6-implanted rat xenografts and high grades compared to their respective controls, whereas Cx30-transfected C6-implanted rat xenograft and low grades show no significant change compared to that of controls supporting the association between Gap junctional communications and glucose metabolism. We strongly speculate the impact of Cx30 over the glucose metabolism that might provide therapeutic prospects and challenges for anti-glycolytic cancer therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Conexina 30/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glucose/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Facilitadoras de Transporte de Glucose , Hexoquinase/metabolismo , Masculino , Transplante de Neoplasias , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Ratos Wistar
18.
Hereditas ; 157(1): 34, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843087

RESUMO

Hidrotic ectodermal dysplasia (HED) is a rare inherited syndrome characterised by nail dystrophy, palmoplantar hyperkeratosis and alopecia. Four mutations (p.G11R, p.A88V, p.V37E and p.D50N) in gap junction beta 6 (GJB6) gene, which codes connexin30 protein, have been found to cause HED in different populations. Here, we reported a big Chinese family in which 24 patients over five generations were suffered with HED. Sequence analysis identified all 24 patients carry a recurrent missense mutation c.263C > T (p.A88V) in GJB6. Our results reveal gene testing of GJB6 is important for diagnosis, prenatal diagnosis and future gene treatment of HED.


Assuntos
Conexina 30/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Adulto , Alelos , China , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA
19.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036242

RESUMO

Anisotropic gap junctional coupling is a distinct feature of astrocytes in many brain regions. In the lateral superior olive (LSO), astrocytic networks are anisotropic and oriented orthogonally to the tonotopic axis. In CaV1.3 knock-out (KO) and otoferlin KO mice, where auditory brainstem nuclei are deprived from spontaneous cochlea-driven neuronal activity, neuronal circuitry is disturbed. So far it was unknown if this disturbance is also accompanied by an impaired topography of LSO astrocyte networks. To answer this question, we immunohistochemically analyzed the expression of astrocytic connexin (Cx) 43 and Cx30 in auditory brainstem nuclei. Furthermore, we loaded LSO astrocytes with the gap junction-permeable tracer neurobiotin and assessed the network shape and orientation. We found a strong elevation of Cx30 immunoreactivity in the LSO of CaV1.3 KO mice, while Cx43 levels were only slightly increased. In otoferlin KO mice, LSO showed a slight increase in Cx43 as well, whereas Cx30 levels were unchanged. The total number of tracer-coupled cells was unaltered and most networks were anisotropic in both KO strains. In contrast to the WTs, however, LSO networks were predominantly oriented parallel to the tonotopic axis and not orthogonal to it. Taken together, our data demonstrate that spontaneous cochlea-driven neuronal activity is not required per se for the formation of anisotropic LSO astrocyte networks. However, neuronal activity is required to establish the proper orientation of networks. Proper formation of LSO astrocyte networks thus necessitates neuronal input from the periphery, indicating a critical role of neuron-glia interaction during early postnatal development in the auditory brainstem.


Assuntos
Astrócitos/patologia , Canais de Cálcio Tipo L/genética , Surdez/patologia , Junções Comunicantes/metabolismo , Proteínas de Membrana/genética , Complexo Olivar Superior/patologia , Animais , Astrócitos/metabolismo , Conexina 30/genética , Conexina 43/genética , Surdez/congênito , Surdez/genética , Modelos Animais de Doenças , Junções Comunicantes/patologia , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Complexo Olivar Superior/metabolismo
20.
Fetal Pediatr Pathol ; 39(1): 1-12, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31215297

RESUMO

Background: Hearing impairment (HI) is a heterogeneous disorder. GJB2 and GJB6 genes are typically the first line of genetic screening before proceeding to any massive parallel sequencing. We evaluated the clinical utility of GJB2 and GJB6 testing in the Iranian population. Methods: GJB2 and GJB6 were sequenced. PubMed and Google Scholar were searched for Iranian publications on deletions in the DFNB1 locus. Results: We detected mutations of GJB2 in 16.5%, and no mutations of GJB6. Literature review revealed no reports of mutations of GJB6 in the Iranian population. Conclusion: This data and literature reviews indicate that GJB6 is not commonly responsible for Iranian nonsyndromic HI. Hence, the clinical utility of GJB6 genetic analysis as a first line for HI evaluation does not have the same utility as GJB2. The study is consistent with recent studies emphasizing the role of ethnicity in the selection of HI genetic testing strategy.


Assuntos
Conexina 30/genética , Conexinas/genética , Perda Auditiva/genética , Mutação/genética , Conexina 26 , Surdez/genética , Frequência do Gene/fisiologia , Genes Recessivos , Testes Genéticos/métodos , Humanos , Deleção de Sequência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA