Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 523
Filtrar
1.
Cell ; 169(3): 431-441.e8, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431244

RESUMO

The human microbiota greatly affects physiology and disease; however, the contribution of bacteria to the response to chemotherapeutic drugs remains poorly understood. Caenorhabditis elegans and its bacterial diet provide a powerful system to study host-bacteria interactions. Here, we use this system to study how bacteria affect the C. elegans response to chemotherapeutics. We find that different bacterial species can increase the response to one drug yet decrease the effect of another. We perform genetic screens in two bacterial species using three chemotherapeutic drugs: 5-fluorouracil (5-FU), 5-fluoro-2'-deoxyuridine (FUDR), and camptothecin (CPT). We find numerous bacterial nucleotide metabolism genes that affect drug efficacy in C. elegans. Surprisingly, we find that 5-FU and FUDR act through bacterial ribonucleotide metabolism to elicit their cytotoxic effects in C. elegans rather than by thymineless death or DNA damage. Our study provides a blueprint for characterizing the role of bacteria in the host response to chemotherapeutics.


Assuntos
Antineoplásicos/metabolismo , Caenorhabditis elegans/microbiologia , Comamonas/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal , Animais , Antineoplásicos/farmacologia , Camptotecina/metabolismo , Camptotecina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Comamonas/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Desoxiuridina/farmacologia , Dieta , Escherichia coli/genética , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Modelos Animais , Nucleosídeos de Pirimidina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389674

RESUMO

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Assuntos
Astrócitos/fisiologia , Conexina 30/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Animais , Diferenciação Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Interneurônios/enzimologia , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Recombinação Genética , Tamoxifeno/farmacologia
3.
PLoS Genet ; 16(10): e1008623, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33052904

RESUMO

Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed.


Assuntos
Período de Replicação do DNA/genética , Replicação do DNA/efeitos dos fármacos , Raízes de Plantas/genética , Zea mays/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Centrômero/efeitos dos fármacos , Centrômero/genética , Replicação do DNA/genética , Período de Replicação do DNA/efeitos dos fármacos , DNA de Plantas/efeitos dos fármacos , DNA de Plantas/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Endocitose/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/genética , Mitose/efeitos dos fármacos , Mitose/genética , Nucleossomos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Fase S/genética , Zea mays/crescimento & desenvolvimento
4.
Arch Biochem Biophys ; 729: 109377, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998686

RESUMO

Alzheimer's disease (AD) is a progressive disease with a long duration and complicated pathogenesis. Thymidine (Thy) and 2'-deoxyuridine (2'-De) are pyrimidines nucleotides that are associated with nervous system diseases. However, it remains unclear whether Thy and 2'-De exert neuroprotective effects in AD. Therefore, this study was conducted to explore the interventional effects and mechanisms of Thy and 2'-De on the Aß25-35-induced brain injury. Donepezil (Do, 10 mg/kg/d), Thy (20 mg/kg/d), and 2'-De (20 mg/kg/d) were administered for 4 weeks after the injection of Aß25-35 peptides (200 µM, i.c.v.) to mice. UPLC-MS/MS method was performed to quantify Thy and 2'-De in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42/Aß1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, immune cells, and Iba 1+ were measured in Aß25-35-induced mice. The oxygen consumption (OCR) and extracellular acidification rate (ECAR) were measured using a seahorse analyzer in Aß25-35-induced N9 cells. Moreover, 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, was added to explore the mechanisms underlying the effects of Thy and 2'-De on Aß25-35-induced N9 cells. The expression of Iba 1+ and levels of CD11b+ and reactive oxygen species (ROS) were measured after treatment with Thy (5 µM) and 2'-De (10 µM) against 2-DG (5 mM) in Aß25-35-induced N9 cells. The results suggested that Do, Thy, and 2'-De improved the cognition ability, attenuated the damage to hippocampus and mitochondria, downregulated the levels of Aß1-42/Aß1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, and Iba 1+, and regulated the immune response induced by Aß25-35 against the brain injury. Furthermore, Do, Thy, and 2'-De increased ATP production and inhibited glycolysis in Aß25-35-induced N9 cells. Moreover, 2-DG enhanced the effects of drugs, reduced microglial activation, and attenuated oxidative stress to interfere with Aß25-35-induced N9 cells. In conclusion, Thy and 2'-De reduced microglial activation and improved oxidative stress damage by modulating glycolytic metabolism on the Aß25-35-induced brain injury.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Fármacos Neuroprotetores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Cromatografia Líquida , Desoxiglucose/farmacologia , Desoxiuridina/metabolismo , Desoxiuridina/farmacologia , Donepezila/farmacologia , Glicólise , Camundongos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nucleotídeos/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Timidina/metabolismo , Timidina/farmacologia
5.
Molecules ; 26(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804620

RESUMO

Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2'-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5'-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.


Assuntos
Citotoxinas/farmacologia , Desoxiuridina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila , Quadruplex G , Neoplasias/tratamento farmacológico , Citotoxinas/química , Desoxiuridina/química , Desoxiuridina/farmacologia , Células HT29 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
6.
Bioorg Med Chem Lett ; 30(7): 126986, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32046903

RESUMO

Our HCV research program investigated novel 2'-dihalogenated nucleoside HCV polymerase inhibitors and identified compound 1, a 5'-phosphoramidate prodrug of 2'-deoxy-2'-α-bromo-ß-chloro uridine. Although 1 had a favorable in vitro activity profile in HCV replicons, oral dosing in dog resulted in low levels of the active 5'-triphosphate (TP) in liver. Metabolism studies using human hepatocytes provided a simple assay for screening alternative phosphoramidate prodrug analogs. Compounds that produced high TP concentrations in hepatocytes were tested in dog liver biopsy studies. This method identified 2-aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrug 14, which provided 100-fold higher TP concentrations in dog liver in comparison to 1 (4 and 24 h after 5 mg/kg oral dose).


Assuntos
Antivirais/farmacologia , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Pró-Fármacos/farmacologia , Ácidos Aminoisobutíricos/metabolismo , Ácidos Aminoisobutíricos/farmacocinética , Ácidos Aminoisobutíricos/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Desoxiuridina/metabolismo , Desoxiuridina/farmacocinética , Cães , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Hepacivirus/enzimologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Testes de Sensibilidade Microbiana , Compostos Organofosforados/metabolismo , Compostos Organofosforados/farmacocinética , Compostos Organofosforados/farmacologia , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
7.
Glia ; 67(4): 594-618, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30453385

RESUMO

Neurogenic roles of microglia (MG) are thought to include an active role in adult hippocampal neurogenesis in addition to their established roles in pruning surplus dendrites and clearing dead neuroblasts. However, identification of such a role and its delineation in the neurogenic cascade is yet to be established. Using diphtheria toxin-aided MG ablation, we show that MG reduction in the DG-the site where neuronal stem cells (NSCs) reside-is sufficient to impede overall hippocampal neurogenesis due to reduced survival of newly formed neuroblasts. To examine whether MG residing in the hippocampal neurogenic zone are inherently different from MG residing elsewhere in the hippocampus, we compared growth factor responsiveness of DG MG with that of CA1 MG. Strikingly, transgenic induction of the potent neurogenic factor VEGF elicited robust on-site MG expansion and activation exclusively in the DG and despite eliciting a comparable angiogenic response in the CA1 and elsewhere. Temporally, DG-specific MG expansion preceded both angiogenic and neurogenic responses. Remarkably, even partial MG reduction during the process of VEGF-induced neurogenesis led to reducing the number of newly formed neuroblasts to the basal level. Transcriptomic analysis of MG retrieved from the naïve DG and CA1 uncovered a set of genes preferentially expressed in DG MG. Notably the tyrosine kinase Axl is exclusively expressed in naïve and VEGF-induced DG MG and its inhibition prevented neurogenesis augmentation by VEGF. Taken together, findings uncover inherent unique properties of DG MG of supporting both basal- and VEGF-induced adult hippocampal neurogenesis.


Assuntos
Giro Denteado/citologia , Microglia/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Benzocicloeptenos/farmacologia , Vasos Sanguíneos/citologia , Transplante de Medula Óssea , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Desoxiuridina/farmacologia , Toxina Diftérica/toxicidade , Proteínas do Domínio Duplacortina , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/transplante , Neuropeptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/metabolismo , Triazóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética
8.
Glia ; 67(4): 668-687, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30585359

RESUMO

The lack of endogenous repair following spinal cord injury (SCI) accounts for the frequent permanent deficits for which effective treatments are absent. Previously, we demonstrated that low sulfated modified heparin mimetics (LS-mHeps) attenuate astrocytosis, suggesting they may represent a novel therapeutic approach. mHeps are glycomolecules with structural similarities to resident heparan sulfates (HS), which modulate cell signaling by both sequestering ligands, and acting as cofactors in the formation of ligand-receptor complexes. To explore whether mHeps can affect the myelination and neurite outgrowth necessary for repair after SCI, we created lesioned or demyelinated neural cell co-cultures and exposed them with a panel of mHeps with varying degrees and positions of their sulfate moieties. LS-mHep7 enhanced neurite outgrowth and myelination, whereas highly sulfated mHeps (HS-mHeps) had attenuating effects. LS-mHeps had no effects on myelination or neurite extension in developing, uninjured myelinating cultures, suggesting they might exert their proregenerating effects by modulating or sequestering inhibitory factors secreted after injury. To investigate this, we examined conditioned media from cultures using chemokine arrays and conducted an unbiased proteomics approach by applying TMT-LC/MS to mHep7 affinity purified conditioned media from these cultures. Multiple protein factors reported to play a role in damage or repair mechanisms were identified, including amyloid betaA4. Amyloid beta peptide (1-42) was validated as an important candidate by treating myelination cultures and shown to inhibit myelination. Thus, we propose that LS-mHeps exert multiple beneficial effects on mechanisms supporting enhanced repair, and represent novel candidates as therapeutics for CNS damage.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Heparitina Sulfato/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Recém-Nascidos , Antimetabólitos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Desoxiuridina/farmacologia , Embrião de Mamíferos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Neuritos/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia
9.
Invest New Drugs ; 37(3): 415-423, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30019100

RESUMO

We performed an in-vitro study testing the chemosensitivity of peritoneal cancer cell lines (SW620, HCT116, MKN45, 23,132/87, OAW42) to various cytostatic drug regimens. A duplex drug, characterized by reversible linking of the antimetabolites 2'-deoxy-5-fluorouridine (5-FdU) and 3'-C-ethynylcytidine (ECyd), was compared to oxaliplatin or to cisplatin plus doxorubicin. The experiments were designed to reflect the conditions of intraperitoneal chemotherapy. CASY® (Cell Analysis System) technology was used to compare the impact of incubation temperature/duration and drug concentration on the viability of the cancer cell lines versus normal human dermal fibroblasts. Two incubation scenarios were explored: (i) hyperthermic intraperitoneal chemotherapy (HIPEC) with 1 h of incubation at 42 °C, and (ii) pressurized intraperitoneal aerosol chemotherapy (PIPAC) with several successive incubations at 37 °C. Under HIPEC conditions, oxaliplatin induced a potent temperature-dependent growth inhibition of colon cancer cells not seen with the duplex drug. Under PIPAC conditions, the duplex drug achieved the same growth inhibition at a fraction of the dose level required with oxaliplatin. Gastric and ovarian cancer cells were more sensitive to cisplatin plus doxorubicin than to the duplex drug under PIPAC conditions. The duplex drug suggests itself, notably in cases of platinum resistance, as an alternative or addition to intraperitoneal chemotherapies when platinum-based PIPAC technology is used. Using it with HIPEC technology is not recommended. Higher doses of the duplex drug will enhance growth inhibition, albeit at the cost of a severely reduced difference in chemosensitivity between tumor and normal cells. Our findings provide orientation for PIPAC-based personalized intraperitoneal chemotherapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Citidina/análogos & derivados , Citostáticos/farmacologia , Desoxiuridina/análogos & derivados , Hipertermia Induzida , Neoplasias Peritoneais/tratamento farmacológico , Adulto , Idoso , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Citidina/farmacologia , Desoxiuridina/farmacologia , Doxorrubicina/farmacologia , Feminino , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Oxaliplatina/farmacologia , Neoplasias Peritoneais/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas
10.
FASEB J ; 32(5): 2803-2813, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29301945

RESUMO

Triple-negative breast cancer has an extremely high rate of relapse. This is particularly due to the existence and survival of cancer stem cells (CSCs) characterized by increased amounts of glutathione (GSH). In this study, we evaluated the potential of pharmacological GSH depletion to sensitize CSCs to ionizing radiotherapy with an I-125-labeled nucleoside analog, 5-iodo-4'-thio-2'-deoxyuridine (ITdU). CSCs were isolated using CD24-- and CD44+-specific microbeads. GSH and reactive oxygen species (ROS) were evaluated by fluorescence-activated cell sorting. GSH synthesis was inhibited with buthionine sulfoximine (BSO). Apoptotic cells were identified with propidium iodide and double-strand DNA breaks were detected by γ-H2AX staining. For therapy study, BSO treated and untreated mice xenografted with breast CSCs received weekly I-125-ITdU. Therapy efficiency was monitored by fluorodeoxyglucose-18-µ-positron emission tomography. We showed that GSH modulation sensitizes CD24- and CD44+ breast cancer cells to endogenous nanoradiotherapy. BSO synergistically affects ROS generation induced by I-125-ITdU. In an in vivo study, we demonstrated a complete tumor regression as a consequence of preconditioning with a GSH-synthesis inhibitor prior to treatment with I-125-ITdU. GSH modulation in combination with an oxidative stress-generating treatment such as endogenous radiotherapy using an Auger emitter offers an extraordinary opportunity for selective and efficient eradication of drug-resistant CSCs.-Miran, T., Vogg, A. T. J., Drude, N., Mottaghy, F. M., Morgenroth, A. Modulation of glutathione promotes apoptosis in triple-negative breast cancer cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Glutationa/metabolismo , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Feminino , Fluordesoxiglucose F18/farmacologia , Glutationa/antagonistas & inibidores , Humanos , Camundongos , Camundongos Nus , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Malar J ; 18(1): 392, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796083

RESUMO

BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS: Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages.


Assuntos
Antimaláricos/farmacologia , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirofosfatases/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirofosfatases/metabolismo
12.
Hippocampus ; 28(8): 586-601, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742815

RESUMO

Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum, Lieberman, Briner, Leonardo, & Dranovsky, ), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis.


Assuntos
Proliferação de Células/fisiologia , Hipocampo/citologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antivirais/farmacologia , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Desoxiuridina/farmacologia , Proteínas do Domínio Duplacortina , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/diagnóstico por imagem , Antígeno Ki-67/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Caracteres Sexuais , Valganciclovir/farmacologia
13.
Mutagenesis ; 33(5-6): 343-350, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30239881

RESUMO

5-(2-Chloroethyl)-2'-deoxyuridine (CEDU) was developed as an antiviral drug. It has been studied in a number of in vitro and in vivo genotoxicity assays and is considered an unusual nucleoside analogue owing to its potent mutagenic potential, with little to no measurable clastogenic activity. Given this atypical profile, CEDU represented an interesting compound for evaluating the in vivo Pig-a gene mutation assay, a test that is undergoing extensive validation for regulatory safety applications. The current report describes two studies with 7-week-old male Wistar Han rats, one that exposed animals to several dose levels of CEDU for 5 consecutive days, the other for 28 consecutive days. Blood samples were collected at several time points and analysed for Pig-a mutant cell frequencies via flow cytometry. These Pig-a analyses were accompanied by micronucleated reticulocyte (MN-RET) measurements performed with blood samples collected 1 day after cessation of treatment. Both studies showed robust CEDU dose-related increases in Pig-a mutant reticulocytes and mutant erythrocytes. Conversely, neither experiment showed evidence of a CEDU-related MN-RET-inducing effect. These rat haematopoietic cell results were in good agreement with those of earlier mouse studies where in vivo mutagenesis was observed, without clastogenicity/aneuploidy. Taken together, these data add further support to the concept that the Pig-a assay represents an important complement to the widely used in vivo micronucleus assay, as it expands the range of important DNA lesions that can be detected in short-term as well as protracted exposure study designs.


Assuntos
Desoxiuridina/análogos & derivados , Proteínas de Membrana/genética , Micronúcleo Germinativo/efeitos dos fármacos , Mutagênese/genética , Animais , Antivirais/efeitos adversos , Antivirais/química , Antivirais/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Desoxiuridina/química , Desoxiuridina/farmacologia , Eritrócitos/efeitos dos fármacos , Citometria de Fluxo , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênicos/efeitos adversos , Mutagênicos/química , Mutação/efeitos dos fármacos , Nucleosídeos de Pirimidina/química , Ratos , Reticulócitos/efeitos dos fármacos
14.
Bull Exp Biol Med ; 164(3): 308-311, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29313227

RESUMO

Culturing of bone marrow cells in serum-free RPMI-1640 medium led to a decrease in the rate of DNA biosynthesis. Addition of HDL or their main protein component apolipoprotein A-I to the culture medium dose-dependently increased the rate of [3H]-thymidine incorporation into DNA. The maximum stimulation was achieved at HDL concentration of 80 µg/ml and apolipoprotein A-I concentration of 20 µg/ml. To identify the target-cells of apolipoprotein A-I, we used thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) that incorporates into cell DNA at the stage of replicative DNA synthesis (S phase) and can be detected by fluorescence microscopy. In bone marrow cell culture, apolipoprotein A-I stimulates the proliferation of monocyte (monoblasts, promonocytes) and granulocyte (myeloblasts, promyelocytes) progenitor cells, as well as bone marrow stromal cells.


Assuntos
Apolipoproteína A-I/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Granulócitos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Apolipoproteína A-I/isolamento & purificação , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Meios de Cultura Livres de Soro/química , DNA/biossíntese , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Desoxiuridina/farmacologia , Relação Dose-Resposta a Droga , Granulócitos/citologia , Granulócitos/imunologia , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Ratos , Ratos Wistar , Timidina/metabolismo , Timidina/farmacologia , Trítio
15.
Bioorg Med Chem Lett ; 27(15): 3468-3471, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28622881

RESUMO

Discovery of sofosbuvir has radically changed hepatitis C treatment and nucleoside/tide NS5B inhibitors are now viewed as one of the key components in combination therapies with other direct-acting antiviral agents. As part of our program to identify new nucleoside inhibitors of HCV replication, we now wish to report on the discovery of ß-d-2'-deoxy-2'-dichlorouridine nucleotide prodrugs as potent inhibitors of HCV replication. Although, cytidine analogues have long been recognized to be metabolized to both cytidine and uridine triphosphates through the action of cytidine deaminase, uridine analogues are generally believed to produce exclusively uridine triphosphate. Detailed investigation of the intracellular metabolism of our newly discovered uridine prodrugs, as well as of sofosbuvir, has now revealed the formation of both uridine and cytidine triphosphates. This occurs, not only in vitro in cell lines, but also in vivo upon oral dosing to dogs.


Assuntos
Antivirais/farmacologia , Desoxiuridina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Pró-Fármacos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/metabolismo , Células Cultivadas , Desoxiuridina/química , Desoxiuridina/metabolismo , Desoxiuridina/farmacologia , Cães , Descoberta de Drogas , Hepacivirus/fisiologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
16.
J Neurosci ; 35(39): 13385-401, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424886

RESUMO

Wingless-related MMTV integration site 1 (WNT1)/ß-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/ß-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/ß-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a secreted modulator of WNT (Wingless-related MMTV integration site)/ß-catenin signaling, is both necessary and sufficient for the proper differentiation and survival of a rostrolateral (parabrachial pigmented nucleus and dorsomedial substantia nigra pars compacta) mesodiencephalic dopaminergic neuron subset, using Dkk3 mutant mice and murine primary ventral midbrain and pluripotent stem cells. The progressive loss of these dopamine-producing mesodiencephalic neurons is a hallmark of human Parkinson's disease, which can up to now not be halted by clinical treatments of this disease. Thus, the soluble DKK3 protein might be a promising new agent for the improvement of current protocols for the directed differentiation of pluripotent and multipotent stem cells into mesodiencephalic dopaminergic neurons and for the promotion of their survival in situ.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Mesencéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma , Proteína Wnt1/genética , Proteína Wnt1/fisiologia
17.
Dev Growth Differ ; 58(6): 530-45, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27241908

RESUMO

The periodontal ligament (PDL) is a connective tissue that attaches the tooth cementum to the alveolar bone and is derived from dental follicle cells (DFCs). The DFCs form fibroblasts, osteoblasts, cementoblasts, and PDL stem cells (PDLSCs). We previously reported homeobox transcription factor Six1 expression in mouse DFCs. However, the role of Six1 in periodontal tissue development is largely unknown. In this study, we analyzed SIX1 expression in mouse periodontal tissue cells during postnatal development and adulthood. We also addressed the role of SIX1 in mouse periodontium development and in human cultured PDL-derived cells (PDLCs). In mouse development, SIX1 production was abundant in DFCs and PDL cells by 2 weeks, but it was greatly diminished in the PDL at 4 weeks and in adults. Although the SIX1-positive cell distribution was sparse in the adult PDL, SIX1-positive cells were observed with low expression levels. We used 5-ethynyl-2'-deoxyuridine (EdU) for cell labeling to reveal numerous EdU/SIX1-double positive cells at 2 weeks; however, a few EdU-positive cells remained at 4 weeks. The proportion of DFCs that incorporated EdU was significantly lower in Six1-deficient mice compared with wild-type mice at E18.5. In human PDLCs, SIX1 was intensely expressed, and SIX1-knockdown using siRNA reduced proliferating PDLCs. Our results suggest that SIX1 is a key proliferation regulator in mouse DFCs and human PDLCs, which provides novel insight into Six family gene function in mammals.


Assuntos
Proliferação de Células/fisiologia , Saco Dentário/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Ligamento Periodontal/crescimento & desenvolvimento , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Saco Dentário/citologia , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Mutantes , Ligamento Periodontal/citologia
18.
Bioorg Med Chem ; 24(18): 4272-4280, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27460697

RESUMO

A common method of evaluating cellular proliferation is to label DNA with chemical probes. 5-Ethynyl-2'-deoxyuridine (EdU) is a widely utilized chemical probe for labeling DNA, and upon incorporation, EdU treatment of cells is followed by a reaction with a small molecule fluorescent azide to allow detection. The limitations when using EdU include cytotoxicity and a reliance on nucleoside active transport mechanisms for entry into cells. Here we have developed six novel EdU pro-labels that consist of EdU modified with variable lipophilic acyl ester moieties. This pro-label:chemical probe relationship parallels the prodrug:drug relationship that is employed widely in medicinal chemistry. EdU and EdU pro-labels were evaluated for their labeling efficacy and cytotoxicity. Several EdU pro-label analogues incorporate into DNA at a similar level to EdU, suggesting that nucleoside transporters can be bypassed by the pro-labels. These EdU pro-labels also had reduced toxicity compared to EdU.


Assuntos
Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Corantes Fluorescentes/farmacologia , Sondas Moleculares/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , DNA/genética , Desoxiuridina/síntese química , Desoxiuridina/toxicidade , Ésteres/síntese química , Ésteres/farmacologia , Ésteres/toxicidade , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Células HEK293 , Humanos , Sondas Moleculares/síntese química , Sondas Moleculares/genética , Sondas Moleculares/toxicidade , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 24(10): 2330-41, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27073055

RESUMO

Two series of novel 4-chlorophenyl N-alkyl phosphoramidates of 3'-O-(t-butoxycarbonyl)-5-fluoro-2'-deoxyuridine (3'-BOC-FdU) (9a-9j) and 5-fluoro-2'-deoxyuridine (FdU) (10a-10j) were synthesized by means of phosphorylation of 3'-BOC-FdU (4) with 4-chlorophenyl phosphoroditriazolide (7), followed by a reaction with the appropriate amine. Phosphoramidates 9a-9j were converted to the corresponding 10a-10j by removal of the 3'-t-butoxycarbonyl protecting group (BOC) under acidic conditions. The synthesized phosphoramidates 9a-9j and 10a-10j were evaluated for their cytotoxic activity in five human cancer cell lines: cervical (HeLa), nasopharyngeal (KB), breast (MCF-7), liver (HepG2), osteosarcoma (143B) and normal human dermal fibroblast cell line (HDF) using the sulforhodamine B (SRB) assay. Two phosphoramidates 9b and 9j with the N-ethyl and N-(methoxy-(S)-alaninyl) substituents, respectively, displayed remarkable activity in all the investigated cancer cells, and the activity was considerably higher than that of the parent nucleoside 4 and FdU. Among phosphoramidates 10a-10j compound 10c with the N-(2,2,2-trifluoroethyl) substituent showed the highest activity. Phosphoramidate 10c was more active than the FdU in all the cancer cell lines tested.


Assuntos
Amidas/química , Amidas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Desoxiuridina/análogos & derivados , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacologia , Amidas/síntese química , Antineoplásicos/síntese química , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxiuridina/síntese química , Desoxiuridina/química , Desoxiuridina/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Ácidos Fosfóricos/síntese química
20.
Histochem Cell Biol ; 144(3): 195-208, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25976155

RESUMO

Immune responses are generally accompanied by antigen presentation and proliferation and differentiation of antigen-specific lymphocytes (immunoproliferation), but analysis of these events in situ on tissue sections is very difficult. We have developed a new method of simultaneous multicolor immunofluorescence staining for immunohistology and flow cytometry using a thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Because of the small size of azide dye using click chemistry and elimination of DNA denaturation steps, EdU staining allowed for immunofluorescence staining of at least four colors including two different markers on a single-cell surface, which is impossible with the standard 5-bromo-2'-deoxyuridine method. By using two rat models, successfully detected parameters were the cluster of differentiation antigens including phenotypic and functional markers of various immune cells, histocompatibility complex antigens, and even some nuclear transcription factors. Proliferating cells could be further sorted and used for RT-PCR analysis. This method thus enables functional in situ time-kinetic analysis of immunoproliferative responses in a distinct domain of the lymphoid organs, which are quantitatively confirmed by flow cytometry.


Assuntos
Antimetabólitos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desoxiuridina/análogos & derivados , Imunidade Celular/fisiologia , Animais , Bromodesoxiuridina/farmacologia , Antígenos CD28/biossíntese , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Desoxiuridina/farmacologia , Citometria de Fluxo , Imuno-Histoquímica , Linfócitos/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Masculino , Ratos , Ratos Endogâmicos Lew , Fase S/efeitos dos fármacos , Baço/citologia , Baço/imunologia , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA