Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.435
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Anal Chem ; 96(36): 14697-14705, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194639

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule that regulates various physiological and pathological processes in the central nervous system. It is vital to develop an effective method to detect H2S in vivo to elucidate its critical role. However, current fluorescent probes for accurate quantification of H2S still face big challenges due to complicated fabrication, small Stokes shift, unsatisfactory selectivity, and especially delayed response time. Herein, based on simple postsynthetic modification, we present an innovative strategy by confining H2S-triggered thiolysis of dinitrophenyl (DNP) ether within a luminescent metal-organic framework (MOF) to address those issues. Due to the cleavage of the DNP moiety by H2S, the nanoprobe gives rise to a remarkable fluorescence turn-on signal with a large Stokes shift of 190 nm and also provides high selectivity to H2S against various interferents including competing biothiols. In particular, by virtue of the unique structural property of the MOF, it exhibits an ultrafast sensing ability for H2S (only 5 s). Moreover, the fluorescence enhancement efficiency displays a good linear correlation with H2S concentration in the range of 0-160 µM with a detection limit of 0.29 µM. Importantly, these superior sensing performances enable the nanoprobe to measure the basal value and monitor the change of H2S level in the rat brain.


Assuntos
Encéfalo , Corantes Fluorescentes , Sulfeto de Hidrogênio , Estruturas Metalorgânicas , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Animais , Ratos , Estruturas Metalorgânicas/química , Encéfalo/metabolismo , Corantes Fluorescentes/química , Compostos de Sulfidrila/química , Éteres/química , Dinitrobenzenos/química , Dinitrobenzenos/análise , Limite de Detecção , Espectrometria de Fluorescência
2.
Planta ; 260(5): 115, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400709

RESUMO

MAIN CONCLUSION: Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microtúbulos , Morfogênese , Tricomas , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Tricomas/crescimento & desenvolvimento , Tricomas/genética , Tricomas/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogênese/genética , Sulfanilamidas/farmacologia , Dinitrobenzenos/farmacologia , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Citoesqueleto/metabolismo , Mutação
3.
Plant Biotechnol J ; 22(9): 2530-2540, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38690830

RESUMO

Dinitrotoluene sulfonates (DNTSes) are highly toxic hazards regulated by the Resource Conservation and Recovery Act (RCRA) in the United States. The trinitrotoluene (TNT) red water formed during the TNT purification process consists mainly of DNTSes. Certain plants, including switchgrass, reed and alfalfa, can detoxify low concentrations of DNTS in TNT red water-contaminated soils. However, the precise mechanism by which these plants detoxify DNTS remains unknown. In order to aid in the development of phytoremediation resources with high DNTS removal rates, we identified and characterized 1-hydroxymethyl-2,4-dinitrobenzene sulfonic acid (HMDNBS) and its glycosylated product HMDNBS O-glucoside as the degradation products of 2,4-DNT-3-SO3Na, the major isoform of DNTS in TNT red water-contaminated soils, in switchgrass via LC-MS/MS- and NMR-based metabolite analyses. Transcriptomic analysis revealed that 15 UDP-glycosyltransferase genes were dramatically upregulated in switchgrass plants following 2,4-DNT-3-SO3Na treatment. We expressed, purified and assayed the activity of recombinant UGT proteins in vitro and identified PvUGT96C10 as the enzyme responsible for the glycosylation of HMDNBS in switchgrass. Overexpression of PvUGT96C10 in switchgrass significantly alleviated 2,4-DNT-3-SO3Na-induced plant growth inhibition. Notably, PvUGT96C10-overexpressing transgenic switchgrass plants removed 83.1% of 2,4-DNT-3-SO3Na in liquid medium after 28 days, representing a 3.2-fold higher removal rate than that of control plants. This work clarifies the DNTS detoxification mechanism in plants for the first time, suggesting that PvUGT96C10 is crucial for DNTS degradation. Our results indicate that PvUGT96C10-overexpressing plants may hold great potential for the phytoremediation of TNT red water-contaminated soils.


Assuntos
Biodegradação Ambiental , Glicosiltransferases , Panicum , Panicum/genética , Panicum/metabolismo , Panicum/enzimologia , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Dinitrobenzenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Poluentes do Solo/metabolismo
4.
Photosynth Res ; 161(1-2): 79-92, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38108927

RESUMO

Inhibitory analysis is a useful tool for studying cytochrome b6f complex in the photosynthetic electron transport chain. Here, we examine the inhibitory efficiency of two widely used inhibitors of the plastoquinol oxidation in the cytochrome b6f complex, namely 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT) and 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). Using isolated thylakoids from pea and arabidopsis, we demonstrate that inhibitory activity of DNP-INT and DBMIB is enhanced by increasing irradiance, and this effect is due to the increase in the rate of electron transport. However, the accumulation of protons in the thylakoid lumen at low light intensity has opposite effects on the inhibitory activity of DNP-INT and DBMIB, namely increasing the activity of DNP-INT and restricting the activity of DBMIB. These results allow for the refinement of the conditions under which the use of these inhibitors leads to the complete inhibition of plastoquinol oxidation in the cytochrome b6f complex, thereby broadening our understanding of the operation of the cytochrome b6f complex under conditions of steady-state electron transport.


Assuntos
Arabidopsis , Complexo Citocromos b6f , Fotossíntese , Pisum sativum , Plastoquinona , Tilacoides , Transporte de Elétrons/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/metabolismo , Complexo Citocromos b6f/metabolismo , Plastoquinona/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Tilacoides/metabolismo , Tilacoides/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Benzoquinonas/farmacologia , Dibromotimoquinona/farmacologia , Luz , Dinitrobenzenos/farmacologia
5.
Exp Dermatol ; 33(1): e14970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975541

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Recently, exosomes have been considered as potential cell-free medicine for skin defects such as aging, psoriasis and wounds. The aim of this study was to investigate the effects of human dermal fibroblast-neonatal-derived exosome (HDFn-Ex) on AD. HDFn-Ex increased the expression of peroxisome proliferator activated receptor α (PPARα) and alleviated the 1-chloro-2,4-dinitrobenzene (DNCB)-mediated downregulation of filaggrin, involucrin, loricrin, hyaluronic acid synthase 1 (HAS1) and HAS2 in human keratinocyte HaCaT cells. However, these effects were inhibited by the PPARα antagonist GW6471. In the artificial skin model, HDFn-Ex significantly inhibited DNCB-induced epidermal hyperplasia and the decrease in filaggrin and HAS1 levels via a PPARα. In the DNCB-induced AD-like mouse model, HDFn-Ex administration reduced epidermis thickening and mast cell infiltration into the dermis compared to DNCB treatment. Moreover, the decreases in PPARα, filaggrin and HAS1 expression, as well as the increases in IgE and IL4 levels induced by DNCB treatment were reversed by HDFn-Ex. These effects were blocked by pre-treatment with GW6471. Furthermore, HDFn-Ex exhibited an anti-inflammatory effect by inhibiting the DNCB-induced increases in IκBα phosphorylation and TNF-α expression. Collectively, HDFn-Ex exhibited a protective effect on AD. Notably, these effects were regulated by PPARα. Based on our results, we suggest that HDFn-Ex is a potential candidate for treating AD by recovering skin barrier dysfunction and exhibiting anti-inflammatory activity.


Assuntos
Dermatite Atópica , Exossomos , Dermatopatias , Animais , Camundongos , Recém-Nascido , Humanos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , PPAR alfa/metabolismo , Dinitroclorobenzeno/metabolismo , Dinitroclorobenzeno/farmacologia , Dinitroclorobenzeno/uso terapêutico , Proteínas Filagrinas , Dinitrobenzenos/efeitos adversos , Dinitrobenzenos/metabolismo , Exossomos/metabolismo , Pele/metabolismo , Anti-Inflamatórios/farmacologia , Dermatopatias/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos BALB C
6.
Bioorg Med Chem ; 104: 117712, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593670

RESUMO

Glutathione-S-transferases are key to the cellular detoxification of xenobiotics and products of oxidative damage. GSTs catalyse the reaction of glutathione (GSH) with electrophiles to form stable thioether adducts. GSTK1-1 is the main GST isoform in the mitochondrial matrix, but the GSTA1-1 and GSTA4-4 isoforms are also thought to be in the mitochondria with their distribution altering in transformed cells, thus potentially providing a cancer specific target. A mitochondria-targeted version of the GST substrate 1-chloro-2,4-dinitrobenzene (CDNB), MitoCDNB, has been used to manipulate the mitochondrial GSH pool. To finesse this approach to target particular GST isoforms in the context of cancer, here we have determined the kcat/Km for the human isoforms of GSTK1-1, GSTA1-1 and GSTA4-4 with respect to GSH and CDNB. We show how the rate of the GST-catalysed reaction between GSH and CDNB analogues can be modified by both the electron withdrawing substituents, and by the position of the mitochondria-targeting triphenylphosphonium on the chlorobenzene ring to tune the activity of mitochondria-targeted substrates. These findings can now be exploited to selectively disrupt the mitochondrial GSH pools of cancer cells expressing particular GST isoforms.


Assuntos
Glutationa Transferase , Mitocôndrias , Humanos , Dinitrobenzenos , Glutationa , Glutationa Transferase/metabolismo , Cinética , Mitocôndrias/metabolismo , Compostos Organofosforados , Isoformas de Proteínas
7.
Anal Bioanal Chem ; 416(28): 6485-6495, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39322801

RESUMO

In this study, a new near-infrared (NIR) fluorescent turn-on probe featuring a large Stokes shift (198 nm) was developed for the detection of biothiols. The probe was based on a dicyanoisophorone derivative serving as the fluorophore and a 2,4-dinitrobenzenesulfonyl (DNBS) group functioning as both a recognition site and a fluorescence quencher. In the absence of biothiols, the fluorescence of the probe was low due to the photoinduced electron transfer (PET) effect between the fluorophore and DNBS. Upon the presence of biothiols, the DNBS group underwent a nucleophilic aromatic substitution reaction with the sulfhydryl group of biothiols, leading to the release of the fluorophore and a notable emission peak at 668 nm. This developed probe exhibited exceptional selectivity and sensitivity to biothiols in solution, with an impressive detection limit of 28 nM for cysteine (Cys), 22 nM for homocysteine (Hcy), and 24 nM for glutathione (GSH). Furthermore, the probe demonstrated its applicability by successfully visualizing both endogenous and exogenous biothiols in living systems.


Assuntos
Corantes Fluorescentes , Limite de Detecção , Compostos de Sulfidrila , Corantes Fluorescentes/química , Humanos , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Animais , Cisteína/análise , Glutationa/análise , Homocisteína/análise , Espectrometria de Fluorescência/métodos , Células HeLa , Imagem Óptica/métodos , Dinitrobenzenos/análise , Camundongos , Benzenossulfonatos
8.
Environ Res ; 242: 117719, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993052

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with few risk factors identified and no known cure. Gene-environment interaction is hypothesized especially for sporadic ALS cases (90-95%) which are of unknown etiology. We aimed to investigate risk factors for ALS including exposure to ambient air toxics. METHODS: This population-based case-control study included 267 ALS cases (from the United States [U.S.] Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry National ALS Registry and Biorepository) and 267 age, sex, and county-matched controls identified via a commercial database. Exposure assessment for 34 ambient air toxicants was performed by assigning census tract-level U.S. Environmental Protection Agency (EPA) 2011 National Air Toxics Assessment (NATA) data to participants' residential ZIP codes. Conditional logistic regression was used to compute adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for individual compounds, chemical classes, and overall exposure. Sensitivity analyses using both conditional logistic regression and Bayesian grouped weighted quartile sum (GWQS) models were performed to assess the integrity of findings. RESULTS: Using the 2011 NATA, the highest exposure quartile (Q4) compared to the lowest (Q1) of vinyl chloride (aOR = 6.00, 95% CI: 1.87-19.25), 2,4-dinitrotoluene (aOR = 5.45, 95% CI: 1.53-19.36), cyanide (aOR = 4.34, 95% CI: 1.52-12.43), cadmium (aOR = 3.30, 95% CI: 1.11-9.77), and carbon disulfide (aOR = 2.98, 95% CI: 1.00-8.91) was associated with increased odds of ALS. Residential air selenium showed an inverse association with ALS (second quartile [Q2] vs. Q1: aOR = 0.38, 95% CI: 0.18-0.79). Additionally, residential exposure to organic/chlorinated solvents (Q4 vs Q1: aOR = 2.62, 95% CI: 1.003-6.85) was associated with ALS. CONCLUSIONS: Our findings using the 2011 NATA linked by census tract to residential area provide evidence of increased ALS risk in cases compared to controls for 2,4-dinitrotoluene, vinyl chloride, cyanide, and the organic/chlorinated solvents class. This underscores the importance of ongoing surveillance of potential exposures for at-risk populations.


Assuntos
Esclerose Lateral Amiotrófica , Dinitrobenzenos , Cloreto de Vinil , Humanos , Estados Unidos/epidemiologia , Estudos de Casos e Controles , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/epidemiologia , Teorema de Bayes , Fatores de Risco , Solventes , Cianetos
9.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542183

RESUMO

Inflammatory bowel conditions can involve nearly all organ systems and induce pathological processes through increased oxidative stress, lipid peroxidation and disruption of the immune response. Patients with inflammatory bowel disease (IBD) are at high risk of having extra-intestinal manifestations, for example, in the hepatobiliary system. In 30% of patients with IBD, the blood values of liver enzymes, such as AST and ALT, are increased. Moreover, treatments for inflammatory bowel diseases may cause liver toxicity. Apple polyphenol extracts are widely acknowledged for their potential antioxidant effects, which help prevent damage from oxidative stress, reduce inflammation, provide protection to the liver, and enhance lipid metabolism. The aim of this study was to investigate whether the polyphenol apple extract from Malus domestica cv. 'Limoncella' (LAPE) may be an effective intervention for the treatment of IBD-induced hepatotoxicity. The LAPE was administrated in vivo by oral gavage (3-300 mg/kg) once a day for 3 consecutive days, starting 24 h after the induction of dinitro-benzenesulfonic acid (DNBS) colitis in mice. The results showed that LAPE significantly attenuated histological bowel injury, myeloperoxidase activity, tumor necrosis factor and interleukin (IL-1ß) expressions. Furthermore, LAPE significantly improved the serum lipid peroxidation and liver injury in DNBS-induced colitis, as well as reduced the nuclear transcription factor-kappaB activation. In conclusion, these results suggest that LAPE, through its antioxidant and anti-inflammatory properties, could prevent liver damage induced by inflammatory bowel disease.


Assuntos
Benzenossulfonatos , Colite , Dinitrofluorbenzeno/análogos & derivados , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Dinitrobenzenos , Polifenóis/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/patologia , Antioxidantes/efeitos adversos , Fígado/metabolismo
10.
Plant Cell ; 32(11): 3576-3597, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32883711

RESUMO

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Celulose/biossíntese , Metiltransferases/metabolismo , Mutação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Adesão Celular/genética , Parede Celular/genética , Celulose/genética , Dinitrobenzenos/farmacologia , Regulação da Expressão Gênica de Plantas , Hipocótilo/citologia , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Metiltransferases/genética , Microtúbulos/metabolismo , Pectinas/biossíntese , Pectinas/genética , Pectinas/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Sulfanilamidas/farmacologia , Ácidos Urônicos/metabolismo
11.
Lipids Health Dis ; 22(1): 63, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189092

RESUMO

BACKGROUND: Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS: Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS: GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS: These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.


Assuntos
Colite , Dinitrobenzenos , Camundongos , Animais , Dinitrobenzenos/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Inflamação , Lipídeos
12.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686078

RESUMO

Spirodela polyrhiza (L.) SCHLEID. has been used to treat epidemic fever, dysuria, and various skin ailments, such as measles eruptions, eczema, and pruritus, in China, Japan, and Korea. In this study, the active compounds in S. polyrhiza and their target genes were identified by network-based analysis. Moreover, the study evaluated the effects of a 70% ethanolic extract of S. polyrhiza (EESP) on skin lesions, histopathological changes, inflammatory cytokines, and chemokines in mice with contact dermatitis (CD) induced by 1-fluoro-2,4-dinitrobenzene (DNFB), and examined the inhibitory effects of EESP on mitogen-activated protein kinase (MAPK) signalling pathways. In our results, 14 active compounds and 29 CD-related target genes were identified. Among them, tumour necrosis factor (TNF) and interleukin 6 (IL-6) were identified as hub genes, and luteolin and apigenin showed a strong binding affinity with TNF (<-8 kcal/mol) and IL-6 (<-6 kcal/mol). Our in vivo studies showed that topical EESP ameliorated DNFB-induced skin lesions and histopathological abnormalities, and reduced the levels of TNF-α, interferon (IFN)-É£, IL-6, and monocyte chemotactic protein (MCP)-1 in inflamed tissues. In conclusion, our findings suggest the potential for dermatological applications of S. polyrhiza and suggest that its anti-dermatitis action is related to the inhibition of TNF and IL-6 by luteolin and luteolin glycosides.


Assuntos
Araceae , Dermatite de Contato , Animais , Camundongos , Dinitrofluorbenzeno , Interleucina-6 , Luteolina , Fator de Necrose Tumoral alfa , Dinitrobenzenos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
13.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298827

RESUMO

Oxidative degradation of 2,4-dinitrotoluenes in aqueous solution was executed using persulfate combined with semiconductors motivated by ultrasound (probe type, 20 kHz). Batch-mode experiments were performed to elucidate the effects of diverse operation variables on the sono-catalytic performance, including the ultrasonic power intensity, dosage of persulfate anions, and semiconductors. Owing to pronounced scavenging behaviors caused by benzene, ethanol, and methanol, the chief oxidants were presumed to be sulfate radicals which originated from persulfate anions, motivated via either the ultrasound or sono-catalysis of semiconductors. With regard to semiconductors, the increment of 2,4-dinitrotoluene removal efficiency was inversely proportional to the band gap energy of semiconductors. Based on the outcomes indicated in a gas chromatograph-mass spectrometer, it was sensibly postulated that the preliminary step for 2,4-dinitrotoluene removal was denitrated into o-mononitrotoluene or p-mononitrotoluene, followed by decarboxylation to nitrobenzene. Subsequently, nitrobenzene was decomposed to hydroxycyclohexadienyl radicals and converted into 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol individually. Nitrophenol compounds with the cleavage of nitro groups synthesized phenol, which was sequentially transformed into hydroquinone and p-benzoquinone.


Assuntos
Dinitrobenzenos , Poluentes Químicos da Água , Águas Residuárias , Oxirredução , Nitrobenzenos , Poluentes Químicos da Água/análise , Semicondutores
14.
J Biol Chem ; 297(4): 101143, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473996

RESUMO

Nitroreductases are emerging as attractive bioremediation enzymes, with substrate promiscuity toward both natural and synthetic compounds. Recently, the nitroreductase NfnB from Sphingopyxis sp. strain HMH exhibited metabolic activity for dinitroaniline herbicides including butralin and pendimethalin, triggering the initial steps of their degradation and detoxification. However, the determinants of the specificity of NfnB for these herbicides are unknown. In this study, we performed structural and biochemical analyses of NfnB to decipher its substrate specificity. The homodimer NfnB is a member of the PnbA subgroup of the nitroreductase family. Each monomer displays a central α + ß fold for the core domain, with a protruding middle region and an extended C-terminal region. The protruding middle region of Val75-Tyr129 represents a structural extension that is a common feature to members of the PnbA subgroup and functions as an opening wall connecting the coenzyme FMN-binding site to the surface, therefore serving as a substrate binding site. We performed mutational, kinetic, and structural analyses of mutant enzymes and found that Tyr88 in the middle region plays a pivotal role in substrate specificity by determining the dimensions of the wall opening. The mutation of Tyr88 to phenylalanine or alanine caused significant changes in substrate selectivity toward bulkier dinitroaniline herbicides such as oryzalin and isopropalin without compromising its activity. These results provide a framework to modify the substrate specificity of nitroreductase in the PnbA subgroup, which has been a challenging issue for its biotechnological and bioremediation applications.


Assuntos
Compostos de Anilina/química , Dinitrobenzenos/química , Herbicidas/química , Nitrorredutases/química , Sphingomonadaceae/enzimologia , Sulfanilamidas/química , Sítios de Ligação , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Plant J ; 107(6): 1771-1787, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250673

RESUMO

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Assuntos
Cloroplastos/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Nicotiana/microbiologia , Phytophthora infestans/patogenicidade , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/imunologia , Dinitrobenzenos/farmacologia , Luz , Microscopia Confocal , Pinças Ópticas , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Sulfanilamidas/farmacologia , Tiazolidinas/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/imunologia
16.
Arch Biochem Biophys ; 730: 109398, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116504

RESUMO

Oryzalin (ORY) is a dinitroaniline derivative that inhibits the microtubule polymerization in plants and parasitic protozoa by selectively binding to the α-tubulin subunit. This herbicidal agent exhibits good antiprotozoal activity against major human parasites, such as Toxoplasma gondii (toxoplasmosis), Leishmania mexicana (leishmaniasis), and Plasmodium falciparum (malaria). Previous chemical mutagenesis assays on T. gondii α-tubulin (TgAT) have identified key mutations that lead to ORY resistance. Herein, we employed alchemical free energy methods and molecular dynamics simulations to determine if the ORY resistance mutations either decrease the TgAT's affinity of the compound or increase the protein stability. Our results here suggest that L136F and V202F mutations significantly decrease the affinity of ORY to TgAT, while T239I and V252L mutations diminish TgAT's flexibility. On the other hand, protein stability predictors determined that R243S mutation reduces TgAT stability due to the loss of its salt bridge interaction with E27. Interestingly, molecular dynamics simulations confirm that the loss of this key interaction leads to ORY binding site closure. Our study provides a better insight into the TgAT-ORY interaction, further supporting our recently proposed ORY-binding site.


Assuntos
Toxoplasma , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Tubulina (Proteína)/química , Dinitrobenzenos/química , Dinitrobenzenos/metabolismo , Dinitrobenzenos/farmacologia , Sítios de Ligação
17.
Rapid Commun Mass Spectrom ; 36(10): e9274, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35178790

RESUMO

Some alcoholic modifier gases were applied to separate isomer peaks in ion mobility spectrometry (IMS). Different mechanisms have been investigated on the separation, such as collision cross-section and analyte-modifier cluster formation. In this regard, some parameters that affected the cluster formation, such as dipole moment, electron affinity, the position of functional groups, and the modifier structure, were evaluated. On the other hand, some effective experimental parameters, including cell temperature and the flow rates of the drift and modifier gases, were also optimized. The combination of dispersive liquid-liquid microextraction with thin-film evaporation (DLLME-TFE) was used as a sample preparation method for the extraction of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) isomers (as the target analytes). Isobutanol was selected as the alcoholic modifier to separate the ion molecular peaks of these isomers. The limit of detection and the limit of quantification obtained were 15 and 50 µg L-1 , and the linear dynamic range (50-700 µg L-1 ) with coefficient of determination of 0.9941 and 0.9914 were obtained for 2,4-DNT and 2,6-DNT, respectively. The intra- and inter-day relative standard deviations were obtained between 3% and 5%. For validation of the method, determination of the isomers was accomplished for a red wastewater field sample, resulting in relative recovery values of about 96%.


Assuntos
Espectrometria de Mobilidade Iônica , Microextração em Fase Líquida , Dinitrobenzenos , Gases , Isomerismo , Microextração em Fase Líquida/métodos , Águas Residuárias
18.
Anal Bioanal Chem ; 414(14): 4039-4046, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384472

RESUMO

There are several reports of D-amino acids being the causative molecules of serious diseases, resulting in the formation of, for example, prion protein and amyloid ß. D-Amino acids in peptides and proteins are typically identified by sequencing each residue by Edman degradation or by hydrolysis with hydrochloric acid for amino acid analysis. However, these approaches can result in racemization of the L-form to the D-form by hydrolysis and long pre-treatment for hydrolysis. To address these problems, we aimed to identify the DL-forms of amino acids in peptides without hydrolysis. Here, we showed that the DL-forms in peptides which are difficult to separate on a chiral column can be precisely separated by labeling with 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamine-amide (D-FDLDA). Additionally, the peptides could be quantitatively analyzed using the same labeling method as for amino acids. Furthermore, the detection sensitivity of a sample labeled with D-FDLDA was higher than that of the conventional reagents Nα-(5-fluoro-2,4-dinitrophenyl)-L-alaninamide (L-FDAA) and Nα-(5-fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA) used in Marfey's method. The proposed method for identifying DL-forms of amino acids in peptides is a powerful tool for use in organic chemistry, biochemistry, and medical science.


Assuntos
Aminoácidos , Peptídeos beta-Amiloides , Aminas , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Dinitrobenzenos/análise , Indicadores e Reagentes , Estereoisomerismo
19.
Inhal Toxicol ; 34(11-12): 350-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045580

RESUMO

OBJECTIVE: Olfaction requires a combination of sensorineural components and conductive components, but conductive mechanisms have not typically received much attention. This study investigates the role of normal nasal vestibule morphological variations in ten healthy subjects on odorant flux in the olfactory cleft. MATERIALS AND METHODS: Computed tomography images were used to create subject-specific nasal models. Each subject's unilateral nasal cavity was classified according to its nasal vestibule shape as Standard or Notched. Inspiratory airflow simulations were performed at 15 L/min, simulating resting inspiration using computational fluid dynamics modeling. Odorant transport simulations for three odorants (limonene, 2,4-dinitrotoluene, and acetaldehyde) were then performed at concentrations of 200 ppm for limonene and acetaldehyde, and 0.2 ppm for dinitrotoluene. Olfactory cleft odorant flux was computed for each simulation. RESULTS AND DISCUSSION AND CONCLUSION: Simulated results showed airflow in the olfactory cleft was greater in the Standard phenotype compared to the Notched phenotype. For Standard, median airflow was greatest in the anterior region (0.5006 L/min) and lowest in the posterior region (0.1009 L/min). Median airflow in Notched was greatest in the medial region (0.3267 L/min) and lowest in the posterior region (0.0756 L/min). Median olfactory odorant flux for acetaldehyde and limonene was greater in Standard (Acetaldehyde: Standard = 140.45 pg/cm2-s; Notched = 122.20 pg/cm2-s. Limonene: Standard = 0.67 pg/cm2-s; Notched = 0.65 pg/cm2-s). Median dinitrotoluene flux was greater in Notched (Standard = 2.86 × 10-4pg/cm2-s; Notched = 4.29 × 10-4 pg/cm2-s). The impact of nasal vestibule morphological variations on odorant flux at the olfactory cleft may have implications on individual differences in olfaction, which should be investigated further.


Assuntos
Odorantes , Olfato , Limoneno , Dinitrobenzenos , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/anatomia & histologia , Acetaldeído
20.
Contact Dermatitis ; 87(4): 315-324, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35611449

RESUMO

BACKGROUND: Azobenzene disperse dyes (azo DDs) are well-known as textile allergens, but the knowledge of their occurrence in garments is low. The numerous azo DDs and dye components found in textiles constitute a potential health risk, but only seven azo DDs are included in the European baseline patch test series (EBS). OBJECTIVES: To investigate non-regulated azo DDs and dye components in synthetic garments on the Swedish market. METHODS: High-performance liquid chromatography/mass spectrometry, gas chromatography/mass spectrometry and computerized data mining. RESULTS: Sixty-two azo DDs were detected, with Disperse Red 167:1 occurring in 67%, and 14 other DDs each found in >20% of the garments. Notably, the EBS dyes were less common, three even not detected, while arylamines were frequently detected and exceeded 1 mg/g in several garments. Also, halogenated dinitrobenzenes were identified in 25% of the textiles. CONCLUSION: Azo DDs and dye components, in complex compositions and with large variations, occurred frequently in the synthetic garments. The arylamines were shown to occur at much higher levels compared to the azo DDs, suggesting the former constitute a potentially higher health risk. The role of arylamines and halogenated dinitrobenzenes in textile allergy has to be further investigated.


Assuntos
Dermatite Alérgica de Contato , Alérgenos/efeitos adversos , Aminas/efeitos adversos , Compostos Azo/efeitos adversos , Vestuário , Corantes/efeitos adversos , Dermatite Alérgica de Contato/epidemiologia , Dermatite Alérgica de Contato/etiologia , Dinitrobenzenos , Humanos , Testes do Emplastro/métodos , Suécia , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA