Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 639
Filtrar
1.
Nature ; 527(7577): 240-4, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26560302

RESUMO

Animals have evolved homeostatic responses to changes in oxygen availability that act on different timescales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that controls long-term responses to low oxygen (hypoxia) has been established, the pathway that mediates acute responses to hypoxia in mammals is not well understood. Here we show that the olfactory receptor gene Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of the carotid body, a chemosensory organ at the carotid artery bifurcation that monitors blood oxygen and stimulates breathing within seconds when oxygen declines. Olfr78 mutants fail to increase ventilation in hypoxia but respond normally to hypercapnia. Glomus cells are present in normal numbers and appear structurally intact, but hypoxia-induced carotid body activity is diminished. Lactate, a metabolite that rapidly accumulates in hypoxia and induces hyperventilation, activates Olfr78 in heterologous expression experiments, induces calcium transients in glomus cells, and stimulates carotid sinus nerve activity through Olfr78. We propose that, in addition to its role in olfaction, Olfr78 acts as a hypoxia sensor in the breathing circuit by sensing lactate produced when oxygen levels decline.


Assuntos
Ácido Láctico/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Oxigênio/metabolismo , Receptores Odorantes/metabolismo , Respiração , Animais , Sinalização do Cálcio , Corpo Carotídeo/citologia , Corpo Carotídeo/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Seio Carotídeo/inervação , Feminino , Células HEK293 , Humanos , Hipercapnia/genética , Hipercapnia/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Ácido Láctico/farmacologia , Camundongos , Oxigênio/sangue , Receptores Odorantes/deficiência
2.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153142

RESUMO

The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. Each glomerulus contains neuron-like, O2-sensing glomus cells, which are innervated by sensory fibers of the petrosal ganglion and are located in close contact with a dense network of fenestrated capillaries. In response to hypoxia, glomus cells release transmitters to activate afferent fibers impinging on the respiratory and autonomic centers to induce hyperventilation and sympathetic activation. Glomus cells are embraced by interdigitating processes of sustentacular, glia-like, type II cells. The CB has an extraordinary structural plasticity, unusual for a neural tissue, as it can grow several folds its size in subjects exposed to sustained hypoxia (as for example in high altitude dwellers or in patients with cardiopulmonary diseases). CB growth in hypoxia is mainly due to the generation of new glomeruli and blood vessels. In recent years it has been shown that the adult CB contains a collection of quiescent multipotent stem cells, as well as immature progenitors committed to the neurogenic or the angiogenic lineages. Herein, we review the main properties of the different cell types in the CB germinal niche. We also summarize experimental data suggesting that O2-sensitive glomus cells are the master regulators of CB plasticity. Upon exposure to hypoxia, neurotransmitters and neuromodulators released by glomus cells act as paracrine signals that induce proliferation and differentiation of multipotent stem cells and progenitors, thus causing CB hypertrophy and an increased sensory output. Pharmacological modulation of glomus cell activity might constitute a useful clinical tool to fight pathologies associated with exaggerated sympathetic outflow due to CB overactivation.


Assuntos
Corpo Carotídeo/citologia , Neurotransmissores/fisiologia , Nicho de Células-Tronco/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Neurogênese/fisiologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Oxigênio/metabolismo
3.
Int J Mol Sci ; 21(19)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019660

RESUMO

The carotid body may undergo plasticity changes during development/ageing and in response to environmental (hypoxia and hyperoxia), metabolic, and inflammatory stimuli. The different cell types of the carotid body express a wide series of growth factors and corresponding receptors, which play a role in the modulation of carotid body function and plasticity. In particular, type I cells express nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, insulin-like-growth factor-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-α and -ß, interleukin-1ß and -6, tumor necrosis factor-α, vascular endothelial growth factor, and endothelin-1. Many specific growth factor receptors have been identified in type I cells, indicating autocrine/paracrine effects. Type II cells may also produce growth factors and express corresponding receptors. Future research will have to consider growth factors in further experimental models of cardiovascular, metabolic, and inflammatory diseases and in human (normal and pathologic) samples. From a methodological point of view, microarray and/or proteomic approaches would permit contemporary analyses of large groups of growth factors. The eventual identification of physical interactions between receptors of different growth factors and/or neuromodulators could also add insights regarding functional interactions between different trophic mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Carotídeo/metabolismo , Hiperóxia/genética , Hipóxia/genética , Fator de Crescimento Neural/genética , Receptores de Fatores de Crescimento/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Carotídeo/citologia , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
J Physiol ; 597(19): 4991-5008, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31426127

RESUMO

KEY POINTS: Adenosine and ATP are excitatory neurotransmitters involved in the carotid body (CB) response to hypoxia. During ageing the CB exhibits a decline in its functionality, demonstrated by decreased hypoxic responses. In aged rats (20-24 months old) there is a decrease in: basal and hypoxic release of adenosine and ATP from the CB; expression of adenosine and ATP receptors in the petrosal ganglion; carotid sinus nerve (CSN) activity in response to hypoxia; and ventilatory responses to ischaemic hypoxia. There is also an increase in SNAP25, ENT1 and CD73 expression. It is concluded that, although CSN activity and ventilatory responses to hypoxia decrease with age, adjustments in purinergic metabolism in the CB in aged animals are present aiming to maintain the contribution of adenosine and ATP. The possible significance of the findings in the context of ageing and in CB-associated pathologies is considered. ABSTRACT: During ageing the carotid body (CB) exhibits a decline in its functionality. Here we investigated the effect of ageing on functional CB characteristics as well as the contribution of adenosine and ATP to CB chemosensory activity. Experiments were performed in 3-month-old and 20- to 24-month-old male Wistar rats. Ageing decreased: the number of tyrosine hydroxylase immune-positive cells, but not type II cells or nestin-positive cells in the CB; the expression of P2X2 and A2A receptors in the petrosal ganglion; and the basal and hypoxic release of adenosine and ATP from the CB. Ageing increased ecto-nucleotidase (CD73) immune-positive cells and the expression of synaptosome associated protein 25 (SNAP25) and equilibrative nucleoside transporter 1 (ENT1) in the CB. Additionally, ageing did not modify basal carotid sinus nerve (CSN) activity or the activity in response to hypercapnia, but decreased CSN activity in hypoxia. The contribution of adenosine and ATP to stimuli-evoked CSN chemosensory activity in aged animals followed the same pattern of 3-month-old animals. Bilateral common carotid occlusions during 5, 10 and 15 s increased ventilation proportionally to the duration of ischaemia, an effect decreased by ageing. ATP contributed around 50% to ischaemic-ventilatory responses in young and aged rats; the contribution of adenosine was dependent on the intensity of ischaemia, being maximal in ischaemias of 5 s (50%) and much smaller in 15 s ischaemias. Our results demonstrate that both ATP and adenosine contribute to CB chemosensory activity in ageing. Though CB responses to hypoxia, but not to hypercapnia, decrease with age, the relative contribution of both ATP and adenosine for CB activity is maintained.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/metabolismo , Envelhecimento , Animais , Antinematódeos/farmacologia , Corpo Carotídeo/citologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Suramina/farmacologia , Triazinas/farmacologia , Triazóis/farmacologia
5.
Adv Exp Med Biol ; 1123: 19-38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016593

RESUMO

Somatic stem cells confer plasticity to adult tissues, permitting their maintenance, repair and adaptation to a changing environment. Adult germinal niches supporting somatic stem cells have been thoroughly characterized throughout the organism, including in central and peripheral nervous systems. Stem cells do not reside alone within their niches, but they are rather accompanied by multiple progenitor cells that not only contribute to the progression of stem cell lineage but also regulate their behavior. Understanding the mechanisms underlying these interactions within the niche is crucial to comprehend associated pathologies and to use stem cells in cell therapy. We have described a stunning germinal niche in the adult peripheral nervous system: the carotid body. This is a chemoreceptor organ with a crucial function during physiological adaptation to hypoxia. We have shown the presence of multipotent stem cells within this niche, escorted by multiple restricted progenitor cell types that contribute to niche physiology and hence organismal adaptation to the lack of oxygen. Herein, we discuss new and existing data about the nature of all these stem and progenitor cell types present in the carotid body germinal niche, discussing their role in physiology and their clinical relevance for the treatment of diverse pathologies.


Assuntos
Corpo Carotídeo/citologia , Células-Tronco Multipotentes/citologia , Linhagem da Célula , Humanos , Nicho de Células-Tronco
6.
Physiol Genomics ; 50(7): 504-509, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29652633

RESUMO

Known primarily for its oxygen-sensing capabilities, the carotid body chemoreceptors have recently been implicated, primarily by work in animal models, in the pathophysiology of a number of metabolic conditions. The research presented in this brief review highlights translational work conducted at the Mayo Clinic between 2010 and 2017 in healthy humans and discusses key areas for future work in disease populations.


Assuntos
Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Animais , Corpo Carotídeo/citologia , Humanos , Hipóxia , Oxigênio/metabolismo , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências
7.
J Physiol ; 596(15): 3119-3136, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29160573

RESUMO

KEY POINTS: We studied the role of the large-conductance Ca2+ -activated K+ channel (BK) and voltage-dependent K+ channels (Kv) on [Ca2+ ]i responses to a wide range of hypoxia at different resting cell membrane potential (Em ). BK/Kv were mostly closed at rest in normoxia. BK/Kv became basally active when cells were depolarized by elevated [KCl]o (>12 mm). Regardless of whether BK/Kv were closed or basally open, hypoxia-induced elevation of [Ca2+ ]i was enhanced 2- to 3-fold by inhibitors of BK/Kv. Hypoxia-induced elevation of [Ca2+ ]i was enhanced ∼2-fold by an inhibitor of Kv2, a major Kv in rat glomus cells. Hypoxia did not inhibit BK in inside-out patches. Our study supports a scheme in which activation of BK/Kv strongly limits the magnitude of hypoxia-induced [Ca2+ ]i rise, with Kv having a much greater effect than BK. ABSTRACT: Large-conductance KCa (BK) and other voltage-dependent K+ channels (Kv) are highly expressed in carotid body (CB) glomus cells, but their role in hypoxia-induced excitation is still not well defined and remains controversial. We addressed this issue by studying the effects of inhibitors of BK (IBTX) and BK/Kv (TEA/4-AP) on [Ca2+ ]i responses to a wide range of hypoxia at different levels of resting cell membrane potential (Em ). IBTX and TEA/4-AP did not affect the basal [Ca2+ ]i in isolated glomus cells bathed in 5 mm KClo , but elicited transient increases in [Ca2+ ]i in cells that were moderately depolarized (11-20 mV) by elevation of [KCl]o (12-20 mm). Thus, BK and Kv were mostly closed at rest and activated by depolarization. Four different levels of hypoxia (mild, moderate, severe, anoxia) were used to produce a wide range of [Ca2+ ]i elevation (0-700 nm). IBTX did not affect the rise in [Ca2+ ]i , but TEA/4-AP strongly (∼3-fold) enhanced [Ca2+ ]i rise by moderate and severe levels of hypoxia. Guangxitoxin, a Kv2 blocker, inhibited the whole-cell current by ∼50%, and enhanced 2-fold the [Ca2+ ]i rise elicited by moderate and severe levels of hypoxia. Anoxia did not directly affect BK, but activated BK via depolarization. Our findings do not support the view that hypoxia inhibits BK/Kv to initiate or maintain the hypoxic response. Rather, our results show that BK/Kv are activated as glomus cells depolarize in response to hypoxia, which then limits the rise in [Ca2+ ]i . Inhibition of Kv may provide a mechanism to enhance the chemosensory activity of the CB and ventilation.


Assuntos
Cálcio/fisiologia , Corpo Carotídeo/fisiologia , Hipóxia Celular/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Animais , Corpo Carotídeo/citologia , Ratos Sprague-Dawley
8.
Adv Exp Med Biol ; 1071: 35-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357731

RESUMO

Glomus cells isolated from rabbit and rat/mouse carotid bodies have been used for many years to study the role of ion channels in hypoxia sensing. Studies show that hypoxia inhibits the inactivating K+ channels (Kv4) in rabbits, but inhibits TASK in rats/mice to elicit the hypoxic response. Because the role of TASK in rabbit glomus cells is not known, we isolated glomus cells from rabbits and studied the expression of TASK mRNA in the whole carotid body (CB), changes in [Ca2+]i and TASK activity. RT-PCR showed that rabbit CB expressed mRNA for TASK-3 and several Kv (Kv2.1, Kv3.1 and Kv3.3). In rabbit glomus cells in which 20 mM KClo elevated [Ca2+], anoxia also elicited a strong rise in [Ca2+]. In cell-attached patches with 140 mM KCl in the pipette, basal openings of ion channels with single-channel conductance levels of 16-pS, 34-pS, and 42-pS were present. TREK-like channels were also observed. In inside-out patches with high [Ca2+]i, BK was activated. The 42-pS channel opened spontaneously and briefly. The 16-pS and 34-pS channels showed properties similar to those of TASK-1 and TASK-3, respectively. TASK activity in cell-attached patches was lower than that in rat glomus cells under identical recording conditions. Hypoxia (~0.5%O2) reduced TASK activity by ~52% and depolarized the cells by ~30 mV. Our results show that the O2-sensitive TASK contributes to the hypoxic response in rabbit glomus cells.


Assuntos
Corpo Carotídeo/citologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Animais , Cálcio/fisiologia , Hipóxia Celular , Potenciais da Membrana , Camundongos , Proteínas do Tecido Nervoso , Técnicas de Patch-Clamp , Coelhos , Ratos
9.
J Physiol ; 595(18): 6091-6120, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28718507

RESUMO

KEY POINTS: Glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM) are essential for reflex cardiorespiratory adaptation to hypoxia. However, the mechanisms whereby these cells detect changes in O2 tension are poorly understood. The metabolic properties of acute O2 -sensing cells have been investigated by comparing the transcriptomes of CB and AM cells, which are O2 -sensitive, with superior cervical ganglion neurons, which are practically O2 -insensitive. In O2 -sensitive cells, we found a characteristic prolyl hydroxylase 3 down-regulation and hypoxia inducible factor 2α up-regulation, as well as overexpression of genes coding for three atypical mitochondrial electron transport subunits and pyruvate carboxylase, an enzyme that replenishes tricarboxylic acid cycle intermediates. In agreement with this observation, the inhibition of succinate dehydrogenase impairs CB acute O2 sensing. The responsiveness of peripheral chemoreceptor cells to acute hypoxia depends on a 'signature metabolic profile'. ABSTRACT: Acute O2 sensing is a fundamental property of cells in the peripheral chemoreceptors, e.g. glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM), and is necessary for adaptation to hypoxia. These cells contain O2 -sensitive ion channels, which mediate membrane depolarization and transmitter release upon exposure to hypoxia. However, the mechanisms underlying the detection of changes in O2 tension by cells are still poorly understood. Recently, we suggested that CB glomus cells have specific metabolic features that favour the accumulation of reduced quinone and the production of mitochondrial NADH and reactive oxygen species during hypoxia. These signals alter membrane ion channel activity. To investigate the metabolic profile characteristic of acute O2 -sensing cells, we used adult mice to compare the transcriptomes of three cell types derived from common sympathoadrenal progenitors, but exhibiting variable responsiveness to acute hypoxia: CB and AM cells, which are O2 -sensitive (glomus cells > chromaffin cells), and superior cervical ganglion neurons, which are practically O2 -insensitive. In the O2 -sensitive cells, we found a characteristic mRNA expression pattern of prolyl hydroxylase 3/hypoxia inducible factor 2α and up-regulation of several genes, in particular three atypical mitochondrial electron transport subunits and some ion channels. In addition, we found that pyruvate carboxylase, an enzyme fundamental to tricarboxylic acid cycle anaplerosis, is overexpressed in CB glomus cells. We also observed that the inhibition of succinate dehydrogenase impairs CB acute O2 sensing. Our data suggest that responsiveness to acute hypoxia depends on a 'signature metabolic profile' in chemoreceptor cells.


Assuntos
Corpo Carotídeo/citologia , Células Quimiorreceptoras/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Transcriptoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Corpo Carotídeo/metabolismo , Células Cultivadas , Feminino , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio/genética , Canais de Potássio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo
10.
J Physiol ; 595(13): 4261-4277, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28332205

RESUMO

KEY POINTS: 5-HT is a neuromodulator released from carotid body (CB) chemoreceptor (type I) cells and facilitates the sensory discharge following chronic intermittent hypoxia (CIH). In the present study, we show that, in addition to type I cells, adjacent glial-like type II cells express functional, ketanserin-sensitive 5-HT2 receptors, and their stimulation increases cytoplasmic Ca2+ derived from intracellular stores. In type II cells, 5-HT activated a ketanserin-sensitive inward current (I5-HT ) that was similar to that (IUTP ) activated by the P2Y2R agonist, UTP. As previously shown for IUTP , I5-HT was inhibited by BAPTA-AM and carbenoxolone (5 µm), a putative blocker of ATP-permeable pannexin (Panx)-1 channels; IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide channel blocker, 10 Panx peptide. Paracrine stimulation of type II cells by 5-HT, leading to ATP release via Panx-1 channels, may contribute to CB excitability, especially in pathophysiological conditions associated with CIH (e.g. obstructive sleep apnoea). ABSTRACT: Carotid body (CB) chemoreceptor (type I) cells can synthesize and release 5-HT and increased autocrine-paracrine 5-HT2 receptor signalling contributes to sensory long-term facilitation during chronic intermittent hypoxia (CIH). However, recent studies suggest that adjacent glial-like type II cells can respond to CB paracrine signals by elevating intracellular calcium (Δ[Ca2+ ]i ) and activating carbenoxolone-sensitive, ATP-permeable, pannexin (Panx)-1-like channels. In the present study, using dissociated rat CB cultures, we found that 5-HT induced Δ[Ca2+ ]i responses in a subpopulation of type I cells, as well as in most (∼67%) type II cells identified by their sensitivity to the P2Y2 receptor agonist, UTP. The 5-HT-induced Ca2+ response in type II cells was dose-dependent (EC50 ∼183 nm) and largely inhibited by the 5-HT2A receptor blocker, ketanserin (1 µm), and also arose mainly from intracellular stores. 5-HT also activated an inward current (I5-HT ) in type II cells (EC50 ∼200 nm) that was reversibly inhibited by ketanserin (1-10 nm), the Ca2+ chelator BAPTA-AM (5 µm), and low concentrations of carbenoxolone (5 µm), a putative Panx-1 channel blocker. I5-HT reversed direction at approximately -11 mV and was indistinguishable from the UTP-activated current (IUTP ). Consistent with a role for Panx-1 channels, IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide blocker 10 Panx (100 µm), although not by its scrambled control peptide (sc Panx). Because ATP is an excitatory CB neurotransmitter, it is possible that the contribution of enhanced 5-HT signalling to the increased sensory discharge during CIH may occur, in part, by a boosting of ATP release from type II cells via Panx-1 channels.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Serotonina/farmacologia , Animais , Carbenoxolona/farmacologia , Corpo Carotídeo/citologia , Células Cultivadas , Células Quimiorreceptoras/efeitos dos fármacos , Conexinas/antagonistas & inibidores , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Wistar
11.
Stem Cells ; 34(6): 1637-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26866353

RESUMO

Neural stem cells (NSCs) are promising tools for understanding nervous system plasticity and repair, but their use is hampered by the lack of markers suitable for their prospective isolation and characterization. The carotid body (CB) contains a population of peripheral NSCs, which support organ growth during acclimatization to hypoxia. We have set up CB neurosphere (NS) cultures enriched in differentiated neuronal (glomus) cells versus undifferentiated progenitors to investigate molecular hallmarks of cell classes within the CB stem cell (CBSC) niche. Microarray gene expression analysis in NS is compatible with CBSCs being neural crest derived-multipotent progenitor cells able to sustain CB growth upon exposure to hypoxia. Moreover, we have identified CD10 as a marker suitable for isolation of a population of CB mesectoderm-committed progenitor cells. CD10 + cells are resting in normoxia, and during hypoxia they are activated to proliferate and to eventually complete maturation into mesectodermal cells, thus participating in the angiogenesis necessary for CB growth. Our results shed light into the molecular and cellular mechanisms involved in CBSC fate choice, favoring a potential use of these cells for cell therapy. Stem Cells 2016;34:1637-1650.


Assuntos
Corpo Carotídeo/citologia , Linhagem da Célula , Ectoderma/citologia , Perfilação da Expressão Gênica , Mesoderma/citologia , Neprilisina/metabolismo , Crista Neural/citologia , Células-Tronco Neurais/citologia , Animais , Biomarcadores/metabolismo , Contagem de Células , Diferenciação Celular/genética , Hipóxia Celular/genética , Endotelina-1/metabolismo , Regulação da Expressão Gênica , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Wistar , Esferoides Celulares/citologia , Nicho de Células-Tronco/genética
12.
EMBO Rep ; 16(11): 1511-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26392570

RESUMO

Mitochondria play a central role in stem cell homeostasis. Reversible switching between aerobic and anaerobic metabolism is critical for stem cell quiescence, multipotency, and differentiation, as well as for cell reprogramming. However, the effect of mitochondrial dysfunction on neural stem cell (NSC) function is unstudied. We have generated an animal model with homozygous deletion of the succinate dehydrogenase subunit D gene restricted to cells of glial fibrillary acidic protein lineage (hGFAP-SDHD mouse). Genetic mitochondrial damage did not alter the generation, maintenance, or multipotency of glia-like central NSCs. However, differentiation to neurons and oligodendrocytes (but not to astrocytes) was impaired and, hence, hGFAP-SDHD mice showed extensive brain atrophy. Peripheral neuronal populations were normal in hGFAP-SDHD mice, thus highlighting their non-glial (non hGFAP(+)) lineage. An exception to this was the carotid body, an arterial chemoreceptor organ atrophied in hGFAP-SDHD mice. The carotid body contains glia-like adult stem cells, which, as for brain NSCs, are resistant to genetic mitochondrial damage.


Assuntos
Mitocôndrias/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese , Neuroglia/citologia , Animais , Astrócitos/fisiologia , Encéfalo/anormalidades , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Corpo Carotídeo/citologia , Corpo Carotídeo/ultraestrutura , Modelos Animais de Doenças , Deleção de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Mitocôndrias/genética , Células-Tronco Neurais/ultraestrutura , Neurônios/fisiologia , Oligodendroglia/fisiologia , Succinato Desidrogenase/genética
13.
J Physiol ; 594(15): 4225-51, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26940531

RESUMO

KEY POINTS: Carotid body (CB) glomus cells mediate acute oxygen sensing and the initiation of the hypoxic ventilatory response, yet the gene expression profile of these cells is not available. We demonstrate that the single cell RNA-Seq method is a powerful tool for identifying highly expressed genes in CB glomus cells. Our single cell RNA-Seq results characterized novel CB glomus cell genes, including members of the G protein-coupled receptor signalling pathway, ion channels and atypical mitochondrial electron transport chain subunits. A heterologous cell-based screening identified acetate (which is known to affect CB glomus cell activity) as an agonist for the most highly abundant G protein-coupled receptor (Olfr78) in CB glomus cells. These data established the first transcriptome profile of CB glomus cells, highlighting genes with potential implications in CB chemosensory function. ABSTRACT: The carotid body (CB) is a major arterial chemoreceptor containing glomus cells whose activities are regulated by changes in arterial blood content, including oxygen. Despite significant advancements in the characterization of their physiological properties, our understanding of the underlying molecular machinery and signalling pathway in CB glomus cells is still limited. To overcome this, we employed the single cell RNA-Seq method by performing next-generation sequencing on single glomus cell-derived cDNAs to eliminate contamination of genes derived from other cell types present in the CB. Using this method, we identified a set of genes abundantly expressed in glomus cells, which contained novel glomus cell-specific genes. Transcriptome and subsequent in situ hybridization and immunohistochemistry analyses identified abundant G protein-coupled receptor signalling pathway components and various types of ion channels, as well as members of the hypoxia-inducible factors pathway. A short-chain fatty acid olfactory receptor Olfr78, recently implicated in CB function, was the most abundant G protein-coupled receptor. Two atypical mitochondrial electron transport chain subunits (Ndufa4l2 and Cox4i2) were among the most specifically expressed genes in CB glomus cells, highlighting their potential roles in mitochondria-mediated oxygen sensing. The wealth of information provided by the present study offers a valuable foundation for identifying molecules functioning in the CB.


Assuntos
Corpo Carotídeo/metabolismo , Animais , Corpo Carotídeo/citologia , Feminino , Perfilação da Expressão Gênica , Fator 1 Induzível por Hipóxia/genética , Canais Iônicos/genética , Masculino , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Análise de Sequência de RNA
14.
J Physiol ; 594(5): 1179-95, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26337139

RESUMO

Ventilatory sensitivity to hypoxia increases in response to continued hypoxic exposure as part of acute acclimatisation. Although this process is incompletely understood, insights have been gained through studies of the hypoxia-inducible factor (HIF) hydroxylase system. Genetic studies implicate these pathways widely in the integrated physiology of hypoxia, through effects on developmental or adaptive processes. In keeping with this, mice that are heterozygous for the principal HIF prolyl hydroxylase, PHD2, show enhanced ventilatory sensitivity to hypoxia and carotid body hyperplasia. Here we have sought to understand this process better through comparative analysis of inducible and constitutive inactivation of PHD2 and its principal targets HIF-1α and HIF-2α. We demonstrate that general inducible inactivation of PHD2 in tamoxifen-treated Phd2(f/f);Rosa26(+/CreERT2) mice, like constitutive, heterozygous PHD2 deficiency, enhances hypoxic ventilatory responses (HVRs: 7.2 ± 0.6 vs. 4.4 ± 0.4 ml min(-1) g(-1) in controls, P < 0.01). The ventilatory phenotypes associated with both inducible and constitutive inactivation of PHD2 were strongly compensated for by concomitant inactivation of HIF-2α, but not HIF-1α. Furthermore, inducible inactivation of HIF-2α strikingly impaired ventilatory acclimatisation to chronic hypoxia (HVRs: 4.1 ± 0.5 vs. 8.6 ± 0.5 ml min(-1) g(-1) in controls, P < 0.0001), as well as carotid body cell proliferation (400 ± 81 vs. 2630 ± 390 bromodeoxyuridine-positive cells mm(-2) in controls, P < 0.0001). The findings demonstrate the importance of the PHD2/HIF-2α enzyme-substrate couple in modulating ventilatory sensitivity to hypoxia.


Assuntos
Corpo Carotídeo/metabolismo , Proliferação de Células , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Ventilação Pulmonar , Fatores de Transcrição/metabolismo , Animais , Corpo Carotídeo/citologia , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/genética
15.
J Physiol ; 594(2): 391-406, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537220

RESUMO

KEY POINTS: Carotid body chemoreceptors are organized in clusters containing receptor type I and contiguous glial-like type II cells. While type I cells depolarize and release ATP during chemostimulation, the role of type II cells which express purinergic P2Y2 receptors (P2Y2Rs) and ATP-permeable pannexin-1 (Panx-1) channels, is unclear. Here, we show that in isolated rat chemoreceptor clusters, type I cell depolarization induced by hypoxia, hypercapnia, or high K(+) caused delayed intracellular Ca(2+) elevations (Δ[Ca(2+)]i) in nearby type II cells that were inhibited by the P2Y2R blocker suramin, or by the nucleoside hydrolase apyrase. Likewise, stimulation of P2Y2Rs on type II cells caused a delayed, secondary Δ[Ca(2+)]i in nearby type I cells that was inhibited by blockers of Panx-1 channels, adenosine A2A receptors and 5'-ectonucleotidase. We propose that reciprocal crosstalk between type I and type II cells contributes to sensory processing in the carotid body via purinergic signalling pathways. ABSTRACT: The mammalian carotid body (CB) is excited by blood-borne stimuli including hypoxia and acid hypercapnia, leading to respiratory and cardiovascular reflex responses. This chemosensory organ consists of innervated clusters of receptor type I cells, ensheathed by processes of adjacent glial-like type II cells. ATP is a major excitatory neurotransmitter released from type I cells and type II cells express purinergic P2Y2 receptors (P2Y2Rs), the activation of which leads to the opening of ATP-permeable, pannexin-1 (Panx-1) channels. While these properties support crosstalk between type I and type II cells during chemotransduction, direct evidence is lacking. To address this, we first exposed isolated rat chemoreceptor clusters to acute hypoxia, isohydric hypercapnia, or the depolarizing stimulus high K(+), and monitored intracellular [Ca(2+)] using Fura-2. As expected, these stimuli induced intracellular [Ca(2+)] elevations (Δ[Ca(2+)]i) in type I cells. Interestingly, however, there was often a delayed, secondary Δ[Ca(2+)]i in nearby type II cells that was reversibly inhibited by the P2Y2R antagonist suramin, or by the nucleoside hydrolase apyrase. By contrast, type II cell stimulation with the P2Y2R agonist uridine-5'-triphosphate (100 µm) often led to a delayed, secondary Δ[Ca(2+)]i response in nearby type I cells that was reversibly inhibited by the Panx-1 blocker carbenoxolone (5 µm). This Δ[Ca(2+)]i response was also strongly inhibited by blockers of either the adenosine A2A receptor (SCH 58261) or of the 5'-ectonucleotidase (AOPCP), suggesting it was due to adenosine arising from breakdown of ATP released through Panx-1 channels. Collectively, these data strongly suggest that purinergic signalling mechanisms mediate crosstalk between CB chemoreceptor and glial cells during chemotransduction.


Assuntos
Sinalização do Cálcio , Corpo Carotídeo/metabolismo , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animais , Dióxido de Carbono/metabolismo , Corpo Carotídeo/citologia , Células Cultivadas , Neuroglia/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Wistar
16.
Pflugers Arch ; 468(1): 143-155, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26490460

RESUMO

A functional role for the mitochondria in acute O2 sensing in the carotid body (CB) remains undetermined. Whilst total inhibition of mitochondrial activity causes intense CB stimulation, it is unclear whether this response can be moderated such that graded impairment of oxidative phosphorylation might be a mechanism that sets and modifies the O2 sensitivity of the whole organ. We assessed NADH autofluorescence and [Ca2+]i in freshly dissociated CB type I cells and sensory chemoafferent discharge frequency in an intact CB preparation, in the presence of varying concentrations of nitrite (NO2 −), a mitochondrial nitric oxide (NO) donor and a competitive inhibitor of mitochondrial complex IV. NO2 − increased CB type I cell NADH in a manner that was dose-dependent and rapidly reversible. Similar concentrations of NO2 − raised type I cell [Ca2+]i via L-type channels in a PO2-dependent manner and increased chemoafferent discharge frequency. Moderate inhibition of the CB mitochondria by NO2 − augmented chemoafferent discharge frequency during graded hypoxia, consistent with a heightened CB O2 sensitivity. Furthermore, NO2 − also exaggerated chemoafferent excitation during hypercapnia signifying an increase in CB CO2 sensitivity. These data show that NO2 − can moderate the hypoxia sensitivity of the CB and thus suggest that O2 sensitivity could be set and modified in this organ by interactions between NO and mitochondrial complex IV.


Assuntos
Corpo Carotídeo/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Corpo Carotídeo/citologia , Hipóxia Celular , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/farmacologia , Ratos
17.
J Physiol ; 593(3): 619-34, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25433075

RESUMO

KEY POINTS: The respiratory control of the glottis by laryngeal motoneurones is characterized by inspiratory abduction and post-inspiratory adduction causing decreases and increases in upper airway resistance, respectively. Chronic intermittent hypoxia (CIH), an important component of obstructive sleep apnoea, exaggerated glottal abduction (before inspiration), associated with active expiration and decreased glottal adduction during post-inspiration. CIH increased the inspiratory and decreased the post-inspiratory laryngeal motoneurone activities, which is not associated to changes in their intrinsic electrophysiological properties. We conclude that the changes in the respiratory network after CIH seem to be an adaptive process required for an appropriated pulmonary ventilation and control of upper airway resistance under intermittent episodes of hypoxia. ABSTRACT: To keep an appropriate airflow to and from the lungs under physiological conditions a precise neural co-ordination of the upper airway resistance by laryngeal motoneurones in the nucleus ambiguus is essential. Chronic intermittent hypoxia (CIH), an important component of obstructive sleep apnoea, may alter these fine mechanisms. Here, using nerve and whole cell patch clamp recordings in in situ preparations of rats we investigated the effects of CIH on the respiratory control of the upper airway resistance, on the electrophysiological properties of laryngeal motoneurones in the nucleus ambiguus, and the role of carotid body (CB) afferents to the brainstem on the underlying mechanisms of these effects. CIH rats exhibited longer pre-inspiratory and lower post-inspiratory superior laryngeal nerve activities than control rats. These changes produced exaggerated glottal abduction (before inspiration) and decreased glottal adduction during post-inspiration, indicating a reduction of upper airway resistance during these respiratory phases after CIH. CB denervation abolished these changes produced by CIH. Regarding choline acetyltransferase positive-laryngeal motoneurones, CIH increased the firing frequency of inspiratory and decreased the firing frequency of post-inspiratory laryngeal motoneurones, without changes in their intrinsic electrophysiological properties. These data show that the effects of CIH on the upper airway resistance and laryngeal motoneurones activities are driven by the integrity of CB, which afferents induce changes in the central respiratory generators in the brainstem. These neural changes in the respiratory network seem to be an adaptive process required for an appropriated pulmonary ventilation and control of upper airway resistance under intermittent episodes of hypoxia.


Assuntos
Potenciais de Ação , Hipóxia/fisiopatologia , Nervos Laríngeos/fisiologia , Neurônios Motores/fisiologia , Animais , Corpo Carotídeo/citologia , Corpo Carotídeo/fisiologia , Nervos Laríngeos/citologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Ratos , Ratos Wistar
18.
Am J Physiol Heart Circ Physiol ; 308(8): H942-50, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25681426

RESUMO

Decreased carotid arterial compliance has been reported in obese subjects and animals. Carotid baroreceptors are located at the bifurcation of the common carotid artery, and respond to distension of the arterial wall, suggesting that higher pressure is required to obtain the same distension in obese subjects and animals. A hyperosmotic NaCl solution induces circulatory volume expansion and arterial pressure (AP) increase, which reflexively augment renal excretion. Thus, we hypothesized that sodium regulation via the baroreflex might be impaired in response to chronic hyperosmotic NaCl infusion in rats fed a high-fat diet. To examine this hypothesis, we used rats fed a high-fat (Fat) or normal (NFD) diet, and measured mean AP, water and sodium balance, and renal function in response to chronic infusion of hyperosmotic NaCl solution via a venous catheter. Furthermore, we examined arterial baroreflex characteristics with static open-loop analysis and distensibility of the common carotid artery. Significant positive water and sodium balance was observed on the 1st day of 9% NaCl infusion; however, this disappeared by the 2nd day in Fat rats. Mean AP was significantly higher during 9% NaCl infusion in Fat rats compared with NFD rats. In the open-loop analysis of carotid sinus baroreflex, a rightward shift of the neural arc was observed in Fat rats compared with NFD rats. Furthermore, distensibility of the common carotid artery was significantly reduced in Fat rats. These results indicate that a reduced baroreceptor distensibility-induced rightward shift of the neural arc might contribute to impairment of sodium regulation in Fat rats.


Assuntos
Barorreflexo , Corpo Carotídeo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Pressorreceptores/fisiologia , Sódio/sangue , Animais , Pressão Sanguínea , Corpo Carotídeo/citologia , Masculino , Pressorreceptores/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sódio/farmacologia
19.
J Anat ; 226(4): 348-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25753214

RESUMO

Little attention has been paid to adrenal sustentacular cells, and several major histology textbooks do not even describe them. This study presents a detailed morphological description of sustentacular cells using immuno-light microscopy and an antibody against brain-type fatty acid-binding protein. The immunopositive sustentacular cells and processes formed lattices with holes of various sizes and compactnesses or openness. In addition, weakly immunostained sheet-like structures with ill-defined contours were often associated with the processes and lattices. In the carotid body, which has traditionally been classified under the name of paraganglia in common with the adrenal medulla, immunostained sustentacular cell processes formed lattices in association with the weakly immunostained sheet-like structures, but the lattices with sheets were more compact and rigid than the adrenal medulla, and appeared like individually distinct compartments. In the ganglion, the immunostained satellite cell processes with the sheets tightly enclosed individual neurons. As a result, the immunostained sheet-like structures were regarded as en-face views of thinly flattened sustentacular cytoplasmic envelopes partially covering the chromaffin cells in the adrenal medulla, and widely in the carotid body in a way rather similar to the satellite cells in the ganglion. In brief, the terminal enclosing portions of adrenal sustentacular cell processes, in cut-views, were too thin/flat to be recognized as distinct lines in immuno-light microscopy because of its resolution limit. They are recognized in en-face views as entities of a substantially spacious extension in immuno-light microscopy.


Assuntos
Medula Suprarrenal/citologia , Corpo Carotídeo/citologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Gânglios Simpáticos/citologia , Medula Suprarrenal/metabolismo , Animais , Corpo Carotídeo/metabolismo , Gânglios Simpáticos/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia/métodos , Microscopia Eletrônica
20.
Adv Exp Med Biol ; 860: 69-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303469

RESUMO

The identity of the oxygen sensor in arterial chemoreceptors has been the subject of much speculation. One of the oldest hypotheses is that oxygen is sensed through oxidative phosphorylation. There is a wealth of data demonstrating that arterial chemoreceptors are excited by inhibitors of oxidative phosphorylation. These compounds mimic the effects of hypoxia inhibiting TASK1/3 potassium channels causing membrane depolarisation calcium influx and neurosecretion. The TASK channels of Type-I cells are also sensitive to cytosolic MgATP. The existence of a metabolic signalling pathway in Type-1 cells is thus established; the contentious issue is whether this pathway is also used for acute oxygen sensing. The main criticism is that because cytochrome oxidase has a high affinity for oxygen (P50 ≈ 0.2 mmHg) mitochondrial metabolism should be insensitive to physiological hypoxia. This argument is however predicated on the assumption that chemoreceptor mitochondria are analogous to those of other tissues. We have however obtained new evidence to support the hypothesis that type-1 cell mitochondria are not like those of other cells in that they have an unusually low affinity for oxygen (Mills E, Jobsis FF, J Neurophysiol 35(4):405-428, 1972; Duchen MR, Biscoe TJ, J Physiol 450:13-31, 1992a). Our data confirm that mitochondrial membrane potential, NADH, electron transport and cytochrome oxidase activity in the Type-1 cell are all highly sensitive to hypoxia. These observations not only provide exceptionally strong support for the metabolic hypothesis but also reveal an unknown side of mitochondrial behaviour.


Assuntos
Corpo Carotídeo/fisiologia , Mitocôndrias/fisiologia , Oxigênio/metabolismo , Animais , Corpo Carotídeo/citologia , Humanos , Sulfeto de Hidrogênio/farmacologia , Canais Iônicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA