Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nature ; 520(7548): 483-9, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903630

RESUMO

The interrelationships between major living vertebrate, and even chordate, groups are now reasonably well resolved thanks to a large amount of generally congruent data derived from molecular sequences, anatomy and physiology. But fossils provide unexpected combinations of characters that help us to understand how the anatomy of modern groups was progressively shaped over millions of years. The dawn of vertebrates is documented by fossils that are preserved as either soft-tissue imprints, or minute skeletal fragments, and it is sometimes difficult for palaeontologists to tell which of them are reliable vertebrate remains and which merely reflect our idea of an ancestral vertebrate.


Assuntos
Cordados/anatomia & histologia , Cordados/classificação , Fósseis , Filogenia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Animais
2.
Nature ; 520(7548): 456-65, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903627

RESUMO

Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.


Assuntos
Cordados/anatomia & histologia , Cordados/embriologia , Filogenia , Animais , Padronização Corporal , Cordados/classificação , Endoderma/embriologia , Brânquias/anatomia & histologia , Brânquias/embriologia , Mesoderma/embriologia
3.
BMC Evol Biol ; 20(1): 24, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046633

RESUMO

BACKGROUND: Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures. RESULTS: An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in ß-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement. CONCLUSION: Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.


Assuntos
Cordados/classificação , Cordados/genética , Evolução Molecular , Especiação Genética , Variação Genética/fisiologia , Animais , Evolução Biológica , Cetáceos/classificação , Cetáceos/genética , Duplicação Gênica/fisiologia , Genes Duplicados , Genoma , Genômica , Filogenia
4.
Cell Mol Life Sci ; 76(20): 4117-4130, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31028425

RESUMO

Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.


Assuntos
Evolução Biológica , Cordados/genética , Genoma , Família Multigênica , Filogenia , Proteínas rab de Ligação ao GTP/genética , Animais , Transporte Biológico , Cordados/classificação , Bases de Dados Genéticas , Éxons , Duplicação Gênica , Variação Genética , Humanos , Íntrons , Organelas/genética , Organelas/metabolismo , Domínios Proteicos , Sintenia , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(46): 16419-24, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25331898

RESUMO

Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis/anatomia & histologia , Especiação Genética , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Artrópodes/genética , Cordados/anatomia & histologia , Cordados/classificação , Cordados/genética , Simulação por Computador , Equinodermos/anatomia & histologia , Equinodermos/classificação , Equinodermos/genética , Invertebrados/anatomia & histologia , Invertebrados/classificação , Invertebrados/genética , Modelos Genéticos , Moluscos/anatomia & histologia , Moluscos/classificação , Moluscos/genética , Filogenia , Especificidade da Espécie
6.
Dev Dyn ; 245(12): 1159-1175, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27649280

RESUMO

BACKGROUND: Head or anterior body part regeneration is commonly associated with protostome, but not deuterostome invertebrates. However, it has been shown that the solitary hemichordate Ptychodera flava possesses the remarkable capacity to regenerate their entire nervous system, including their dorsal neural tube and their anterior head-like structure, or proboscis. Hemichordates, also known as acorn worms, are marine invertebrate deuterostomes that have retained chordate traits that were likely present in the deuterostome ancestor, placing these animals in a vital position to study regeneration and chordate evolution. All acorn worms have a tripartite body plan, with an anterior proboscis, middle collar region, and a posterior trunk. The collar houses a hollow, dorsal neural tube in ptychoderid hemichordates and numerous chordate genes involved in brain and spinal cord development are expressed in a similar anterior-posterior spatial arrangement along the body axis. RESULTS: We have examined anterior regeneration in the hemichordate Ptychodera flava and report the spatial and temporal morphological changes that occur. Additionally, we have sequenced, assembled, and analyzed the transcriptome for eight stages of regenerating P. flava, revealing significant differential gene expression between regenerating and control animals. CONCLUSIONS: Importantly, we have uncovered developmental steps that are regeneration-specific and do not strictly follow the embryonic program. Developmental Dynamics 245:1159-1175, 2016. © 2016 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Cordados/fisiologia , Animais , Evolução Biológica , Cordados/anatomia & histologia , Cordados/classificação , Filogenia , Regeneração/fisiologia
7.
Mol Biol Evol ; 32(2): 299-312, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25415965

RESUMO

An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.


Assuntos
Encéfalo/anatomia & histologia , Cordados/anatomia & histologia , Animais , Evolução Biológica , Cordados/classificação , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Filogeografia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/classificação
8.
Nature ; 463(7282): 797-800, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20118914

RESUMO

Exceptional preservation of soft-bodied Cambrian chordates provides our only direct information on the origin of vertebrates. Fossil chordates from this interval offer crucial insights into how the distinctive body plan of vertebrates evolved, but reading this pre-biomineralization fossil record is fraught with difficulties, leading to controversial and contradictory interpretations. The cause of these difficulties is taphonomic: we lack data on when and how important characters change as they decompose, resulting in a lack of constraint on anatomical interpretation and a failure to distinguish phylogenetic absence of characters from loss through decay. Here we show, from experimental decay of amphioxus and ammocoetes, that loss of chordate characters during decay is non-random: the more phylogenetically informative are the most labile, whereas plesiomorphic characters are decay resistant. The taphonomic loss of synapomorphies and relatively higher preservation potential of chordate plesiomorphies will thus result in bias towards wrongly placing fossils on the chordate stem. Application of these data to Cathaymyrus (Cambrian period of China) and Metaspriggina (Cambrian period of Canada) highlights the difficulties: these fossils cannot be placed reliably in the chordate or vertebrate stem because they could represent the decayed remains of any non-biomineralized, total-group chordate. Preliminary data suggest that this decay filter also affects other groups of organisms and that 'stem-ward slippage' may be a widespread but currently unrecognized bias in our understanding of the early evolution of a number of phyla.


Assuntos
Artefatos , Cordados/anatomia & histologia , Cordados/classificação , Fósseis , Paleontologia/métodos , Filogenia , Animais , Viés , Cordados/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/classificação , Projetos de Pesquisa
9.
Rev Biol Trop ; 64(4): 1469-86, 2016 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-29465910

RESUMO

The diversity of chondrychthyans in Mexico is described. The fauna is composed by 214 species (111 sharks, 95 rays and 8 chimaeras) and represents 17.3 % of the total number of species recorded worldwide. The families with the highest diversity comprise: Rajidae (14.5 %), Carcharhinidae (12.1 %), Pentanchidae, Triakidae, and Urotrygonidae (5.1 %). In terms of geographical distribution, the diversity on the Mexican Pacific slope reaches up to 56.1 % of those species inhabiting Mexican marine and brackish waters (120 species, 62 genera, 37 families and 14 orders); the diversity in the Atlantic slope resulted similar to that on the Mexican Pacific with 55.1 % of the species (118 species, 59 genera, 35 families and 13 orders). The biogeographical affinities of the Mexican chondrychthyan fauna are complex with 19.7 % of the species being circumglobal, 9.9 % transatlantic, 1.9 % transpacific, and 9.4 % endemic to the exclusive economic zone. Additionally, 36.6 % of the species recorded so far are endemic to the Eastern Pacific coast where the species are similar to those found in the Cortez biogeographic province (27.7 %), followed by the Californian (20.7 %), Panamanian (19.3 %), Galapagos (5.6 %) and Peruvian-Chilean (8.9 %). Likewise, 33.3 % are endemic of the Atlantic coast, where species are similar to those found in the Caribbean province (31.9 %), followed by the Carolinean (24.4 %) and the Brazilian (6.6 %).


Assuntos
Distribuição Animal , Biodiversidade , Cordados/classificação , Tubarões/classificação , Rajidae/classificação , Animais , Oceano Atlântico , Cordados/fisiologia , México , Oceano Pacífico , Tubarões/fisiologia , Rajidae/fisiologia , Especificidade da Espécie
10.
Development ; 139(4): 720-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22241841

RESUMO

Gene duplication has been proposed to drive the evolution of novel morphologies. After gene duplication, it is unclear whether changes in the resulting paralogs' coding-regions, or in their cis-regulatory elements, contribute most significantly to the assembly of novel gene regulatory networks. The Transcription Factor Activator Protein 2 (Tfap2) was duplicated in the chordate lineage and is essential for development of the neural crest, a tissue that emerged with vertebrates. Using a tfap2-depleted zebrafish background, we test the ability of available gnathostome, agnathan, cephalochordate and insect tfap2 paralogs to drive neural crest development. With the exception of tfap2d (lamprey and zebrafish), all are able to do so. Together with expression analyses, these results indicate that sub-functionalization has occurred among Tfap2 paralogs, but that neo-functionalization of the Tfap2 protein did not drive the emergence of the neural crest. We investigate whether acquisition of novel target genes for Tfap2 might have done so. We show that in neural crest cells Tfap2 directly activates expression of sox10, which encodes a transcription factor essential for neural crest development. The appearance of this regulatory interaction is likely to have coincided with that of the neural crest, because AP2 and SoxE are not co-expressed in amphioxus, and because neural crest enhancers are not detected proximal to amphioxus soxE. We find that sox10 has limited ability to restore the neural crest in Tfap2-deficient embryos. Together, these results show that mutations resulting in novel Tfap2-mediated regulation of sox10 and other targets contributed to the evolution of the neural crest.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Evolução Biológica , Crista Neural/fisiologia , Fatores de Transcrição SOXE/metabolismo , Fator 2 Ativador da Transcrição/genética , Animais , Cordados/anatomia & histologia , Cordados/classificação , Cordados/embriologia , Cordados/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Indução Embrionária , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lampreias/anatomia & histologia , Lampreias/embriologia , Lampreias/genética , Crista Neural/citologia , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXE/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
11.
Genet Mol Res ; 14(4): 12561-6, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26505406

RESUMO

MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.


Assuntos
Cordados/genética , Evolução Molecular , Proteína MyoD/genética , Fatores de Regulação Miogênica/genética , Animais , Diferenciação Celular , Cordados/classificação , Bases de Dados de Proteínas , Humanos , Filogenia , Análise de Sequência de Proteína
12.
Genesis ; 52(12): 925-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25303744

RESUMO

As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group "hemichordates." Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord-forming region in acorn worm juveniles is expressed in the club-shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord.


Assuntos
Evolução Biológica , Cordados/anatomia & histologia , Cordados/genética , Notocorda/crescimento & desenvolvimento , Faringe/crescimento & desenvolvimento , Animais , Cordados/classificação , Endoderma/metabolismo , Proteínas Fetais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mucosa Gástrica/metabolismo , Notocorda/metabolismo , Faringe/metabolismo , Proteínas com Domínio T/metabolismo
13.
BMC Evol Biol ; 14: 214, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25273382

RESUMO

BACKGROUND: Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved. RESULTS: A new vetulicolian from the Emu Bay Shale Konservat-Lagerstätte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity. CONCLUSIONS: Phylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia + Tunicata include distinct anterior and posterior body regions - the former being non-fusiform and used for filter feeding and the latter originally segmented - plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail.


Assuntos
Cordados/classificação , Cordados/genética , Fósseis , Animais , Austrália , Evolução Biológica , Cordados/anatomia & histologia , Brânquias/anatomia & histologia , Filogenia , Urocordados/classificação , Urocordados/genética
14.
Proc Biol Sci ; 281(1794): 20141729, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25232138

RESUMO

Traditional metazoan phylogeny classifies the Vertebrata as a subphylum of the phylum Chordata, together with two other subphyla, the Urochordata (Tunicata) and the Cephalochordata. The Chordata, together with the phyla Echinodermata and Hemichordata, comprise a major group, the Deuterostomia. Chordates invariably possess a notochord and a dorsal neural tube. Although the origin and evolution of chordates has been studied for more than a century, few authors have intimately discussed taxonomic ranking of the three chordate groups themselves. Accumulating evidence shows that echinoderms and hemichordates form a clade (the Ambulacraria), and that within the Chordata, cephalochordates diverged first, with tunicates and vertebrates forming a sister group. Chordates share tadpole-type larvae containing a notochord and hollow nerve cord, whereas ambulacrarians have dipleurula-type larvae containing a hydrocoel. We propose that an evolutionary occurrence of tadpole-type larvae is fundamental to understanding mechanisms of chordate origin. Protostomes have now been reclassified into two major taxa, the Ecdysozoa and Lophotrochozoa, whose developmental pathways are characterized by ecdysis and trochophore larvae, respectively. Consistent with this classification, the profound dipleurula versus tadpole larval differences merit a category higher than the phylum. Thus, it is recommended that the Ecdysozoa, Lophotrochozoa, Ambulacraria and Chordata be classified at the superphylum level, with the Chordata further subdivided into three phyla, on the basis of their distinctive characteristics.


Assuntos
Evolução Biológica , Cordados/classificação , Cordados/embriologia , Filogenia , Animais , Padronização Corporal , Equinodermos/classificação , Desenvolvimento Embrionário , Larva/classificação
15.
Nature ; 453(7198): 1064-71, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18563158

RESUMO

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Assuntos
Cordados/genética , Evolução Molecular , Genoma/genética , Animais , Cordados/classificação , Sequência Conservada , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Genes/genética , Ligação Genética , Humanos , Íntrons/genética , Cariotipagem , Família Multigênica , Filogenia , Polimorfismo Genético/genética , Proteínas/genética , Sintenia , Fatores de Tempo , Vertebrados/classificação , Vertebrados/genética
16.
Microsc Microanal ; 20(4): 1188-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24870451

RESUMO

Scanning electron microscopy (SEM) of scales in six species of the fish genus Channa revealed certain features relevant to taxonomic significance. The location of focus, inter-radial distance and width of circuli, inter-circular space, width of radii, shape and size of lepidonts, etc. were found to be different in different species. The importance of SEM of scales in poorly understood taxonomy and phylogeny of the fish genus Channa is discussed with the help of relevant literature. Further, the role of SEM of fish scales for taxonomic applications is discussed in detail.


Assuntos
Cordados/anatomia & histologia , Cordados/classificação , Classificação/métodos , Tegumento Comum/anatomia & histologia , Microscopia Eletrônica de Varredura/métodos , Animais , Biometria/métodos
17.
Zootaxa ; 3764: 240-78, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24870635

RESUMO

Aetosaurs are armored pseudosuchian archosaurs widespread in Upper Triassic units. In South America, four taxa were previously recorded: Aetosauroides scagliai, Neoaetosauroides engaeus, Aetobarbakinoides brasiliensis, and Chilenosuchus forttae. Herein we describe a new Late Triassic juvenile aetosaur from the Santa Maria Formation of southern Brazil, Polesinesuchus aurelioi gen. et sp. nov., increasing the paleobiodiversity of this interesting group to five taxa in Western Gondwana. The holotype is composed of cranial (parietal and braincase) and postcranial elements (cervical, dorsal, sacral, caudal vertebrae, both scapulae, a humerus, ilium, pubis, ischium, tibia, a partial right pes, and anterior and mid-dorsal paramedian osteoderms). It belongs to a juvenile individual, as its neurocentral sutures are open in all vertebrae, and also due to its small size. However, future paleohistological investigation is necessary to fully corroborate this assumption. This new taxon is distinguished from all other aetosaurs by the presence of an unique combination of character states (not controlled by ontogeny) such as: cervical vertebrae with prezygapophyses widely extending laterally through most of the anterior edge of the diapophyses; absence of hyposphene articulations in both cervical and mid-dorsal vertebrae; presence of a ventral keel in cervical vertebrae; anterior and mid-dorsal vertebrae without a lateral fossa in their centra; expanded proximal end of scapula; anteroposteriorly expanded medial portion of scapular blade; a short humerus with a robust shaft; and a dorsoventral and very low iliac blade with a long anterior process which slightly exceeds the pubic peduncle. Regarding its phylogenetic relationships, the present analysis placed Polesinesuchus as the sister taxon of Aetobarbakinoides and both as sister taxa of the unnamed monophyletic clade Desmatosuchinae plus Typothoracisinae. 


Assuntos
Cordados/classificação , Animais , Osso e Ossos/anatomia & histologia , Brasil , Cordados/anatomia & histologia , Paleontologia , Filogenia
18.
Curr Biol ; 34(13): 2980-2989.e2, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38866005

RESUMO

Our understanding of the evolutionary origin of Chordata, one of the most disparate and ecologically significant animal phyla, is hindered by a lack of unambiguous stem-group relatives. Problematic Cambrian fossils that have been considered as candidate chordates include vetulicolians,1Yunnanozoon,2 and the iconic Pikaia.3 However, their phylogenetic placement has remained poorly constrained, impeding reconstructions of character evolution along the chordate stem lineage. Here we reinterpret the morphology of Pikaia, providing evidence for a gut canal and, crucially, a dorsal nerve cord-a robust chordate synapomorphy. The identification of these structures underpins a new anatomical model of Pikaia that shows that this fossil was previously interpreted upside down. We reveal a myomere configuration intermediate between amphioxus and vertebrates and establish morphological links between Yunnanozoon, Pikaia, and uncontroversial chordates. In this light, we perform a new phylogenetic analysis, using a revised, comprehensive deuterostome dataset, and establish a chordate stem lineage. We resolve vetulicolians as a paraphyletic group comprising the earliest diverging stem chordates, subtending a grade of more derived stem-group chordates comprising Yunnanozoon and Pikaia. Our phylogenetic results reveal the stepwise acquisition of characters diagnostic of the chordate crown group. In addition, they chart a phase in early chordate evolution defined by the gradual integration of the pharyngeal region with a segmented axial musculature, supporting classical evolutionary-developmental hypotheses of chordate origins4 and revealing a "lost chapter" in the history of the phylum.


Assuntos
Evolução Biológica , Cordados , Fósseis , Filogenia , Animais , Fósseis/anatomia & histologia , Cordados/anatomia & histologia , Cordados/classificação , Lagomorpha/anatomia & histologia
19.
Development ; 137(9): 1483-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20335363

RESUMO

Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.


Assuntos
Cordados/embriologia , Cordados/genética , Evolução Molecular , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Células Procarióticas/metabolismo , Animais , Celulose/metabolismo , Cordados/classificação , Transferência Genética Horizontal/genética , Hibridização In Situ , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Exp Zool B Mol Dev Evol ; 320(4): 247-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23606659

RESUMO

For the past 35 years, the Cambrian fossil Pikaia gracilens was widely interpreted as a typical basal chordate based on short descriptions by Conway Morris. Recently, Conway Morris and Caron (CMC) (2012, Biol Rev 87:480-512) described Pikaia extensively, as a basis for new ideas about deuterostome evolution. This new Pikaia has characters with no clear homologues in other animals, so they could be phylogenetically uninformative autapomorphies. These characters include a dorsal organ, posterior ventral area, posterior fusiform structure, and anterior dorsal unit. Yet CMC interpret most of the unusual characters as primitive for chordates, thereby interpreting Pikaia as an even more convincing stem chordate than before. Moreover, they claim that segment (myomere) shape is a reliable guide for defining a chordate and even for assigning animals to their correct place in deuterostome phylogeny. By defining sigmoidal segments as a basal chordate character, they situate Pikaia at the base of the chordates and banish fossil yunnanozoans (which have straight segments) to a position deep within the deuterostomes. In addition, they consider amphioxus, with its conspicuously chevron-shaped segments, to be so highly derived that it is of little use for reconstructing the first chordates. We question their overemphasis on the phylogenetic value of segment shape and their marginalizing of amphioxus. We deduce that Pikaia, not amphioxus, is specialized. We performed a cladistic analysis that showed the character interpretations of CMC are consistent with their wide-ranging evolutionary scenario, but that these interpretations leave unresolved the position of Pikaia within chordates.


Assuntos
Evolução Biológica , Cordados/classificação , Fósseis , Animais , Cordados/genética , Brânquias/anatomia & histologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA