Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
1.
Cell ; 184(23): 5740-5758.e17, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735796

RESUMO

Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.


Assuntos
Bactérias/genética , Biofilmes , DNA Bacteriano/química , Matriz Extracelular/metabolismo , Espaço Extracelular/química , Animais , Especificidade de Anticorpos , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chinchila , DNA Cruciforme , Desoxirribonucleases/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Acetato de Tetradecanoilforbol/farmacologia
2.
Annu Rev Biochem ; 86: 461-484, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654322

RESUMO

Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000-4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.


Assuntos
Adenina/metabolismo , Síndrome de Bloom/genética , DNA Catalítico/genética , Guanina/metabolismo , Polimorfismo Genético , Síndrome de Werner/genética , Evolução Biológica , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patologia , Catálise , Reparo do DNA , DNA Catalítico/metabolismo , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Hidrólise , Sequências Repetidas Invertidas , Mutação , Síndrome de Werner/metabolismo , Síndrome de Werner/patologia , Globinas beta/genética , Globinas beta/metabolismo
3.
Mol Cell ; 84(4): 640-658.e10, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266639

RESUMO

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.


Assuntos
Proteínas de Ligação a DNA , Recombinases , Humanos , DNA/genética , Reparo do DNA , Replicação do DNA , DNA Cruciforme , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo
4.
Mol Cell ; 83(16): 2941-2958.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595556

RESUMO

Crossovers (COs), the exchange of homolog arms, are required for accurate chromosome segregation during meiosis. Studies in yeast have described the single-end invasion (SEI) intermediate: a stabilized 3' end annealed with the homolog as the first detectible CO precursor. SEIs are thought to differentiate into double Holliday junctions (dHJs) that are resolved by MutLgamma (MLH1/MLH3) into COs. Currently, we lack knowledge of early steps of mammalian CO recombination or how intermediates are differentiated in any organism. Using comprehensive analysis of recombination in thirteen different genetic conditions with varying levels of compromised CO resolution, we infer CO precursors include asymmetric SEI-like intermediates and dHJs in mouse. In contrast to yeast, MLH3 is structurally required to differentiate CO precursors into dHJs. We verify conservation of aspects of meiotic recombination and show unique features in mouse, providing mechanistic insight into CO formation.


Assuntos
Meiose , Saccharomyces cerevisiae , Animais , Camundongos , Saccharomyces cerevisiae/genética , Meiose/genética , Segregação de Cromossomos/genética , DNA Cruciforme/genética , Mamíferos
5.
Mol Cell ; 82(19): 3538-3552.e5, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36075220

RESUMO

DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.


Assuntos
DNA Cruciforme , Nylons , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Humanos , Conformação de Ácido Nucleico
6.
Annu Rev Biochem ; 83: 487-517, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905786

RESUMO

The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.


Assuntos
Cromatina/química , Chaperonas de Histonas/química , Histonas/química , Nucleossomos/química , Animais , Proteínas de Ciclo Celular/metabolismo , DNA/química , Dano ao DNA , Replicação do DNA , DNA Cruciforme/química , Histonas/metabolismo , Humanos , Ligação Proteica
7.
Mol Cell ; 81(20): 4258-4270.e4, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34453891

RESUMO

Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.


Assuntos
Troca Genética , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/genética , DNA Fúngico/genética , Meiose , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã , DNA Cruciforme/metabolismo , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
8.
Nature ; 609(7927): 630-639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002576

RESUMO

The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Bactérias , DNA Helicases , DNA Cruciforme , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , DNA Cruciforme/química , DNA Cruciforme/metabolismo , DNA Cruciforme/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Recombinação Homóloga , Hidrólise , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleotídeos , Conformação Proteica , Rotação
9.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32362315

RESUMO

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Assuntos
Troca Genética/fisiologia , Recombinação Homóloga/fisiologia , Meiose/fisiologia , Animais , Segregação de Cromossomos/genética , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Recombinação Homóloga/genética , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heteroduplexes/genética
10.
EMBO J ; 42(3): e111998, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541070

RESUMO

The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSß (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Cruciforme , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Instabilidade de Microssatélites , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Proteína 1 Homóloga a MutL/genética
11.
Cell ; 149(2): 334-47, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500800

RESUMO

At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of recombination during budding yeast meiosis, we show that all three endonucleases are capable of promoting JM resolution in vivo. However, in mms4 slx4 yen1 triple mutants, JM resolution and crossing over occur efficiently. Paradoxically, crossing over in this background is strongly dependent on the Blooms helicase ortholog Sgs1, a component of a well-characterized anticrossover activity. Sgs1-dependent crossing over, but not JM resolution per se, also requires XPG family nuclease Exo1 and the MutLγ complex Mlh1-Mlh3. Thus, Sgs1, Exo1, and MutLγ together define a previously undescribed meiotic JM resolution pathway that produces the majority of crossovers in budding yeast and, by inference, in mammals.


Assuntos
Troca Genética , DNA Cruciforme , Meiose , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Resolvases de Junção Holliday/metabolismo , Mutação , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
PLoS Biol ; 21(4): e3002085, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079643

RESUMO

In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. Here, we provide genetic evidence in baker's yeast that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 that interact with DNA, such as those required for the bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect in exo1 null mutants, and meiotic overexpression of Cdc9 ligase reduced the crossover levels of exo1 DNA-binding mutants to levels that approached the exo1 null. In addition, our work identified a role for Exo1 in crossover interference. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Troca Genética , Quebras de DNA de Cadeia Simples , DNA Cruciforme , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Meiose/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Cell ; 147(1): 158-72, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21962513

RESUMO

The efficient and timely resolution of DNA recombination intermediates is essential for bipolar chromosome segregation. Here, we show that the specialized chromosome segregation patterns of meiosis and mitosis, which require the coordination of recombination with cell-cycle progression, are achieved by regulating the timing of activation of two crossover-promoting endonucleases. In yeast meiosis, Mus81-Mms4 and Yen1 are controlled by phosphorylation events that lead to their sequential activation. Mus81-Mms4 is hyperactivated by Cdc5-mediated phosphorylation in meiosis I, generating the crossovers necessary for chromosome segregation. Yen1 is also tightly regulated and is activated in meiosis II to resolve persistent Holliday junctions. In yeast and human mitotic cells, a similar regulatory network restrains these nuclease activities until mitosis, biasing the outcome of recombination toward noncrossover products while also ensuring the elimination of any persistent joint molecules. Mitotic regulation thereby facilitates chromosome segregation while limiting the potential for loss of heterozygosity and sister-chromatid exchanges.


Assuntos
DNA Cruciforme , Meiose , Mitose , Recombinação Genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Troca Genética , Células HeLa , Resolvases de Junção Holliday/metabolismo , Humanos , Saccharomyces cerevisiae/enzimologia
14.
Nature ; 586(7830): 623-627, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814343

RESUMO

During meiosis, crossover recombination connects homologous chromosomes to direct their accurate segregation1. Defective crossing over causes infertility, miscarriage and congenital disease. Each pair of chromosomes attains at least one crossover via the formation and biased resolution of recombination intermediates known as double Holliday junctions2,3. A central principle of crossover resolution is that the two Holliday junctions are resolved in opposite planes by targeting nuclease incisions to specific DNA strands4. The endonuclease activity of the MutLγ complex has been implicated in the resolution of crossovers5-10, but the mechanisms that activate and direct strand-specific cleavage remain unknown. Here we show that the sliding clamp PCNA is important for crossover-biased resolution. In vitro assays with human enzymes show that PCNA and its loader RFC are sufficient to activate the MutLγ endonuclease. MutLγ is further stimulated by a co-dependent activity of the pro-crossover factors EXO1 and MutSγ, the latter of which binds Holliday junctions11. MutLγ also binds various branched DNAs, including Holliday junctions, but does not show canonical resolvase activity, implying that the endonuclease incises adjacent to junction branch points to achieve resolution. In vivo, RFC facilitates MutLγ-dependent crossing over in budding yeast. Furthermore, PCNA localizes to prospective crossover sites along synapsed chromosomes. These data highlight similarities between crossover resolution and the initiation steps of DNA mismatch repair12,13 and evoke a novel model for crossover-specific resolution of double Holliday junctions during meiosis.


Assuntos
Troca Genética , Endonucleases/metabolismo , Meiose , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Masculino , Camundongos , Proteínas MutS/metabolismo , Ligação Proteica , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Nature ; 577(7792): 701-705, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969709

RESUMO

Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks1,2. The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription3-6. Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.


Assuntos
DNA Fúngico/química , DNA Super-Helicoidal/química , Genes Fúngicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Fase G1 , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mutação , Hibridização de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Fases de Leitura Aberta/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Fase S , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
16.
Nature ; 586(7830): 618-622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814904

RESUMO

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Assuntos
Troca Genética , Endonucleases/metabolismo , Meiose , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/genética , Sequência Conservada , DNA/metabolismo , Clivagem do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA Cruciforme/metabolismo , Exodesoxirribonucleases/metabolismo , Humanos , Proteína 1 Homóloga a MutL/química , Proteínas MutL/química , Proteínas MutS/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo
17.
Mol Cell ; 70(1): 9-20.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625041

RESUMO

Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Cruciforme , DNA Fúngico/genética , Meiose , Ácidos Nucleicos Heteroduplexes/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , DNA Fúngico/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell ; 142(2): 243-55, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655467

RESUMO

Crossovers between meiotic homologs are crucial for their proper segregation, and crossover number and position are carefully controlled. Crossover homeostasis in budding yeast maintains crossovers at the expense of noncrossovers when double-strand DNA break (DSB) frequency is reduced. The mechanism of maintaining constant crossover levels in other species has been unknown. Here we investigate in fission yeast a different aspect of crossover control--the near invariance of crossover frequency per kb of DNA despite large variations in DSB intensity across the genome. Crossover invariance involves the choice of sister chromatid versus homolog for DSB repair. At strong DSB hotspots, intersister repair outnumbers interhomolog repair approximately 3:1, but our genetic and physical data indicate the converse in DSB-cold regions. This unanticipated mechanism of crossover control may operate in many species and explain, for example, the large excess of DSBs over crossovers and the repair of DSBs on unpaired chromosomes in diverse species.


Assuntos
Troca Genética , Reparo do DNA , Meiose , Schizosaccharomyces/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Cruciforme , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
Nucleic Acids Res ; 51(12): 6156-6171, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158250

RESUMO

Pathogenic Vibrio species account for 3-5 million annual life-threatening human infections. Virulence is driven by bacterial hemolysin and toxin gene expression often positively regulated by the winged helix-turn-helix (wHTH) HlyU transcriptional regulator family and silenced by histone-like nucleoid structural protein (H-NS). In the case of Vibrio parahaemolyticus, HlyU is required for virulence gene expression associated with type 3 Secretion System-1 (T3SS1) although its mechanism of action is not understood. Here, we provide evidence for DNA cruciform attenuation mediated by HlyU binding to support concomitant virulence gene expression. Genetic and biochemical experiments revealed that upon HlyU mediated DNA cruciform attenuation, an intergenic cryptic promoter became accessible allowing for exsA mRNA expression and initiation of an ExsA autoactivation feedback loop at a separate ExsA-dependent promoter. Using a heterologous E. coli expression system, we reconstituted the dual promoter elements which revealed that HlyU binding and DNA cruciform attenuation were strictly required to initiate the ExsA autoactivation loop. The data indicate that HlyU acts to attenuate a transcriptional repressive DNA cruciform to support T3SS1 virulence gene expression and reveals a non-canonical extricating gene regulation mechanism in pathogenic Vibrio species.


Assuntos
Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Sistemas de Secreção Tipo III/genética , DNA Cruciforme/metabolismo , Virulência/genética , Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
20.
Proc Natl Acad Sci U S A ; 119(18): e2123420119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35452329

RESUMO

Four-way DNA intermediates, also known as Holliday junctions (HJs), are formed during homologous recombination and DNA repair, and their resolution is necessary for proper chromosome segregation. To facilitate the biochemical analysis of HJ processing, we developed a method involving DNAzyme self-cleavage to generate 1.8-kb DNA molecules containing either single (sHJ) or double Holliday junctions (dHJs). We show that dHJ DNAs (referred to as HoJo DNAs) are dissolved by the human BLM­TopIIIα­RMI1­RMI2 complex to form two noncrossover products. However, structure-selective endonucleases (human GEN1 and SMX complex) resolve DNA containing single or double HJs to yield a mixture of crossover and noncrossover products. Finally, we demonstrate that chromatin inhibits the resolution of the double HJ by GEN or SMX while allowing BTRR-mediated dissolution.


Assuntos
Cromatina , DNA Cruciforme , Cromatina/genética , Cromossomos , DNA/genética , DNA Cruciforme/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA