Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 248, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443859

RESUMO

BACKGROUND: Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam. METHODS AND RESULTS: Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, ß-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data. CONCLUSIONS: The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.


Assuntos
Dioscorea , Dioscorea/genética , Melhoramento Vegetal , Genômica , Fenótipo , Amido
2.
BMC Plant Biol ; 24(1): 540, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872080

RESUMO

BACKGROUND: Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). RESULTS: The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. CONCLUSIONS: This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.


Assuntos
Dioscorea , Diosgenina , Estudo de Associação Genômica Ampla , Tubérculos , Polimorfismo de Nucleotídeo Único , Diosgenina/metabolismo , Dioscorea/genética , Dioscorea/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Variação Genética
3.
BMC Plant Biol ; 24(1): 524, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853253

RESUMO

BACKGROUND: Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS: To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS: Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.


Assuntos
Amilose , Dioscorea , Estudo de Associação Genômica Ampla , Tubérculos , Polimorfismo de Nucleotídeo Único , Amilose/metabolismo , Dioscorea/genética , Dioscorea/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Genes de Plantas
4.
Phytopathology ; 114(8): 1893-1903, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810265

RESUMO

Dioscorea opposita cultivar Tiegun is an economically important crop with high nutritional and medicinal value. Plants can activate complex and diverse defense mechanisms after infection by pathogenic fungi. Moreover, endophytic fungi can also trigger the plant immune system to resist pathogen invasion. However, the study of the effects of endophytic fungi on plant infection lags far behind that of pathogenic fungi, and the underlying mechanism is not fully understood. Here, the black spot pathogen Alternaria alternata and the endophytic fungus Penicillium halotolerans of Tiegun were identified and used to infect calli. The results showed that A. alternata could cause more severe membrane lipid peroxidation, whereas P. halotolerans could rapidly increase the activity of the plant antioxidant enzymes superoxide dismutase, peroxidase, and catalase; thus, the degree of damage to the callus caused by P. halotolerans was weaker than that caused by A. alternata. RNA sequencing analysis revealed that various plant defense pathways, such as phenylpropanoid biosynthesis, flavonoid biosynthesis, plant hormone signal transduction, and the mitogen-activated protein kinase signaling pathway, play important roles in triggering the plant immune response during fungal infection. Furthermore, the tryptophan metabolism, betalain biosynthesis, fatty acid degradation, flavonoid biosynthesis, tyrosine metabolism, and isoquinoline alkaloid biosynthesis pathways may accelerate the infection of pathogenic fungi, and the ribosome biogenesis pathway in eukaryotes may retard the damage caused by endophytic fungi. This study lays a foundation for exploring the infection mechanism of yam pathogens and endophytic fungi and provides insight for effective fungal disease control in agriculture.


Assuntos
Alternaria , Dioscorea , Endófitos , Doenças das Plantas , Dioscorea/microbiologia , Dioscorea/genética , Alternaria/fisiologia , Alternaria/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Endófitos/fisiologia , Endófitos/genética , Penicillium/genética , Penicillium/fisiologia , Penicillium/patogenicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
5.
Plant Cell Rep ; 43(4): 95, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472393

RESUMO

KEY MESSAGE: Both bacterial and fungal endophytes exhibited one or more plant growth-promoting (PGP) traits. Among these strains, the Paenibacillus peoriae SYbr421 strain demonstrated the greatest activity in the direct biotransformation of tuber powder from D. nipponica into diosgenin. Endophytes play crucial roles in shaping active metabolites within plants, significantly influencing both the quality and yield of host plants. Dioscorea nipponica Makino accumulates abundant steroidal saponins, which can be hydrolyzed to produce diosgenin. However, our understanding of the associated endophytes and their contributions to plant growth and diosgenin production is limited. The present study aimed to assess the PGP ability and potential of diosgenin biotransformation by endophytes isolates associated with D. nipponica for the efficient improvement of plant growth and development of a clean and effective approach for producing the valuable drug diosgenin. Eighteen bacterial endophytes were classified into six genera through sequencing and phylogenetic analysis of the 16S rDNA gene. Similarly, 12 fungal endophytes were categorized into 5 genera based on sequencing and phylogenetic analysis of the ITS rDNA gene. Pure culture experiments revealed that 30 isolated endophytic strains exhibited one or more PGP traits, such as nitrogen fixation, phosphate solubilization, siderophore synthesis, and IAA production. One strain of endophytic bacteria, P. peoriae SYbr421, effectively directly biotransformed the saponin components in D. nipponica. Moreover, a high yield of diosgenin (3.50%) was obtained at an inoculum size of 4% after 6 days of fermentation. Thus, SYbr421 could be used for a cleaner and more eco-friendly diosgenin production process. In addition, based on the assessment of growth-promoting isolates and seed germination results, the strains SYbr421, SYfr1321, and SYfl221 were selected for greenhouse experiments. The results revealed that the inoculation of these promising isolates significantly increased the plant height and fresh weight of the leaves and roots compared to the control plants. These findings underscore the importance of preparing PGP bioinoculants from selected isolates as an additional option for sustainable diosgenin production.


Assuntos
Dioscorea , Diosgenina , Endófitos/genética , Endófitos/metabolismo , Dioscorea/genética , Dioscorea/microbiologia , Diosgenina/metabolismo , Filogenia , Raízes de Plantas , DNA Ribossômico/metabolismo
6.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396734

RESUMO

Dioscorea alata L. (Dioscoreaceae) is a widely cultivated tuber crop with variations in tuber color, offering potential value as health-promoting foods. This study focused on the comparison of D. alata tubers possessing two distinct colors, white and purple, to explore the underlying mechanisms of color variation. Flavonoids, a group of polyphenols known to influence plant color and exhibit antioxidant properties, were of particular interest. The total phenol and total flavonoid analyses revealed that purple tubers (PTs) have a significantly higher content of these metabolites than white tubers (WTs) and a higher antioxidant activity than WTs, suggesting potential health benefits of PT D. alata. The transcriptome analysis identified 108 differentially expressed genes associated with the flavonoid synthesis pathway, with 57 genes up-regulated in PTs, including CHS, CHI, DFR, FLS, F3H, F3'5'H, LAR, ANS, and ANR. The metabolomics analysis demonstrated that 424 metabolites, including 104 flavonoids and 8 tannins, accumulated differentially in PTs and WTs. Notably, five of the top ten up-regulated metabolites were flavonoids, including 6-hydroxykaempferol-7-O-glucoside, pinocembrin-7-O-(6″-O-malonyl)glucoside, 6-hydroxykaempferol-3,7,6-O-triglycoside, 6-hydroxykaempferol-7-O-triglycoside, and cyanidin-3-O-(6″-O-feruloyl)sophoroside-5-O-glucoside, with the latter being a precursor to anthocyanin synthesis. Integrating transcriptome and metabolomics data revealed that the 57 genes regulated 20 metabolites within the flavonoid synthesis pathway, potentially influencing the tubers' color variation. The high polyphenol content and antioxidant activity of PTs indicate their suitability as nutritious and health-promoting food sources. Taken together, the findings of this study provide insights into the molecular basis of tuber color variation in D. alata and underscore the potential applications of purple tubers in the food industry and human health promotion. The findings contribute to the understanding of flavonoid biosynthesis and pigment accumulation in D. alata tubers, opening avenues for future research on enhancing the nutritional quality of D. alata cultivars.


Assuntos
Dioscorea , Transcriptoma , Humanos , Dioscorea/genética , Dioscorea/metabolismo , Antioxidantes , Antocianinas/metabolismo , Flavonoides , Perfilação da Expressão Gênica , Metabolômica , Glucosídeos , Cor , Regulação da Expressão Gênica de Plantas
7.
PLoS One ; 19(4): e0302377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648204

RESUMO

Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some plants. The precise mechanisms underlying transmission of functions of these associations are often difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems. Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but microscopic differences between symbiotic and aposymbiotic glands highlight the influence of bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont can be genetically altered and reintroduced to the host.


Assuntos
Dioscorea , Folhas de Planta , Simbiose , Dioscorea/microbiologia , Dioscorea/genética , Folhas de Planta/microbiologia
8.
Plant Genome ; 17(2): e20428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234122

RESUMO

Microsatellite markers are widely used in population genetics and breeding. Despite the economic significance of yams in developing countries, there is a paucity of microsatellite markers, and as of now, no comprehensive microsatellite marker database exists. In this study, we conducted genome-wide microsatellite marker development across four yam species, identified cross-species transferable markers, and designed an easy-to-use web portal for the yam researchers. The screening of Dioscorea alata, Dioscorea rotundata, Dioscorea dumetorum, and Dioscorea zingiberensis genomes resulted in 318,713, 322,501, 307,040, and 253,856 microsatellites, respectively. Mono-, di-, and tri-nucleotides were the most important types of repeats in the different species, and a total of 864,128 primer pairs were designed. Furthermore, we identified 1170 cross-species transferable microsatellite markers. Among them, 17 out of 18 randomly selected were experimentally validated with good discriminatory power, regardless of the species and ploidy levels. Ultimately, we created and deployed a dynamic Yam Microsatellite Markers Database (Y2MD) available at https://y2md.ucad.sn/. Y2MD is embedded with various useful tools such as JBrowse, Blast, insilicoPCR, and SSR Finder to facilitate the exploitation of microsatellite markers in yams. This study represents the first comprehensive microsatellite marker mining across several yam species and will contribute to advancing yam genetic research and marker-assisted breeding. The released user-friendly database constitutes a valuable platform for yam researchers.


Assuntos
Dioscorea , Genoma de Planta , Repetições de Microssatélites , Melhoramento Vegetal , Dioscorea/genética , Melhoramento Vegetal/métodos , Bases de Dados Genéticas , Internet
9.
PeerJ ; 12: e17016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560473

RESUMO

WRKY transcription factors constitute one of the largest plant-specific gene families, regulating various aspects of plant growth, development, physiological processes, and responses to abiotic stresses. This study aimed to comprehensively analyze the WRKY gene family of yam (Dioscorea opposita Thunb.), to understand their expression patterns during the growth and development process and their response to different treatments of yam and analyze the function of DoWRKY71 in detail. A total of 25 DoWRKY genes were identified from the transcriptome of yam, which were divided into six clades (I, IIa, IIc, IId, IIe, III) based on phylogenetic analysis. The analysis of conserved motifs revealed 10 motifs, varying in length from 16 to 50 amino acids. Based on real-time quantitative PCR (qRT-PCR) analysis, DoWRKY genes were expressed at different stages of growth and development and responded differentially to various abiotic stresses. The expression level of DoWRKY71 genes was up-regulated in the early stage and then down-regulated in tuber enlargement. This gene showed responsiveness to cold and abiotic stresses, such as abscisic acid (ABA) and methyl jasmonate (MeJA). Therefore, further study was conducted on this gene. Subcellular localization analysis revealed that the DoWRKY71 protein was localized in the nucleus. Moreover, the overexpression of DoWRKY71 enhanced the cold tolerance of transgenic tobacco and promoted ABA mediated stomatal closure. This study presents the first systematic analysis of the WRKY gene family in yam, offering new insights for studying WRKY transcription factors in yam. The functional study of DoWRKY71 lays theoretical foundation for further exploring the regulatory function of the DoWRKY71 gene in the growth and development related signaling pathway of yam.


Assuntos
Ácido Abscísico , Dioscorea , Ácido Abscísico/farmacologia , Dioscorea/genética , Filogenia , Estresse Fisiológico/genética , Fatores de Transcrição/genética
10.
PeerJ ; 12: e16702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282859

RESUMO

Dioscorea cirrhosa L. (D. cirrhosa) tuber is a traditional medicinal plant that is abundant in various pharmacological substances. Although diosgenin is commonly found in many Dioscoreaceae plants, its presence in D. cirrhosa remained uncertain. To address this, HPLC-MS/MS analysis was conducted and 13 diosgenin metabolites were identified in D. cirrhosa tuber. Furthermore, we utilized transcriptome data to identify 21 key enzymes and 43 unigenes that are involved in diosgenin biosynthesis, leading to a proposed pathway for diosgenin biosynthesis in D. cirrhosa. A total of 3,365 unigenes belonging to 82 transcription factor (TF) families were annotated, including MYB, AP2/ERF, bZIP, bHLH, WRKY, NAC, C2H2, C3H, SNF2 and Aux/IAA. Correlation analysis revealed that 22 TFs are strongly associated with diosgenin biosynthesis genes (-r2- > 0.9, P < 0.05). Moreover, our analysis of the CYP450 gene family identified 206 CYP450 genes (CYP450s), with 40 being potential CYP450s. Gene phylogenetic analysis revealed that these CYP450s were associated with sterol C-22 hydroxylase, sterol-14-demethylase and amyrin oxidase in diosgenin biosynthesis. Our findings lay a foundation for future genetic engineering studies aimed at improving the biosynthesis of diosgenin compounds in plants.


Assuntos
Dioscorea , Diosgenina , Perfilação da Expressão Gênica , Dioscorea/genética , Diosgenina/metabolismo , Filogenia , Espectrometria de Massas em Tandem , Sistema Enzimático do Citocromo P-450/genética , Esteróis
11.
Electron. j. biotechnol ; 17(2): 65-71, Mar. 2014. ilus, graf, mapas, tab
Artigo em Inglês | LILACS | ID: lil-714274

RESUMO

Background At present, species known as camote de cerro (Dioscorea spp.) are found only in the wilderness in Mexico, but their populations are extremely depleted because they are indiscriminately collected, it is urgent to evaluate the conservation status of these plants in order to design conservation genetics programs. In this study, genetic diversity parameters along with cluster analysis based on Jaccard's coefficient were estimated with the objective to assess the efficiency of Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR), Amplified Fragment Length Polymorphism (AFLP) and Inverse Sequence Tagged Repeat (ISTR) molecular DNA markers in the Dioscorea genus. Results The polymorphic information contents were quite similar for all markers (≈0.48). Genetic variation of Dioscorea spp., in terms of average heterozygosity was lower with ISTR (0.36), and higher when other markers were used (RAPD = 0.43; ISSR = 0.45 and AFLP = 0.47). Conclusion This indicates an important level of genetic differences despite the fact that the plant is asexually propagated. Based on the diversity statistics, any marker tested in present work can be recommended for use in large-scale genetic studies of populations. However, the low correlations among different molecular marker systems show the importance of the complementarity of the information that is generated by different markers for genetic studies involving estimation of polymorphism and relationships.


Assuntos
Polimorfismo Genético , Variação Genética , Dioscorea/genética , DNA/isolamento & purificação , Marcadores Genéticos , Sitios de Sequências Rotuladas , Técnica de Amplificação ao Acaso de DNA Polimórfico , Repetições de Microssatélites , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Heterozigoto , México
12.
Electron. j. biotechnol ; 16(5): 6-6, Sept. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-690466

RESUMO

Background: The perennial medicinal herb Dioscorea zingiberensis is a very important plant used for steroid drug manufacturing for its high level of diosgenin in rhizome. Although the stimulation of diosgenin accumulation by ethylene has been reported in a few of plant species, its regulation is not yet characterized at the molecular level, the underlying molecular mechanism remains elusive. Results: In this study, the effects of ethylene on diosgenin biosynthesis in in vitro cultures of D. zingiberensis were described. The results showed that, in samples treated with ethylene at concentration E3 (10(4) dilution of 40% ethephon), the diosgenin biosynthesis was significantly promoted in comparison with the control samples. Treatment with high concentrations of ethylene had inhibitory effect, whereas with low concentration of the gas elicitor brought about no detectable deleterious effect on the growth rate and diosgenin content of the cultures. The considerable increase of diosgenin level in in vitro cultured Dioscorea zingiberensis by ethylene application is accompanied by the concomitant increase of soluble proteins and chlorophyll content. The gene expressions of cycloartenol synthase and 3-hydroxy-3-methylglutaryl-CoA reductase but not of squalene synthase or farnesyl pyrophosphate synthase were up-regulated by applied ethylene. Conclusions: Our results suggest that ethylene treatment enhanced diosgenin accumulation via up-regulation of the gene expressions of cycloartenol synthase and 3-hydroxy-3-methylglutaryl-CoA reductase.


Assuntos
Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Dioscorea/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Técnicas In Vitro , RNA/isolamento & purificação , Expressão Gênica , Regulação para Cima , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dioscorea/crescimento & desenvolvimento , Dioscorea/genética , Diosgenina/análise , Etilenos
13.
Rev. colomb. biotecnol ; 12(1): 47-56, jul. 2010. tab
Artigo em Espanhol | LILACS | ID: lil-590644

RESUMO

Los microtubérculos en algunas especies de plantas constituyen una importante alternativa como material vegetal de plantación. Se definió como objetivo de trabajo evaluar en campo la respuesta morfoagronómica de las plantas obtenidas de los microtubérculos de ñame formados en Sistema de Inmersión Temporal (SIT). Como variantes experimentales se plantaron tres categorías de microtubérculos, clasificados según su masa fresca (I. de 0,5 a 0,9 g; II. de 1,0 a 2,9 g; III. igual o mayor de 3,0 g), plantas in vitro previamente aclimatadas y corona de tubérculo. Se evaluó el efecto de la masa fresca de los microtubérculos sobre su brote, supervivencia y posterior desarrollo de las plantas derivadas de ellos en campo. Con los microtubérculos de ñame, con una masa fresca igual o superior a 3,0 g, se alcanzó el más alto porcentaje de brotación (91,30%) y supervivencia de las plantas (96,50%), así como las mejores respuestas en los caracteres cuantitativos que se evaluaron en campo. Estos resultados confirmaron la importancia de la masa fresca de los microtubérculos para ser empleados como material vegetal de plantación directo en campo.


Microtubers in some plant species represent an important alternative crop-planting material. The presentwork involved field work for evaluating the morphoagronomic response of plants obtained from yam microtubersproduced in a temporary immersion system (TIS). Three categories of microtuber were planted asexperimental variants; they were classified by fresh mass (1 - 0.5 to 0.9 g, 2 - from 1.0 to 2.9 g and 3 - equal to or greater than 3.0 g), previously in vitro-acclimated plants and tuber crowns. The effect of microtuber freshweight on their sprouting, survival and later development of the plants derived from them in the field were evaluated. The highest sprouting (91.30%) and plant survival percentages (96.50%) and the best response in quantitative traits evaluated in the field were obtained with yam microtubers having a fresh mass equal to or greater than 3.0 g. These results confirmed the importance of microtubers’ fresh weight for using them as plant material in direct planting in the field.


Assuntos
Dioscorea/embriologia , Dioscorea/genética , Dioscorea/metabolismo , Dioscorea/química , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Tubérculos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA