Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2308602120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096413

RESUMO

Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-type H+-ATPase (VA) localized in the apical membrane of principal cells. In Aedes aegypti, the antidiuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic hormones; however, the cellular effectors of this inhibitory signaling cascade remain unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits serotonin (5HT)- and calcitonin-related diuretic hormone (DH31)-stimulated secretion. VA activity increases in DH31-treated MTs, whereas CAPA abolishes this increase through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation involves the reversible association of the cytosolic (V1) and membrane (Vo) complexes. Indeed, higher V1 protein abundance was found in membrane fractions of DH31-treated MTs, whereas CAPA significantly decreased V1 abundance in membrane fractions while increasing it in cytosolic fractions. V1 immunolocalization was observed strictly in the apical membrane of DH31-treated MTs, whereas immunoreactivity was dispersed following CAPA treatment. VA complexes colocalized apically in female MTs shortly after a blood meal consistent with the peak and postpeak phases of diuresis. Comparatively, V1 immunoreactivity in MTs was more dispersed and did not colocalize with the Vo complex in the apical membrane at 3 h post blood meal, representing a time point after the late phase of diuresis has concluded. Therefore, CAPA inhibition of MTs involves reducing VA activity and promotes complex dissociation hindering secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition of MTs countering diuresis that provides a deeper understanding of this critical physiological process necessary for hydromineral balance.


Assuntos
Neuropeptídeos , ATPases Vacuolares Próton-Translocadoras , Animais , Feminino , ATPases Vacuolares Próton-Translocadoras/metabolismo , Túbulos de Malpighi/metabolismo , Neuropeptídeos/metabolismo , Vasopressinas/metabolismo , Diuréticos/metabolismo
2.
Pestic Biochem Physiol ; 184: 105079, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715033

RESUMO

Variety of diuretic hormone neuropeptides is known to regulate water and ion balance in invertebrates. By activating their specific neuropeptide, diuretic hormone receptor (DHR) transmits extracellular signals into the cell, and then produces functional cell activity, which plays an important role in regulating physiology and behavior. However, little is known about the function of DHR gene in Lymantria dispar. DHR gene was firstly identified in L. dispar and its physiological functions were investigated using RNA interference (RNAi) technology. The results showed that except for the 6th instar larvae, the expression levels of DHR gene in the larval stages are higher than that in the egg, pupal and adult stages. The DHR gene is highly expressed in hindgut and midgut tissues. The L. dispar larvae significantly increased their water content and high temperature tolerance after the DHR was silenced, while decreasing excretion and feeding behavior. The physiological function of DHR is associated with desiccation, high temperature and starvation resistance. DHR could contribute to future development of novel insecticide to manage this global forest pest population.


Assuntos
Diuréticos , Mariposas , Animais , Dessecação , Diuréticos/metabolismo , Hormônios/metabolismo , Larva , Mariposas/metabolismo , Temperatura , Água/metabolismo
3.
Am J Physiol Renal Physiol ; 319(5): F754-F764, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32924546

RESUMO

The thiazide-sensitive Na+-Cl- cotransporter (NCC) is more abundant in kidneys of female subjects than of male subjects. Because morphological remodeling of the distal convoluted tubule (DCT) is dependent on NCC activity, it has been generally assumed that there is a corresponding sexual dimorphism in the structure of the DCT, leading to a larger female DCT. Until now, this has never been directly examined. Here, optical clearing techniques were combined with antibody labeling of DCT segment markers, state-of-the-art high-speed volumetric imaging, and analysis tools to visualize and quantify DCT morphology in male and female mice and study the DCT remodeling response to furosemide. We found an unexpected sex difference in the structure of the DCT. Compared with the male mice, female mice had a shorter DCT, a higher cellular density of NCC, and a greater capacity to elongate in response to loop diuretics. Our study revealed a sexual dimorphism of the DCT. Female mice expressed a greater density of NCC transporters in a shorter structure to protect Na+ balance in the face of greater basal distal Na+ delivery yet have a larger reserve and structural remodeling capacity to adapt to unique physiological stresses. These observations provide insight into mechanisms that may drive sex differences in the therapeutic responses to diuretics.


Assuntos
Diuréticos/metabolismo , Imageamento Tridimensional , Túbulos Renais Distais/metabolismo , Caracteres Sexuais , Animais , Feminino , Imageamento Tridimensional/métodos , Túbulos Renais Distais/diagnóstico por imagem , Masculino , Camundongos , Fosforilação , Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio/metabolismo
4.
Nephrol Nurs J ; 47(6): 553-572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33377756

RESUMO

Loop diuretic medications work by inhibiting sodium reabsorption in the renal tubules. The net effect is increasing in urinary sodium and water excretion. Loop diuretics are routinely used for many clinical indications, and nephrology practitioners are well informed in the management of their use in daily practice. This article highlights key information on the most commonly used loop diuretics (e.g., furosemide and torsemide) and provides important clinical features related to pharmacokinetics properties, dosing consideration, route of administration, side effects, and other considerations for practitioners.


Assuntos
Diuréticos/metabolismo , Diuréticos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Túbulos Renais/metabolismo , Nefrologia , Guias de Prática Clínica como Assunto , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Diuréticos/efeitos adversos , Humanos , Testes de Função Renal , Inibidores de Simportadores de Cloreto de Sódio e Potássio/efeitos adversos
5.
Am J Physiol Renal Physiol ; 317(4): F805-F814, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322418

RESUMO

Hydrochlorothiazide (HCTZ) is the most widely used thiazide diuretic for the treatment of hypertension either alone or in combination with other antihypertensives. HCTZ is mainly cleared by the kidney via tubular secretion, but the underlying molecular mechanisms are unclear. Using cells stably expressing major renal organic anion and cation transporters [human organic anion transporter 1 (hOAT1), human organic anion transporter 3 (hOAT3), human organic cation transporter 2 (hOCT2), human multidrug and toxin extrusion 1 (hMATE1), and human multidrug and toxin extrusion 2-K (hMATE2-K)], we found that HCTZ interacted with both organic cation and anion transporters. Uptake experiments further showed that HCTZ is transported by hOAT1, hOAT3, hOCT2, and hMATE2-K but not by hMATE1. Detailed kinetic analysis coupled with quantification of membrane transporter proteins by targeted proteomics revealed that HCTZ is an excellent substrate for hOAT1 and hOAT3. The apparent affinities (Km) for hOAT1 and hOAT3 were 112 ± 8 and 134 ± 13 µM, respectively, and the calculated turnover numbers (kcat) were 2.48 and 0.79 s-1, respectively. On the other hand, hOCT2 and hMATE2-K showed much lower affinity for HCTZ. The calculated transport efficiency (kcat/Km) at the single transporter level followed the rank order of hOAT1> hOAT3 > hOCT2 and hMATE2-K, suggesting a major role of organic anion transporters in tubular secretion of HCTZ. In vitro inhibition experiments further suggested that HCTZ is not a clinically relevant inhibitor for hOAT1 or hOAT3. However, strong in vivo inhibitors of hOAT1/3 may alter renal secretion of HCTZ. Together, our study elucidated the molecular mechanisms underlying renal handling of HCTZ and revealed potential pathways involved in the disposition and drug-drug interactions for this important antihypertensive drug in the kidney.


Assuntos
Diuréticos/metabolismo , Hidroclorotiazida/metabolismo , Rim/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Células HEK293 , Humanos , Cinética , Proteômica , Especificidade por Substrato
6.
Crit Care ; 22(1): 255, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305122

RESUMO

BACKGROUND: Despite aggressive application of continuous renal replacement therapy (CRRT) in critically ill patients with acute kidney injury (AKI), there is no consensus on diuretic therapy when discontinuation of CRRT is attempted. The effect of diuretics on discontinuation of CRRT in critically ill patients was evaluated. METHODS: This retrospective cohort study enrolled 1176 adult patients who survived for more than 3 days after discontinuing CRRT between 2009 and 2014. Patients were categorized depending on the re-initiation of renal replacement therapy within 3 days after discontinuing CRRT or use of diuretics. Changes in urine output (UO) and renal function after discontinuing CRRT were outcomes. Predictive factors for successful discontinuation of CRRT were also analyzed. RESULTS: The CRRT discontinuation group had a shorter duration of CRRT, more frequent use of diuretics after discontinuing CRRT, and greater UO on the day before CRRT discontinuation [day minus 1 (day - 1)]. The diuretics group had greater increases in UO and serum creatinine elevation after discontinuing CRRT. In the CRRT discontinuation group, continuous infusion of furosemide tended to increase UO more effectively. Multivariable regression analysis identified high day - 1 UO and use of diuretics as significant predictors of successful discontinuation of CRRT. Day - 1 UO of 125 mL/day was the cutoff value for predicting successful discontinuation of CRRT in oliguric patients treated with diuretics following CRRT. CONCLUSIONS: Day - 1 UO and aggressive diuretic therapy were associated with successful CRRT discontinuation. Diuretic therapy may be helpful when attempting CRRT discontinuation in critically ill patients with AKI, by inducing a favorable fluid balance, especially in oliguric patients.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Diuréticos/administração & dosagem , Terapia de Substituição Renal/métodos , Idoso , Estudos de Coortes , Estado Terminal/terapia , Diuréticos/metabolismo , Diuréticos/uso terapêutico , Feminino , Furosemida/administração & dosagem , Furosemida/metabolismo , Furosemida/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Regressão , Terapia de Substituição Renal/normas , Estudos Retrospectivos , Estatísticas não Paramétricas
7.
Gen Comp Endocrinol ; 258: 79-90, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694056

RESUMO

Rhodnius prolixus is a blood-gorging insect and a vector for human Chagas disease. The insect transmits the disease following feeding, when it excretes urine and feces contaminated with the Trypanosoma cruzi parasite. A corticotropin-releasing factor-like peptide acts as a diuretic hormone in R. prolixus (Rhopr-CRF/DH); however, its distribution throughout the insect's central nervous system (CNS) and the expression of its receptor in feeding-related tissue as well as the female reproductive system suggests a multifaceted role for the hormone beyond that of diuresis. Here we investigate the involvement of Rhopr-CRF/DH in feeding and reproduction in R. prolixus. Immunohistochemistry of the CNS showed diminished CRF-like staining in neurosecretory cells (NSCs) of the mesothoracic ganglionic mass (MTGM) immediately following feeding, and partial restocking of those same cells two hours later, indicating Rhopr-CRF/DH stores in this regions are involved in feeding. The results of the temporal qPCR analysis were consistent with the immunohistochemical findings, showing an increase in Rhopr-CRF/DH transcript expression in the MTGM immediately after feeding, presumably capturing the restocking of Rhopr-CRF/DH in the lateral NSCs following release of the peptide during feeding. Elevating haemolymph Rhopr-CRF/DH titres by injection of Rhopr-CRF/DH prior to feeding resulted in the intake of a significantly smaller blood meal in 5th instars and adults without an apparent effect on the rate of short-term diuresis. When adult females were injected with Rhopr-CRF/DH, they also produced and laid significantly fewer eggs. Finally, in vitro oviduct contraction assays illustrate that Rhopr-CRF/DH inhibits the amplitude of contractions of the lateral oviducts, highlighting a potential mechanism via which the hormone diminishes reproductive capacity. To conclude, the study of the Rhopr-CRF/DH pathway, its components and mechanisms of action, has implications for vector control by highlighting targets to alter feeding, diuresis, and reproduction of this disease vector.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Diuréticos/metabolismo , Comportamento Alimentar , Hormônios de Inseto/metabolismo , Rhodnius/fisiologia , Animais , Sistema Nervoso Central/metabolismo , DNA Complementar/metabolismo , Feminino , Oviposição , Peptídeos/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução , Fatores de Tempo
8.
J Pharmacol Exp Ther ; 363(3): 358-366, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928119

RESUMO

8-Aminoguanosine induces diuresis, natriuresis, glucosuria, and antikaliuresis. These effects could be mediated via 8-aminoguanosine's metabolism to 8-aminoguanine. In this study, we tested this hypothesis in anesthetized rats. First, we demonstrated that at 55- to 85-minutes post-i.v. administration, 8-aminoguanosine and 8-aminoguanine (33.5 µmol/kg) significantly increased urine volume [ml/30 min: 8-aminoguanosine from 0.3 ± 0.1 to 0.9 ± 0.1 (mean ± S.E.M.; n = 7); 8-aminoguanine from 0.3 ± 0.1 to 1.5 ± 0.2 (n = 8)], sodium excretion (µmol/30 min: 8-aminoguanosine from 12 ± 5 to 109 ± 21; 8-aminoguanine from 18 ± 8 to 216 ± 31), and glucose excretion (µg/30 min: 8-aminoguanosine from 18 ± 3 to 159 ± 41; 8-aminoguanine from 17 ± 3 to 298 ± 65). Both compounds significantly decreased potassium excretion (µmol/30 min: 8-aminoguanosine from 62 ± 7 to 39 ± 9; 8-aminoguanine from 61 ± 10 to 34 ± 6). Next, we administered 8-aminoguanosine and 8-aminoguanine i.v. (33.5 µmol/kg) and measured renal interstitial (microdialysis probes) 8-aminoguanosine and 8-aminoguanine. The i.v. administration of 8-aminoguanosine and 8-aminoguanine similarly increased renal medullary interstitial levels of 8-aminoguanine [nanograms per milliliter; 8-aminoguanosine from 4 ± 1 to 1025 ± 393 (n = 6), and 8-aminoguanine from 2 ± 1 to 1069 ± 407 (n = 6)]. Finally, we determine the diuretic, natriuretic, glucosuric, and antikaliuretic effects of intrarenal artery infusions of 8-aminoguanosine and 8-aminoguanine (0.1, 0.3, and 1 µmol/kg/min). 8-Aminoguanine increased urine volume and sodium and glucose excretion by the ipsilateral kidney, yet had only mild effects at the highest dose in the contralateral kidney. Intrarenal infusions of 8-aminoguanosine did not induce diuresis, natriuresis, or glucosuria in either the ipsilateral or contralateral kidney, yet decreased potassium excretion in the ipsilateral kidney. Together these data confirm that the diuretic, natriuretic, and glucosuric effects of 8-aminoguanosine are not direct, but require metabolism to 8-aminoguanine. However, 8-aminoguanosine has direct antikaliuretic effects.


Assuntos
Diuréticos/farmacologia , Glicosúria/urina , Guanina/análogos & derivados , Guanosina/análogos & derivados , Hiperpotassemia/tratamento farmacológico , Natriuréticos/farmacologia , Animais , Diuréticos/metabolismo , Guanina/metabolismo , Guanina/farmacologia , Guanosina/metabolismo , Guanosina/farmacologia , Guanosina/uso terapêutico , Hiperpotassemia/metabolismo , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Masculino , Natriuréticos/metabolismo , Ratos Sprague-Dawley , Urodinâmica/efeitos dos fármacos
9.
J Am Soc Nephrol ; 27(10): 2997-3004, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27056296

RESUMO

The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD+-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Diuréticos/metabolismo , Furosemida/metabolismo , Rim/metabolismo , Metaboloma/genética , Animais , Diuréticos/sangue , Furosemida/sangue , Camundongos , Néfrons
10.
Drug Metab Dispos ; 42(11): 1955-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187484

RESUMO

Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA carboxylic acid to a cationic binding pocket in the enzyme active site. In this study, we investigated how chemical modification of TA influences the bioactivation by CYP2C9. For this investigation, nine analogs of TA were chosen with substitutions on either side of the molecule. We tested three parameters, including CYP2C9 inhibition, metabolic profiling, and in silico docking. Of the 10 compounds tested, only two (TA and a noncarboxyl analog) resulted in competitive and time-dependent inhibition of CYP2C9. Metabolic profiling revealed a trend in which substitution of the carboxylate with nonionizable functional groups resulted in metabolic switching from oxidation of the aromatic ring to dealkylation reactions at the opposite side of the structure. The in silico modeling predicted an opposite binding orientation to that of TA for many analogs, including the 3-thenoyl regio-isomer analog, which contradicts previous models. Together these data show that disrupting interactions with the cationic binding pocket of CYP2C9 will impact the sites of metabolism and inhibition of the enzyme.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Ticrinafeno/metabolismo , Cátions , Simulação por Computador , Diuréticos/metabolismo , Diuréticos/farmacocinética , Humanos , Técnicas In Vitro , Especificidade por Substrato , Ticrinafeno/farmacocinética , Uricosúricos/metabolismo , Uricosúricos/farmacocinética
11.
Kidney360 ; 5(1): 133-141, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37968800

RESUMO

The renal Na-K-2Cl and Na-Cl cotransporters are the major salt reabsorption pathways in the thick ascending limb of Henle loop and the distal convoluted tubule, respectively. These transporters are the target of the loop and thiazide type diuretics extensively used in the world for the treatment of edematous states and arterial hypertension. The diuretics appeared in the market many years before the salt transport systems were discovered. The evolving of the knowledge and the cloning of the genes encoding the Na-K-2Cl and Na-Cl cotransporters were possible thanks to the study of marine species. This work presents the history of how we came to know the mechanisms for the loop and thiazide type diuretics actions, the use of marine species in the cloning process of these cotransporters and therefore in the whole solute carrier cotransproters 12 (SLC12) family of electroneutral cation chloride cotransporters, and the disease associated with each member of the family.


Assuntos
Cloretos , Simportadores de Cloreto de Sódio-Potássio , Animais , Humanos , Cátions/metabolismo , Cloretos/metabolismo , Diuréticos/metabolismo , Túbulos Renais Distais/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas/metabolismo , Membro 1 da Família 12 de Carreador de Soluto
12.
Neurosci Res ; 192: 11-25, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36780946

RESUMO

Memory formation and sleep regulation are critical for brain functions in animals from invertebrates to humans. Neuropeptides play a pivotal role in regulating physiological behaviors, including memory formation and sleep. However, the detailed mechanisms by which neuropeptides regulate these physiological behaviors remains unclear. Herein, we report that neuropeptide diuretic hormone 31 (DH31) positively regulates memory formation and sleep in Drosophila melanogaster. The expression of DH31 in the dorsal and ventral fan-shaped body (dFB and vFB) neurons of the central complex and ventral lateral clock neurons (LNvs) in the brain was responsive to sleep regulation. In addition, the expression of membrane-tethered DH31 in dFB neurons rescued sleep defects in Dh31 mutants, suggesting that DH31 secreted from dFB, vFB, and LNvs acts on the DH31 receptor in the dFB to regulate sleep partly in an autoregulatory feedback loop. Moreover, the expression of DH31 in octopaminergic neurons, but not in the dFB neurons, is involved in forming intermediate-term memory. Our results suggest that DH31 regulates memory formation and sleep through distinct neural pathways.


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Animais , Humanos , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Diuréticos/metabolismo , Sono , Hormônios/metabolismo
13.
Insect Biochem Mol Biol ; 162: 104025, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37813200

RESUMO

Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain homeostasis in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, Drosophila suzukii, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide binding affinities. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both cAMP and Ca2+ as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in D. suzukii adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly diuresis. These findings provide fundamental insights into the characterization of D. suzukii DH31 and DH31-Rs, and facilitate the identification of potential biological targets for D. suzukii management.


Assuntos
Drosophila , Neuropeptídeos , Animais , Drosophila/metabolismo , Diuréticos/metabolismo , Sistemas do Segundo Mensageiro , Receptores Acoplados a Proteínas G/metabolismo , Neuropeptídeos/metabolismo , Diurese , Hormônios/metabolismo
14.
Front Endocrinol (Lausanne) ; 14: 1279929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842303

RESUMO

Within insects, corticotropin-releasing factor/diuretic hormones (CRF/DHs) are responsible for the modulation of a range of physiological and behavioural processes such as feeding, diuresis, and reproduction. Rhopr-CRF/DH plays a key role in feeding and diuresis in Rhodnius prolixus, a blood-gorging insect and a vector for human Chagas disease. Here, we extend our understanding on the role of this neurohormone in reproduction in adult female R. prolixus. Double-label immunohistochemistry displays co-localized staining of CRF-like and the glycoprotein hormone (GPA2/GPB5) subunit GPB5-like immunoreactivity in the same neurosecretory cells (NSCs) in the mesothoracic ganglionic mass (MTGM) and in their neurohemal sites in adult female R. prolixus, suggesting these peptides could work together to regulate physiological processes. qPCR analysis reveals that the transcript for Rhopr-CRF/DH receptor 2 (Rhopr-CRF/DH-R2) is expressed in reproductive tissues and fat body (FB) in adult female R. prolixus, and its expression increases post blood meal (PBM), a stimulus that triggers diuresis and reproduction. Using RNA interference, transcript expression of Rhopr-CRF/DH-R2 was knocked down, and egg production monitored by examining the major yolk protein, vitellogenin (Vg), the number and quality of eggs laid, and their hatching ratio. Injection of dsCRFR2 into adult females reduces Rhopr-CRF/DH-R2 transcript expression, accelerates oogenesis, increases the number of eggs produced, and reduces hatching rate in female R. prolixus. Downregulation of Rhopr-CRF/DH-R2 leads to an increase in the transcript expression of RhoprVg1 in the fat body and ovaries, and increases the transcript level for the Vg receptor, RhoprVgR, in the ovaries. A significant increase in Vg content in the fat body and in the hemolymph is also observed. Incubation of isolated tissues with Rhopr-CRF/DH leads to a significant decrease in transcript expression of RhoprVg1 in the fat body and RhoprVg1 in the ovaries. In addition, Rhopr-CRF/DH reduces transcript expression of the ecdysteroid biosynthetic enzymes and reduces ecdysteroid titer in the culture medium containing isolated ovaries. These results suggest the involvement of the CRF-signaling pathway in reproduction, and that Rhopr-CRF/DH acts as a gonad-inhibiting hormone in the adult female R. prolixus, as previously shown for the colocalized glycoprotein, GPA2/GPB5.


Assuntos
Hormônio Liberador da Corticotropina , Rhodnius , Animais , Feminino , Adulto , Humanos , Hormônio Liberador da Corticotropina/metabolismo , Diuréticos/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Ecdisteroides/metabolismo , Hormônios Gonadais , Glicoproteínas/metabolismo , Gônadas/metabolismo
15.
Chem Res Toxicol ; 25(4): 895-903, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22329513

RESUMO

The uricosuric diuretic agent tienilic acid (TA) is a thiophene-containing compound that is metabolized by P450 2C9 to 5-OH-TA. A reactive metabolite of TA also forms a covalent adduct to P450 2C9 that inactivates the enzyme and initiates immune-mediated hepatic injury in humans, purportedly through a thiophene-S-oxide intermediate. The 3-thenoyl regioisomer of TA, tienilic acid isomer (TAI), is chemically very similar and is reported to be oxidized by P450 2C9 to a thiophene-S-oxide, yet it is not a mechanism-based inactivator (MBI) of P450 2C9 and is reported to be an intrinsic hepatotoxin in rats. The goal of the work presented in this article was to identify the reactive metabolites of TA and TAI by the characterization of products derived from P450 2C9-mediated oxidation. In addition, in silico approaches were used to better understand both the mechanisms of oxidation of TA and TAI and/or the structural rearrangements of oxidized thiophene compounds. Incubation of TA with P450 2C9 and NADPH yielded the well-characterized 5-OH-TA metabolite as the major product. However, contrary to previous reports, it was found that TAI was oxidized to two different types of reactive intermediates that ultimately lead to two types of products, a pair of hydroxythiophene/thiolactone tautomers and an S-oxide dimer. Both TA and TAI incorporated ¹8O from ¹8O2 into their respective hydroxythiophene/thiolactone metabolites indicating that these products are derived from an arene oxide pathway. Intrinsic reaction coordinate calculations of the rearrangement reactions of the model compound 2-acetylthiophene-S-oxide showed that a 1,5-oxygen migration mechanism is energetically unfavorable and does not yield the 5-OH product but instead yields a six-membered oxathiine ring. Therefore, arene oxide formation and subsequent NIH-shift rearrangement remains the favored mechanism for formation of 5-OH-TA. This also implicates the arene oxide as the initiating factor in TA induced liver injury via covalent modification of P450 2C9. Finally, in silico modeling of P450 2C9 active site ligand interactions with TA using the catalytically active iron-oxo species revealed significant differences in the orientations of TA and TAI in the active site, which correlated well with experimental results showing that TA was oxidized only to a ring carbon hydroxylated product, whereas TAI formed both ring carbon hydroxylated products and an S-oxide.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Diuréticos/metabolismo , Ticrinafeno/metabolismo , Animais , Citocromo P-450 CYP2C9 , Diuréticos/química , Humanos , NADP/metabolismo , Oxirredução , Ratos , Estereoisomerismo , Ticrinafeno/química
16.
Exp Mol Pathol ; 92(2): 210-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22305959

RESUMO

Diabetes causes significant increases in bladder weight but the natural history and underlying mechanisms are not known. In this study, we observed the temporal changes of detrusor muscle cells (DMC) and the calcineurin (Cn) and Akt expressions in detrusor muscle in the diabetic rat. Male Sprague-Dawley rats were divided into 3 groups: streptozotocin-induced diabetics, 5% sucrose-induced diuretics, and age-matched controls. The bladders were removed 1, 2, or 9weeks after disease induction and the extent of hypertrophy was examined by bladder weights and cross sectional area of DMC. Cn and Akt expression were evaluated by immunoblotting. Both diabetes and diuresis caused significant increases in bladder weight. The mean cross sectional areas of DMC were increased in both diabetic and diuretic animals 1, 2, or 9weeks after disease induction. The expression levels of both the catalytic A (CnA) and regulatory B (CnB) subunits of Cn were increased at 1 and 2weeks, but not at 9weeks. Expression of Akt was similar among control, diabetic, and diuretic rat bladder at all time points. In conclusion, diabetes and diuresis induce similar hypertrophy of detrusor muscle during the first 9weeks, indicating that bladder hypertrophy in the early stage of diabetes is in response to the presence of increased urine output in diabetes. Our results suggest that the Cn, but not the Akt signaling pathway may be involved in the development of bladder hypertrophy.


Assuntos
Calcineurina/biossíntese , Diabetes Mellitus Experimental/patologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Bexiga Urinária/patologia , Animais , Calcineurina/fisiologia , Diabetes Mellitus Experimental/metabolismo , Diuréticos/metabolismo , Diuréticos/farmacologia , Hipertrofia/metabolismo , Masculino , Hipertonia Muscular/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sacarose/metabolismo , Sacarose/farmacologia , Bexiga Urinária/metabolismo
17.
J Pharm Pharm Sci ; 15(2): 208-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22579001

RESUMO

PURPOSE: Indapamide, a non-thiazide antihypertensive diuretic agent, has been widely coadministered with other classes of antihypertensive agents to reach target systolic blood pressure. Indapamide is extensively metabolized by cytochromes P450. Interaction of indapamide and other antihypertensive drugs are unknown. We investigated the effects of other antihypertensive drugs on the metabolism and pharmacokinetics of indapamide in vitro and in vivo. METHODS: Indapamide metabolism was studies in vitro using human liver microsomes pretreated with or without different concentrations of CYP-selective inhibitors and seven major antihypertensive drugs, felodipine, nifedipine, nitrendipine, telmisartan, irbesartan, valsartan and puerarin. Furthermore, the pharmacokinetics of indapamide was determined by HPLC-MS/MS to evaluate the effects of felodipine coadministered on the bioavailability of indapamide in rats in vivo. RESULTS: The Km and Vmax of indapamide metabolism were 114.35 ± 3.47 µM and 23.13 ± 6.61 µmol/g/min. The metabolites of indapamide, hydroxyl-indapamide and dehydrogen-indapamide, were followed. CYP3A4 and CYP2C19 were involved in indapamide metabolism in human live microsomes. In addition, felodipine, nifedipine and nitrendipine significantly inhibited indapamide metabolism with the maximum inhibitory rates of 82.6%, 72% and 95%, respectively. Felodipine significantly elevated indapamide plasma concentration and prolonged its half-life. CONCLUSIONS: Combination therapy of indapamide and felodipine might lead to the alteration of indapamide metabolism and pharmacokinetics. The consequence of such an interaction that may include increased effectiveness and side effect needs to be tudeis in human.


Assuntos
Anti-Hipertensivos/farmacologia , Diuréticos/farmacocinética , Indapamida/farmacocinética , Animais , Anti-Hipertensivos/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Diuréticos/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Humanos , Indapamida/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Vet Res Commun ; 46(2): 419-430, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34846629

RESUMO

This study evaluated the diuretic, antioxidant, anti-inflammatory, and immunological effects of a commercial diuretic (CD) (composed of ammonium chloride, potassium citrate, sodium chloride, ascorbic acid, biotin, halfa bar extract, and hexamine) on chickens with induced urolithiasis. A total of 100 one-day-old white Hy-Line chicks were fed a basal diet containing 20% crude protein (CP) and 1% Ca until they reached 48 days of age. Then, the birds were divided into five groups (G1-G5). G1 was fed a basal diet and kept as a negative control, G2 was fed a high protein (HP) diet containing 25% crude protein, G3 was fed high calcium (HC) diet containing 5% Ca, G4 was fed HP diet supplemented with CD, and G5 was fed HC diet supplemented with CD. The CD was supplemented with drinking water (at a dose of 0.5 ml/ liter) for 1 week. The experiment was held for 78 days. Clinical signs, postmortem lesions, and mortality rates were observed. Biochemical analytes, redox status biomarkers, and expression of interleukin-6 (IL-6) and interferon-gamma (IFN-γ) were measured. Tissue samples were taken for histopathological examination. No signs of CD toxicity were observed during the toxicity test prior to the experiment. Compared to all groups, birds in G2 and G3 showed impaired renal function and alterations in biochemical, redox status, lipid peroxidation, post-mortem, and histopathological lesions along with upregulation of IL-6 and IFN-γ in the kidney and spleen. In conclusion, commercial diuretic supplementation for one week improves renal function, redox status, immune and anti-inflammatory responses in chickens with induced urolithiasis.


Assuntos
Galinhas , Urolitíase , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Diuréticos/metabolismo , Diuréticos/farmacologia , Diuréticos/uso terapêutico , Interleucina-6/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Urolitíase/induzido quimicamente , Urolitíase/tratamento farmacológico , Urolitíase/veterinária
19.
Parasit Vectors ; 15(1): 359, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203198

RESUMO

BACKGROUND: The cattle fever tick, Rhipicephalus (Boophilus) microplus, is a vector of pathogens causative of babesiosis and anaplasmosis, both highly lethal bovine diseases that affect cattle worldwide. In Ecdysozoa, neuropeptides and their G-protein-coupled receptors play a critical integrative role in the regulation of all physiological processes. However, the physiological activity of many neuropeptides is still unknown in ticks. Periviscerokinins (CAP2b/PVKs) are neuropeptides associated with myotropic and diuretic activities in insects. These peptides have been identified only in a few tick species, such as Ixodes ricinus, Ixodes scapularis and R. microplus, and their cognate receptor only characterized for the last two. METHODS: Expression of the periviscerokinin receptor (Rhimi-CAP2bR) was investigated throughout the developmental stages of R. microplus and silenced by RNA interference (RNAi) in the females. In a first experiment, three double-stranded (ds) RNAs, named ds680-805, ds956-1109 and ds1102-1200, respectively, were tested in vivo. All three caused phenotypic effects, but only the last one was chosen for subsequent experiments. Resulting RNAi phenotypic variables were compared to those of negative controls, both non-injected and dsRNA beta-lactamase-injected ticks, and to positive controls injected with beta-actin dsRNA. Rhimi-CAP2bR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS: Rhimi-CAP2bR transcript expression was detected throughout all developmental stages. Rhimi-CAP2bR silencing was associated with increased female mortality, decreased weight of surviving females and of egg masses, a delayed egg incubation period and decreased egg hatching (P < 0.05). CONCLUSIONS: CAP2b/PVKs appear to be associated with the regulation of female feeding, reproduction and survival. Since the Rhimi-CAP2bR loss of function was detrimental to females, the discovery of antagonistic molecules of the CAP2b/PVK signaling system should cause similar effects. Our results point to this signaling system as a promising target for tick control.


Assuntos
Anaplasmose , Babesiose , Doenças dos Bovinos , Neuropeptídeos , Rhipicephalus , Infestações por Carrapato , Actinas/genética , Animais , Bovinos , RNA Polimerases Dirigidas por DNA/genética , Diuréticos/metabolismo , Feminino , Neuropeptídeos/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptores Acoplados a Proteínas G/genética , Reprodução , Rhipicephalus/fisiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
20.
Pflugers Arch ; 462(2): 267-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559843

RESUMO

Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 µM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 µM amiloride and that recombinant αßγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 µM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the ß(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Isoformas de Proteínas/metabolismo , Alvéolos Pulmonares/metabolismo , Absorção , Amilorida/metabolismo , Animais , Aquaporina 5/metabolismo , Transporte Biológico/fisiologia , GMP Cíclico/análogos & derivados , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Diuréticos/metabolismo , Venenos Elapídicos/metabolismo , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Pulmão/citologia , Masculino , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA