Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 26(4): 467-478, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33963933

RESUMO

The blood-brain barrier (BBB) permeability of molecules needs to meet stringent requirements of Lipinski's rule, which pose a difficulty for the rational design of efficient chelating agents for Parkinson's disease chelation therapy. Therefore, the iron chelators employed N-aliphatic alcohols modification of deferiprone were reasonably designed in this work. The chelators not only meet Lipinski's rule for BBB permeability, but also ensure the iron affinity. The results of solution thermodynamics demonstrated that the pFe3+ value of N-hydroxyalkyl substituted deferiprone is between 19.20 and 19.36, which is comparable to that of clinical deferiprone. The results of 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays indicated that the N-hydroxyalkyl substituted deferiprone also possesses similar radical scavenging ability in comparison to deferiprone. Meanwhile, the Cell Counting Kit-8 assays of neuron-like rat pheochromocytoma cell-line demonstrated that the N-hydroxyalkyl substituted deferiprone exhibits extremely low cytotoxicity and excellent H2O2-induced oxidative stress protection effect. These results indicated that N-hydroxyalkyl substituted deferiprone has potential application prospects as chelating agents for Parkinson's disease chelation therapy strategy.


Assuntos
Deferiprona/análogos & derivados , Deferiprona/síntese química , Quelantes de Ferro/síntese química , Quelantes de Ferro/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Cálcio , Sobrevivência Celular/efeitos dos fármacos , Deferiprona/farmacologia , Desenho de Fármacos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Zinco
2.
Eur J Med Chem ; 198: 112350, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380385

RESUMO

In order to obtain multi-functional molecules for Alzheimer's disease, a series of deferiprone derivatives has been synthesized and evaluated in vitro with the hypothesis that they can restore the cholinergic tone and attenuate the dyshomeostasis of the metals mainly involved in the pathology. These compounds were designed as dual binding site AChE inhibitors: they possess an arylalkylamine moiety connected via an alkyl chain to a 3-hydroxy-4-pyridone fragment, to allow the simultaneous interaction with catalytic active site (CAS) and peripheral anionic site (PAS) of the enzyme. Deferiprone moiety and 2-aminopyridine, 2-aminopyrimidine or 2,4-diaminopyrimidine groups have been incorporated into these compounds, in order to obtain molecules potentially able to chelate bio-metals colocalized in Aß plaques and involved in the generation of radical species. Synthesized compounds were tested by enzymatic inhibition studies towards EeAChE and eqBChE using Ellman's method. The most potent EeAChE inhibitor is compound 5a, with a Ki of 788 ± 51 nM, while the most potent eqBChE inhibitors are compounds 12 and 19, with Ki values of 182 ± 18 nM and 258 ± 25 nM respectively. Selected compounds, among the most potent cholinesterases inhibitors, were able to form complex with iron and in some cases with copper and zinc. Moreover, these compounds were characterized by low toxicity on U-87 MG Cell Line from human brain (glioblastoma astrocytoma).


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/síntese química , Deferiprona/síntese química , Quelantes de Ferro/síntese química , Aminas/química , Sequência de Aminoácidos , Aminopiridinas/química , Domínio Catalítico , Inibidores da Colinesterase/farmacologia , Complexos de Coordenação/química , Deferiprona/farmacologia , Desenho de Fármacos , Humanos , Quelantes de Ferro/farmacologia , Simulação de Acoplamento Molecular , Pirimidinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA