Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
New Phytol ; 243(4): 1539-1553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39021237

RESUMO

The interactions among plant viruses, insect vectors, and host plants have been well studied; however, the roles of insect viruses in this system have largely been neglected. We investigated the effects of MpnDV infection on aphid and PVY transmission using bioassays, RNA interference (RNAi), and GC-MS methods and green peach aphid (Myzus persicae (Sulzer)), potato virus Y (PVY), and densovirus (Myzus persicae nicotianae densovirus, MpnDV) as model systems. MpnDV increased the activities of its host, promoting population dispersal and leading to significant proliferation in tobacco plants by significantly enhancing the titer of the sesquiterpene (E)-ß-farnesene (EßF) via up-regulation of expression levels of the MpFPPS1 gene. The proliferation and dispersal of MpnDV-positive individuals were faster than that of MpnDV-negative individuals in PVY-infected tobacco plants, which promoted the transmission of PVY. These results combined showed that an insect virus may facilitate the transmission of a plant virus by enhancing the locomotor activity and population proliferation of insect vectors. These findings provide novel opportunities for controlling insect vectors and plant viruses, which can be used in the development of novel management strategies.


Assuntos
Afídeos , Densovirus , Nicotiana , Doenças das Plantas , Afídeos/virologia , Afídeos/fisiologia , Animais , Nicotiana/virologia , Nicotiana/parasitologia , Doenças das Plantas/virologia , Densovirus/fisiologia , Densovirus/genética , Potyvirus/fisiologia , Potyvirus/patogenicidade , Sesquiterpenos/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade
2.
Vet Pathol ; 60(5): 689-703, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37341069

RESUMO

Mealworms are one of the most economically important insects in large-scale production for human and animal nutrition. Densoviruses are highly pathogenic for invertebrates and exhibit an extraordinary level of diversity which rivals that of their hosts. Molecular, clinical, histological, and electron microscopic characterization of novel densovirus infections is of utmost economic and ecological importance. Here, we describe an outbreak of densovirus with high mortality in a commercial mealworm (Tenebrio molitor) farm. Clinical signs included inability to prehend food, asymmetric locomotion evolving to nonambulation, dehydration, dark discoloration, and death. Upon gross examination, infected mealworms displayed underdevelopment, dark discoloration, larvae body curvature, and organ/tissue softness. Histologically, there was massive epithelial cell death, and cytomegaly and karyomegaly with intranuclear inclusion (InI) bodies in the epidermis, pharynx, esophagus, rectum, tracheae, and tracheoles. Ultrastructurally, these InIs represented a densovirus replication and assembly complex composed of virus particles ranging from 23.79 to 26.99 nm in diameter, as detected on transmission electron microscopy. Whole-genome sequencing identified a 5579-nucleotide-long densovirus containing 5 open reading frames. A phylogenetic analysis of the mealworm densovirus showed it to be closely related to several bird- and bat-associated densoviruses, sharing 97% to 98% identity. Meanwhile, the nucleotide similarity to a mosquito, cockroach, and cricket densovirus was 55%, 52%, and 41%, respectively. As this is the first described whole-genome characterization of a mealworm densovirus, we propose the name Tenebrio molitor densovirus (TmDNV). In contrast to polytropic densoviruses, this TmDNV is epitheliotropic, primarily affecting cuticle-producing cells.


Assuntos
Densovirus , Tenebrio , Animais , Surtos de Doenças/veterinária , Elétrons , Fazendas , Larva , Nucleotídeos/metabolismo , Filogenia , Tenebrio/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(33): 20211-20222, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747554

RESUMO

The giant tiger prawn (Penaeus monodon) is a decapod crustacean widely reared for human consumption. Currently, viruses of two distinct lineages of parvoviruses (PVs, family Parvoviridae; subfamily Hamaparvovirinae) infect penaeid shrimp. Here, a PV was isolated and cloned from Vietnamese P. monodon specimens, designated Penaeus monodon metallodensovirus (PmMDV). This is the first member of a third divergent lineage shown to infect penaeid decapods. PmMDV has a transcription strategy unique among invertebrate PVs, using extensive alternative splicing and incorporating transcription elements characteristic of vertebrate-infecting PVs. The PmMDV proteins have no significant sequence similarity with other PVs, except for an SF3 helicase domain in its nonstructural protein. Its capsid structure, determined by cryoelectron microscopy to 3-Å resolution, has a similar surface morphology to Penaeus stylirostris densovirus, despite the lack of significant capsid viral protein (VP) sequence similarity. Unlike other PVs, PmMDV folds its VP without incorporating a ßA strand and displayed unique multimer interactions, including the incorporation of a Ca2+ cation, attaching the N termini under the icosahedral fivefold symmetry axis, and forming a basket-like pentamer helix bundle. While the PmMDV VP sequence lacks a canonical phospholipase A2 domain, the structure of an EDTA-treated capsid, determined to 2.8-Å resolution, suggests an alternative membrane-penetrating cation-dependent mechanism in its N-terminal region. PmMDV is an observed example of convergent evolution among invertebrate PVs with respect to host-driven capsid structure and unique as a PV showing a cation-sensitive/dependent basket structure for an alternative endosomal egress.


Assuntos
Evolução Biológica , Proteínas do Capsídeo/genética , Densovirus/genética , Penaeidae/virologia , Animais , Regulação Viral da Expressão Gênica , Genoma Viral
4.
J Virol ; 95(17): e0052321, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132571

RESUMO

Despite tight genetic compression, viral genomes are often organized into functional gene clusters, a modular structure that might favor their evolvability. This has greatly facilitated biotechnological developments such as the recombinant adeno-associated virus (AAV) systems for gene therapy. Following this lead, we endeavored to engineer the related insect parvovirus Junonia coenia densovirus (JcDV) to create addressable vectors for insect pest biocontrol. To enable safer manipulation of capsid mutants, we translocated the nonstructural (ns) gene cluster outside the viral genome. To our dismay, this yielded a virtually nonreplicable clone. We linked the replication defect to an unexpected modularity breach, as ns translocation truncated the overlapping 3' untranslated region (UTR) of the capsid transcript (vp). We found that the native vp 3' UTR is necessary for high-level VP production but that decreased expression does not adversely impact the expression of NS proteins, which are known replication effectors. As nonsense vp mutations recapitulate the replication defect, VP proteins appear to be directly implicated in the replication process. Our findings suggest intricate replication-encapsidation couplings that favor the maintenance of genetic integrity. We discuss possible connections with an intriguing cis-packaging phenomenon previously observed in parvoviruses whereby capsids preferentially package the genome from which they were expressed. IMPORTANCE Densoviruses could be used as biological control agents to manage insect pests. Such applications require an in-depth biological understanding and associated molecular tools. However, the genomes of these viruses remain difficult to manipulate due to poorly tractable secondary structures at their extremities. We devised a construction strategy that enables precise and efficient molecular modifications. Using this approach, we endeavored to create a split clone of Junonia coenia densovirus (JcDV) that can be used to safely study the impact of capsid mutations on host specificity. Our original construct proved to be nonfunctional. Fixing this defect led us to uncover that capsid proteins and their correct expression are essential for continued rolling-hairpin replication. This points to an intriguing link between replication and packaging, which might be shared with related viruses. This serendipitous discovery illustrates the power of synthetic biology approaches to advance our knowledge of biological systems.


Assuntos
Proteínas do Capsídeo/metabolismo , Densovirus/fisiologia , Genoma Viral , Infecções por Parvoviridae/virologia , Spodoptera/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Regiões 3' não Traduzidas/genética , Animais , Proteínas do Capsídeo/genética , Vetores Genéticos , Controle Biológico de Vetores , Proteínas não Estruturais Virais/genética
5.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32967964

RESUMO

A viral etiology of sea star wasting syndrome (SSWS) was originally explored with virus-sized material challenge experiments, field surveys, and metagenomics, leading to the conclusion that a densovirus is the predominant DNA virus associated with this syndrome and, thus, the most promising viral candidate pathogen. Single-stranded DNA viruses are, however, highly diverse and pervasive among eukaryotic organisms, which we hypothesize may confound the association between densoviruses and SSWS. To test this hypothesis and assess the association of densoviruses with SSWS, we compiled past metagenomic data with new metagenomic-derived viral genomes from sea stars collected from Antarctica, California, Washington, and Alaska. We used 179 publicly available sea star transcriptomes to complement our approaches for densovirus discovery. Lastly, we focus the study on sea star-associated densovirus (SSaDV), the first sea star densovirus discovered, by documenting its biogeography and putative tissue tropism. Transcriptomes contained only endogenized densovirus elements similar to the NS1 gene, while numerous extant densoviral genomes were recovered from viral metagenomes. SSaDV was associated with nearly all tested species from southern California to Alaska, and in contrast to previous work, we show that SSaDV is one genotype among a high diversity of densoviruses present in sea stars across the West Coast of the United States and globally that are commonly associated with grossly normal (i.e., healthy or asymptomatic) animals. The diversity and ubiquity of these viruses in sea stars confound the original hypothesis that one densovirus is the etiological agent of SSWS.IMPORTANCE The primary interest in sea star densoviruses, specifically SSaDV, has been their association with sea star wasting syndrome (SSWS), a disease that has decimated sea star populations across the West Coast of the United States since 2013. The association of SSaDV with SSWS was originally drawn from metagenomic analysis, which was further studied through field surveys using quantitative PCR (qPCR), with the conclusion that it was the most likely viral candidate in the metagenomic data based on its representation in symptomatic sea stars compared to asymptomatic sea stars. We reexamined the original metagenomic data with additional genomic data sets and found that SSaDV was 1 of 10 densoviruses present in the original data set and was no more represented in symptomatic sea stars than in asymptomatic sea stars. Instead, SSaDV appears to be a widespread, generalist virus that exists among a large diversity of densoviruses present in sea star populations.


Assuntos
Densovirus/genética , Estrelas-do-Mar/virologia , Motivos de Aminoácidos , Animais , Densovirus/classificação , Densovirus/fisiologia , Variação Genética , Genoma Viral/genética , Geografia , Metagenoma , Filogenia , Estrelas-do-Mar/genética , Transcriptoma , Proteínas Virais/genética , Tropismo Viral
6.
J Gen Virol ; 101(2): 226-239, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31855134

RESUMO

Diaphorina citri densovirus (DcDV) is an ambisense densovirus with a 5071 nt genome. Phylogenetic analysis places DcDV in an intermediate position between those in the Ambidensovirus and Iteradensovirus genera, a finding that is consistent with the observation that DcDV possesses an Iteradensoviris-like non-structural (NS) protein-gene cassette, but a capsid-protein (VP) gene cassette resembling those of other ambisense densoviruses. DcDV is maternally transmitted to 100 % of the progeny of infected female Diaphorina citri, and the progeny of infected females carry DcDV as a persistent infection without outward phenotypic effects. We were unable to infect naïve individuals by oral inoculation, however low levels of transient viral replication are detected following intrathoracic injection of DcDV virions into uninfected D. citri insects. Transcript mapping indicates that DcDV produces one transcript each from the NS and VP gene cassettes and that these transcripts are polyadenylated at internal sites to produce a ~2.2 kb transcript encoding the NS proteins and a ~2.4 kb transcript encoding the VP proteins. Additionally, we found that transcriptional readthrough leads to the production of longer non-canonical transcripts from both genomic strands.


Assuntos
Densovirus , Genoma Viral , Hemípteros/virologia , Viroses/transmissão , Animais , Proteínas do Capsídeo/genética , Classificação , Vírus de DNA/genética , Densovirus/classificação , Densovirus/genética , Densovirus/isolamento & purificação , Genes Virais , Transmissão Vertical de Doenças Infecciosas , Vírus de Insetos/classificação , Parvoviridae/classificação , Filogenia , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
7.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924612

RESUMO

The etiology of sea star wasting syndrome is hypothesized to be caused by a densovirus, sea star-associated densovirus (SSaDV), that has previously been reported on the Pacific and Atlantic Coasts of the United States. In this study, we reevaluated the presence of SSaDV among sea stars from the North American Atlantic Coast and in doing so discovered a novel densovirus that we have named Asterias forbesi-associated densovirus (AfaDV), which shares 78% nucleotide pairwise identity with SSaDV. In contrast to previous studies, SSaDV was not detected in sea stars from the North American Atlantic Coast. Using a variety of PCR-based techniques, we investigated the tissue tropism, host specificity, and prevalence of AfaDV among populations of sea stars at five locations along the Atlantic Coast. AfaDV was detected in three sea star species (Asterias forbesi, Asterias rubens, and Henricia sp.) found in this region and was highly prevalent (>80% of individuals tested; n = 134), among sampled populations. AfaDV was detected in the body wall, gonads, and pyloric caeca (digestive gland) of specimens but was not detected in their coelomic fluid. A significant difference in viral load (copies mg-1) was found between tissue types, with the pyloric caeca having the highest viral loads. Further investigation of Asterias forbesi gonad tissue found germ line cells (oocytes) to be virus positive, suggesting a potential route of vertical transmission. Taken together, these observations show that the presence of AfaDV is not an indicator of sea star wasting syndrome because AfaDV is a common constituent of these animals' microbiome, regardless of health.IMPORTANCE Sea star wasting syndrome is a disease primarily observed on the Pacific and Atlantic Coasts of North America that has significantly impacted sea star populations. The etiology of this disease is unknown, although it is hypothesized to be caused by a densovirus, SSaDV. However, previous studies have not found a correlation between SSaDV and sea star wasting syndrome on the North American Atlantic Coast. This study suggests that this observation may be explained by the presence of a genetically similar densovirus, AfaDV, that may have confounded previous studies. SSaDV was not present in sea stars screened in this study, and instead, AfaDV was commonly found in sea star populations across the New England region, with no apparent signs of disease. These results suggest that sea star densoviruses may be common constituents of the animals' microbiome, and the diversity and extent of these viruses among wild populations may be greater than previously recognized.


Assuntos
Asterias/virologia , Densovirus/classificação , Animais , Densovirus/isolamento & purificação , Densovirus/fisiologia , Feminino , Masculino , New England
8.
Mol Ecol ; 29(20): 4000-4013, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32854141

RESUMO

The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.g., cytoplasmic incompatibility) and survival (e.g., viral interference). In nature, Culex pipiens (sensu lato) mosquitoes are always found infected with genetically diverse Wolbachia called wPip that belong to five phylogenetic groups. In recent years, ISVs have also been discovered in these mosquito species, although their interactions with Wolbachia in nature are unknown. Here, we studied the interactions between a widely prevalent ISV, the Culex pipiens densovirus (CpDV, Densovirinae), and Wolbachia in northern Tunisian C. pipiens populations. We showed an influence of different Wolbachia groups on CpDV prevalence and a general positive correlation between Wolbachia and CpDV loads. By investigating the putative relationship between CpDV diversification and wPip groups in the different sites, we detected a signal linked to wPip groups in CpDV phylogeny in sites where all larvae were infected by the same wPip group. However, no such signal was detected where the wPip groups coexisted, suggesting CpDV horizontal transfer between hosts. Overall, our results provide good evidence for an ecological influence of Wolbachia on an ISV, CpDV, in natural populations and highlight the importance of integrating Wolbachia in our understanding of ISV ecology in nature.


Assuntos
Culex , Densovirus , Wolbachia , Animais , Culex/genética , Densovirus/genética , Filogenia , Prevalência , Carga Viral , Wolbachia/genética
9.
J Insect Sci ; 20(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089871

RESUMO

An important goal of disease ecology is to understand trophic interactions influencing the host-pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Parvovirididae: Densovirinae, Lepidopteran Potoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars' response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity.


Assuntos
Borboletas/virologia , Densovirus , Dieta , Monofenol Mono-Oxigenase/metabolismo , Animais , Borboletas/imunologia , Borboletas/metabolismo , Densovirus/patogenicidade , Interações entre Hospedeiro e Microrganismos , Imunidade/fisiologia , Larva/imunologia , Larva/metabolismo , Larva/virologia , Plantas , Análise de Sobrevida , Carga Viral , Viroses/imunologia
10.
Proc Biol Sci ; 286(1901): 20182766, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31014216

RESUMO

Disease emergence occurs within the context of ecological communities, and disease driven declines in host populations can lead to complex direct and indirect ecological effects. Varying effects of a single disease among multiple susceptible hosts could benefit relatively resistant species. Beginning in 2013, an outbreak of sea star wasting disease (SSWD) led to population declines of many sea star species along the west coast of North America. Through field surveys and laboratory experiments, we investigated how and why the relative abundances of two co-occurring sea star species, Evasterias troschelii and Pisaster ochraceus, shifted during the ongoing wasting epidemic in Burrard Inlet, British Columbia, Canada. We hypothesized that Evasterias is competitively inferior to Pisaster but more resistant to SSWD. Thus, we predicted that SSWD-induced declines of Pisaster could mitigate the negative effects of SSWD on Evasterias, as the latter would experience competitive release. We document shifts in sea star abundance from 2008-2017: Pisaster abundance and mean size declined during the outbreak, while Evasterias abundance increased from relatively rare to numerically dominant within the intertidal. When exposed to symptomatic sea stars, Pisaster and Evasterias both showed signs of SSWD, but transmission and susceptibility was lower in Evasterias. Despite diet overlap documented in our field surveys, Evasterias was not outcompeted by Pisaster in laboratory trails conducted with the relatively small Pisaster available after the outbreak. Interference competition with larger Pisaster, or prey exploitation by Pisaster during the summer when Evasterias is primarily subtidal, may explain the rarity of Evasterias prior to Pisaster declines. Our results suggest that indirect effects mediated by competition can mask some of the direct effects of disease outbreaks, and the combination of direct and indirect effects will determine the restructuring of a community after disturbance.


Assuntos
Densovirus/fisiologia , Microbiota , Estrelas-do-Mar/fisiologia , Animais , Colúmbia Britânica , Dinâmica Populacional , Especificidade da Espécie , Estrelas-do-Mar/microbiologia , Estrelas-do-Mar/virologia
11.
Fish Shellfish Immunol ; 86: 101-106, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30447431

RESUMO

The Penaeus stylirostris densovirus (PstDNV) (also known as infectious hypodermal and hematopoietic necrosis virus, IHHNV), a very small DNA virus, is a major shrimp pathogen. The PstDNV genome encodes only two nonstructural proteins and one capsid protein. This virus is thus an ideal, simple model for the investigation of virus-host interactions. To explore the role of the PstDNV capsid in viral infections, a yeast two-hybrid (Y2H) cDNA library was constructed based on Pacific white shrimp, Litopenaeus vannamei mRNA. The Y2H library was then screened, using the PstDNV capsid protein as bait. We identified a host protein that interacted strongly with the PstDNV capsid as L. vannamei troponin I (LvTnI). An in vitro co-immunoprecipitation experiment further supported this interaction. In addition, an in vivo neutralization experiment showed that the vaccination with anti-LvTnI significantly reduced PstDNV copies in PstDNV-challenged shrimp, indicating that the interaction between the PstDNV capsid and cellular LvTnI is essential for PstDNV infection. This result has important implications for our understanding of the mechanisms by which PstDNV infects shrimp.


Assuntos
Proteínas do Capsídeo/metabolismo , Densovirus/fisiologia , Penaeidae/virologia , Troponina I/metabolismo , Animais , Interações Hospedeiro-Patógeno , Penaeidae/metabolismo
12.
Fish Shellfish Immunol ; 88: 198-206, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826413

RESUMO

Viral capsid proteins play an important role in the viral infection process. To identify the cellular proteins in shrimp that interact with the Penaeus stylirostris densovirus capsid protein (PstDNV-CP), we constructed a yeast two-hybrid (Y2H) cDNA library of the muscle tissue of Litopenaeus vannamei, and hybridized the bait vector pGBKT7-CP with this library. Cloning and sequencing showed that the shrimp protein interacting with PstDNV-CP was a homolog of BRCA2 and CDKN1A(p21)-interacting protein (BCCIP). We named this protein L. vannamei BCCIP (LvBCCIP). Further analysis showed that LvBCCIP interacted with L. vannamei calmodulin (LvCaM). We validated the interactions between PstDNV-CP and LvBCCIP, and between LvBCCIP and LvCaM, with GST pulldown assays. The gene expression of LvBCCIP increased significantly after PstDNV challenge. In addition, the PstDNV titer of PstDNV-challenged shrimp was significantly reduced after LvBCCIP expression was inhibited using double-stranded RNA (dsRNA) interference. These results indicated that LvBCCIP is critical to PstDNV pathogenesis in L. vannamei. Interestingly, the growth rate of L. vannamei was significantly reduced when LvBCCIP gene expression was silenced, indicating that LvBCCIP may also be associated with growth regulation in L. vannamei. Thus, the interaction between PstDNV-CP and LvBCCIP might explain why PstDNV infection leads to runt-deformity syndrome in shrimp.


Assuntos
Proteínas do Capsídeo/metabolismo , Densovirus/fisiologia , Penaeidae/virologia , Animais , Proteína BRCA2/metabolismo , Calmodulina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Expressão Gênica , Penaeidae/crescimento & desenvolvimento , Interferência de RNA
13.
Mem Inst Oswaldo Cruz ; 114: e180432, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30758394

RESUMO

BACKGROUND: The Zika virus (ZIKV) epidemics that affected South America in 2016 raised several research questions and prompted an increase in studies in the field. The transient and low viraemia observed in the course of ZIKV infection is a challenge for viral isolation from patient serum, which leads to many laboratories around the world sharing viral strains for their studies. C6/36 cells derived from Aedes albopictus larvae are commonly used for arbovirus isolation from clinical samples and for the preparation of viral stocks. OBJECTIVES: Here, we report the contamination of two widely used ZIKV strains by Brevidensovirus, here designated as mosquito densovirus (MDV). METHODS: Molecular and immunological techniques were used to analyse the MDV contamination of ZIKV stocks. Also, virus passages in mammalian cell line and infecting susceptible mice were used to MDV clearance from ZIKV stocks. FINDINGS: MDV contamination was confirmed by molecular and immunological techniques and likely originated from C6/36 cultures commonly used to grow viral stocks. We applied two protocols that successfully eliminated MDV contamination from ZIKV stocks, and these protocols can be widely applied in the field. As MDV does not infect vertebrate cells, we performed serial passages of contaminated stocks using a mammalian cell line and infecting susceptible mice prior to re-isolating ZIKV from the animals' blood serum. MDV elimination was confirmed with immunostaining, polymerase chain reaction (PCR), and analysis of the mosquitoes that were allowed to feed on the infected mice. MAIN CONCLUSIONS: Since the putative impact of viral contaminants in ZIKV strains generally used for research purposes is unknown, researchers working in the field must be aware of potential contaminants and test viral stocks to certify sample purity.


Assuntos
Culicidae/virologia , DNA Viral/genética , Densovirus/genética , Laboratórios , Zika virus , Animais , Bancos de Espécimes Biológicos , Linhagem Celular , Imunofluorescência , Humanos , Camundongos , Cultura de Vírus
14.
J Invertebr Pathol ; 151: 102-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126966

RESUMO

Understanding the interaction between host plant chemistry, the immune response, and insect pathogens can shed light on host plant use by insect herbivores. In this study, we focused on how interactions between the insect immune response and plant secondary metabolites affect the response to a viral pathogen. Based upon prior research, we asked whether the buckeye caterpillar, Junonia coenia (Nymphalidae), which specializes on plants containing iridoid glycosides (IGs), is less able to resist the pathogenic effects of a densovirus infection when feeding on plants with high concentrations of IGs. In a fully factorial design, individuals were randomly assigned to three treatments, each of which had two levels: (1) exposed to the densovirus versus control, (2) placed on a plant species with high concentrations of IGs (Plantago lanceolata, Plantaginaceae) versus low concentrations of IGs (P. major), and (3) control versus surface sterilized to exclude surface microbes that may contribute to viral resistance. We measured phenoloxidase (PO) activity, hemocyte counts, and gut bacterial diversity (16S ribosomal RNA) during the fourth larval instar, as well as development time, pupal weight, and survival to adult. Individuals infected with the virus were immune-suppressed (as measured by PO response and hemocyte count) and developed significantly faster than virus-free individuals. Contrary to our predictions,mortality was significantly less for virus challengedindividuals reared on the high IG plant compared to the low IG plant.This suggests that plant secondary metabolites can influence survival from viral infection and may be associated with activation of PO. Removing egg microbes did not affect the immune response or survival of the larvae. In summary, these results suggest that plant secondary metabolites are important for survival against a viral pathogen. Even though the PO response was better on the high IG plant, the extent to which this result contributes to survival against the virus needs further investigation.


Assuntos
Borboletas/imunologia , Borboletas/virologia , Densovirus/fisiologia , Interações Hospedeiro-Parasita/imunologia , Plantago/parasitologia , Animais , Larva/imunologia , Larva/virologia
15.
Dis Aquat Organ ; 129(3): 183-191, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30154278

RESUMO

Shrimp infected with Penaeus monodon densovirus (PmoDNV) usually display no specific gross signs, but heavy infections can kill postlarvae and retard juvenile growth. In the present study, samples of hepatopancreas, feces, gonads and hemolymph were isolated from male and female P. monodon subadults chronically infected by PmoDNV. Each sample of hepatopancreas and gonad was divided into 2 parts: one for PmoDNV detection by polymerase chain reaction (PCR), and the other for routine histology and immunohistochemistry. The frequency of positive findings via PCR assays was 92% in the hepatopancreas, 57% in feces, 50% in ovary, 35% in hemolymph and 0% in the testis. Using the densitometric value (DV) of the specific band for PmoDNV relative to that of the ß-actin gene as an index of the viral load in the samples, no significant differences were observed among sample types and sexes. Hematoxylin-eosin staining of infected hepatopancreas revealed typical PmoDNV inclusions in the nuclei of infected cells. The ovaries with high DV (>1) contained various types of inclusions along the row of the follicular cells or possibly in the connective tissue cells surrounding the oocytes. Using immunohistochemistry with specific probes to detect PmoDNV proteins, a positive reaction was observed in viral inclusions found in infected hepatopancreas and in ovaries with high DV, specifically in the ovarian capsule, hemolymph, oocytes and nuclear inclusions. These results suggest that the localization of PmoDNV in P. monodon is not confined to the hepatopancreas, but rather that the virus can also occur in the ovary; hence, trans-ovarian, vertical transmission of the virus is highly possible.


Assuntos
Densovirus/fisiologia , Ovário/virologia , Penaeidae/virologia , Animais , Densovirus/isolamento & purificação , Fezes/virologia , Feminino , Hemolinfa/virologia , Hepatopâncreas/virologia , Interações Hospedeiro-Patógeno , Masculino , Reação em Cadeia da Polimerase
16.
Virol J ; 14(1): 23, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173863

RESUMO

BACKGROUND: Densoviruses (DVs) are highly pathogenic to their hosts. However, we previously reported a mutualistic DV (HaDV2). Very little was known about the characteristics of this virus, so herein we undertook a series of experiments to explore the molecular biology of HaDV2 further. RESULTS: Phylogenetic analysis showed that HaDV2 was similar to members of the genus Iteradensovirus. However, compared to current members of the genus Iteradensovirus, the sequence identity of HaDV2 is less than 44% at the nucleotide-level, and lower than 36, 28 and 19% at the amino-acid-level of VP, NS1 and NS2 proteins, respectively. Moreover, NS1 and NS2 proteins from HaDV2 were smaller than those from other iteradensoviruses due to their shorter N-terminal sequences. Two transcripts of about 2.2 kb coding for the NS proteins and the VP proteins were identified by Northern Blot and RACE analysis. Using specific anti-NS1 and anti-NS2 antibodies, Western Blot analysis revealed a 78 kDa and a 48 kDa protein, respectively. Finally, the localization of both NS1 and NS2 proteins within the cell nucleus was determined by using Green Fluorescent Protein (GFP) labelling. CONCLUSION: The genome organization, terminal hairpin structure, transcription and expression strategies as well as the mutualistic relationship with its host, suggested that HaDV2 was a novel member of the genus Iteradensovirus within the subfamily Densovirinae.


Assuntos
Densovirus/classificação , Densovirus/genética , Genoma Viral , Filogenia , Animais , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Regulação Viral da Expressão Gênica , Peso Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
17.
Arch Virol ; 162(7): 2153-2157, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28342032

RESUMO

Densoviruses have short ssDNA genomes and mainly infect arthropods. To characterize viral nucleic acid in shellfish, oysters (Crassostrea ariakensis) were analyzed using viral metagenomics. Two large de novo assembled contigs, CaaDV1 and CaaDV2, consisting of nearly complete densovirus genomes (5860 nucleotides (nt) and 4034 nt) with two major ambisense protein coding regions were identified. Several potential non-structural proteins and capsid proteins were encoded by these genomes, but these were divergent from the existing densoviral species. The NS1 protein of the two CaaDVs shared 43.3%~61.5% amino acid identities with the sea star-associated densovirus and cherax quadricarinatus densovirus, with the four species clustering by phylogenetic analysis. This is the first report of densovirus detection in shellfish, increasing the potential host range of densoviruses and the genetic diversity of the genus Ambidensovirus.


Assuntos
Crassostrea/virologia , Densovirus/classificação , Filogenia , Animais , Densovirus/genética , Densovirus/isolamento & purificação , Metagenômica , Fases de Leitura Aberta
18.
Arch Virol ; 162(6): 1745-1750, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28210815

RESUMO

Herein, we report the identification of putative promoters for the non-structural proteins (NS) and capsid structural proteins (VP) of Helicoverpa armigera densovirus (HaDV2) as well as a potential mechanism for how these promoters might be regulated. For the first time, we report that VP is able to transactivate the VP promoter and, to a lesser degree, the NS promoter in densoviruses. In addition to this, another promoter-like sequence designated P2, when co-transfected with the VP gene, enhanced luciferase activity by approximately 35 times compared to a control. This suggests that there are two promoters for VP in HaDV2 and that the VP of parvoviruses might play a more important role in viral transcription than previously appreciated.


Assuntos
Proteínas do Capsídeo/metabolismo , Densovirus/metabolismo , Regulação Viral da Expressão Gênica , Mariposas/virologia , Ativação Transcricional , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Densovirus/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas
19.
J Invertebr Pathol ; 144: 18-23, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28057460

RESUMO

Bombyx mori bidensiovirus (BmBDV) is a species of Bidensovirus that has been was placed into a new genus within the new family Bidnaviridae by the International Committee on Taxonomy of Viruses. BmBDV causes fatal flacherie disease in silkworms, which causes large losses to the sericulture industry. BmBDV contains two sets of complementary linear single-stranded DNAs of approximately 6.5kb (viral DNA 1, VD1) and 6.0kb (viral DNA 2, VD2). VD1 and VD2 are encapsidated in separate icosahedral non-enveloped capsids, which are similar in size and shape. However, the strategies used to express BmBDV structural proteins remains unclear. In this work, a total of six structural proteins were separated by two-dimensional electrophoresis and shown to be encoded by the BmBDV VP gene via mass spectrometry. The transmission electron microscopy results showed that co-expression of the BmBDV VP and SP structural proteins in Spodoptera frugiperda sf9 cells resulted in the formation of 22-24nm virus-like particles. Furthermore, a mutation of the major structural protein-encoding VP gene, in which the second in-frame ATG codon was mutated to GCG, abrogated the production of several structural proteins, indicating that this strategy of expressing BmBDV VP is dependent on a leaky scanning translation mechanism.


Assuntos
Densovirus/fisiologia , Proteínas Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Bombyx/virologia , Eletroforese em Gel Bidimensional , Microscopia Eletrônica de Transmissão , Células Sf9 , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Estruturais Virais/ultraestrutura
20.
Dis Aquat Organ ; 125(3): 199-206, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792418

RESUMO

The farming of the black tiger shrimp Penaeus monodon in the Philippines relies on wild broodstock. PCR was thus used to determine the prevalence of white spot syndrome virus (WSSV), monodon baculovirus (MBV) and Penaeus stylirostris densovirus (PstDV) in a total of 178 shrimp from 6 geographically disparate locations where broodstock are captured for use in hatcheries. PCR amplicons were also sequenced to identify phylogenetic relationships of the virus haplotypes detected. Shrimp from southeastern Luzon (Camarines Norte) had the highest prevalence of each of the 3 viruses and were frequently co-infected with 2 or more viruses. No viruses were detected in shrimp from northwestern Luzon (Pangasinan). MBV was most prevalent and PstDV strains displayed the most genetic diversity. WSSV was detected at 3 sites, and a VP28 gene sequence examined was invariant and consistent with strains found in many countries, including Thailand, China, Japan, Korea, Indonesia, Iran, Brazil and Mexico. WSSV open reading frame 94 gene sequence analysis identified location-specific repeat types. MBV sequences were dissimilar to haplotypes detected in India. PstDV sequences were diverse and included 2 lineages detected either in Australia or in the United States, Ecuador, Taiwan, China and Vietnam. The PCR data confirmed that WSSV, MBV and PstDV are endemic in P. monodon in the Philippines but that populations at some locations might remain free of infection.


Assuntos
Animais Selvagens , Baculoviridae/genética , Densovirus/genética , Variação Genética , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Baculoviridae/isolamento & purificação , Densovirus/isolamento & purificação , Genoma Viral , Interações Hospedeiro-Patógeno , Filipinas , Filogenia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA