Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.951
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 622(7981): 139-148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704724

RESUMO

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Assuntos
Ar , Afídeos , Doenças das Plantas , Plantas , Ácido Salicílico , Transdução de Sinais , Afídeos/fisiologia , Afídeos/virologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/parasitologia , Plantas/virologia , Ácido Salicílico/metabolismo , Simbiose , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Animais
2.
Nature ; 613(7942): 145-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517600

RESUMO

Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.


Assuntos
Capsicum , Doenças das Plantas , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Proteínas de Plantas , Receptores de Reconhecimento de Padrão , Leucina , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Reconhecimento da Imunidade Inata , Capsicum/imunologia , Capsicum/metabolismo , Capsicum/virologia , Virulência
3.
EMBO J ; 43(17): 3650-3676, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39020150

RESUMO

Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.


Assuntos
Proteínas NLR , Imunidade Vegetal , Proteínas de Plantas , Solanum lycopersicum , Ubiquitinação , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas NLR/metabolismo , Proteínas NLR/imunologia , Proteínas NLR/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Tospovirus/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Interações Hospedeiro-Patógeno/imunologia
4.
Plant Cell ; 36(6): 2289-2309, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38466226

RESUMO

Flowering plant genomes encode four or five DICER-LIKE (DCL) enzymes that produce small interfering RNAs (siRNAs) and microRNAs, which function in RNA interference (RNAi). Different RNAi pathways in plants effect transposon silencing, antiviral defense, and endogenous gene regulation. DCL2 acts genetically redundantly with DCL4 to confer basal antiviral defense. However, DCL2 may also counteract DCL4 since knockout of DCL4 causes growth defects that are suppressed by DCL2 inactivation. Current models maintain that RNAi via DCL2-dependent siRNAs is the biochemical basis of both effects. Here, we report that DCL2-mediated antiviral resistance and growth defects cannot be explained by the silencing effects of DCL2-dependent siRNAs. Both functions are defective in genetic backgrounds that maintain high levels of DCL2-dependent siRNAs, either with specific point mutations in DCL2 or with reduced DCL2 dosage because of heterozygosity for dcl2 knockout alleles. Intriguingly, all DCL2 functions require its catalytic activity, and the penetrance of DCL2-dependent growth phenotypes in dcl4 mutants correlates with DCL2 protein levels but not with levels of major DCL2-dependent siRNAs. We discuss this requirement and correlation with catalytic activity but not with resulting siRNAs, in light of other findings that reveal a DCL2 function in innate immunity activation triggered by cytoplasmic double-stranded RNA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Interferência de RNA , Ribonuclease III , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
5.
Plant Cell ; 36(9): 3483-3497, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of glycine 14 to threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-GFP (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.


Assuntos
Hordeum , Nicotiana , Doenças das Plantas , Rhabdoviridae , Hordeum/virologia , Hordeum/genética , Doenças das Plantas/virologia , Rhabdoviridae/fisiologia , Rhabdoviridae/genética , Animais , Nicotiana/virologia , Nicotiana/genética , Potássio/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Insetos Vetores/virologia , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Vírus de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia
6.
Plant Cell ; 36(9): 3219-3236, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38801738

RESUMO

Virus-induced drought tolerance presents a fascinating facet of biotic-abiotic interaction in plants, yet its molecular intricacies remain unclear. Our study shows that cowpea mild mottle virus (CPMMV) infection enhances drought tolerance in common bean (Phaseolus vulgaris) plants through a virus-derived small interfering RNA (vsiRNA)-activated autophagy pathway. Specifically, a 21 nt vsiRNA originating from the CPMMV Triple Gene Block1 (TGB1) gene targeted the 5' untranslated region (UTR) of the host Teosinte branched 1, Cycloidea, Proliferating Cell Factor (TCP) transcription factor gene PvTCP2, independent of the known role of TGB1 as an RNA silencing suppressor. This targeting attenuated the expression of PvTCP2, which encodes a transcriptional repressor, and in turn upregulated the core autophagy-related gene (ATG) PvATG8c, leading to activated autophagy activity surpassing the level induced by drought or CPMMV infection alone. The downstream EARLY RESPONSIVE TO DEHYDRATION (ERD) effector PvERD15 is a homologue of Arabidopsis thaliana AtERD15, which positively regulates stomatal aperture. PvERD15 was degraded in PvATG8c-mediated autophagy. Therefore, we establish a TGB1-PvTCP2-PvATG8c-PvERD15 module as a trans-kingdom fine-tuning mechanism that contributes to virus-induced drought tolerance in plant-drought-virus interactions.


Assuntos
Autofagia , Secas , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno , Autofagia/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phaseolus/virologia , Phaseolus/genética , Phaseolus/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Comovirus/fisiologia , Comovirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética , Resistência à Seca
7.
PLoS Biol ; 22(5): e3002626, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728373

RESUMO

All plant viruses were thought to encode in its genome a movement protein that acts as a "passport," allowing active movement within the host. A new study in PLOS Biology characterizes the first plant virus that can colonize its host without encoding this protein.


Assuntos
Doenças das Plantas , Vírus de Plantas , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Doenças das Plantas/virologia , Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Genoma Viral , Interações Hospedeiro-Patógeno
8.
PLoS Biol ; 22(4): e3002600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662792

RESUMO

The signature feature of all plant viruses is the encoding of movement proteins (MPs) that supports the movement of the viral genome into adjacent cells and through the vascular system. The recent discovery of umbravirus-like viruses (ULVs), some of which only encode replication-associated proteins, suggested that they, as with umbraviruses that lack encoded capsid proteins (CPs) and silencing suppressors, would require association with a helper virus to complete an infection cycle. We examined the infection properties of 2 ULVs: citrus yellow vein associated virus 1 (CY1), which only encodes replication proteins, and closely related CY2 from hemp, which encodes an additional protein (ORF5CY2) that was assumed to be an MP. We report that both CY1 and CY2 can independently infect the model plant Nicotiana benthamiana in a phloem-limited fashion when delivered by agroinfiltration. Unlike encoded MPs, ORF5CY2 was dispensable for infection of CY2, but was associated with faster symptom development. Examination of ORF5CY2 revealed features more similar to luteoviruses/poleroviruses/sobemovirus CPs than to 30K class MPs, which all share a similar single jelly-roll domain. In addition, only CY2-infected plants contained virus-like particles (VLPs) associated with CY2 RNA and ORF5CY2. CY1 RNA and a defective (D)-RNA that arises during infection interacted with host protein phloem protein 2 (PP2) in vitro and in vivo, and formed a high molecular weight complex with sap proteins in vitro that was partially resistant to RNase treatment. When CY1 was used as a virus-induced gene silencing (VIGS) vector to target PP2 transcripts, CY1 accumulation was reduced in systemic leaves, supporting the usage of PP2 for systemic movement. ULVs are therefore the first plant viruses encoding replication and CPs but no MPs, and whose systemic movement relies on a host MP. This explains the lack of discernable helper viruses in many ULV-infected plants and evokes comparisons with the initial viruses transferred into plants that must have similarly required host proteins for movement.


Assuntos
Nicotiana , Doenças das Plantas , Proteínas do Movimento Viral em Plantas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Vírus de RNA/genética , Vírus de RNA/fisiologia , Vírus de RNA/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Vírus de Plantas/patogenicidade , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , RNA Viral/genética , RNA Viral/metabolismo , Genoma Viral , Floema/virologia , Floema/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(25): e2318150121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865269

RESUMO

It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution.


Assuntos
Daucus carota , Nicotiana , Replicação Viral , Animais , Nicotiana/virologia , Nicotiana/microbiologia , Daucus carota/virologia , Daucus carota/microbiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Micovírus/genética , Micovírus/classificação , Micovírus/fisiologia , Filogenia , Protoplastos/virologia , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , Spodoptera/virologia , Spodoptera/microbiologia
10.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739789

RESUMO

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Assuntos
Nicotiana , Nicotiana/virologia , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Potássio/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(35): e2403424121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159367

RESUMO

Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.


Assuntos
Proteínas de Transporte , Comovirus , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Vigna , Comovirus/metabolismo , Comovirus/fisiologia , Comovirus/genética , Vigna/virologia , Vigna/metabolismo , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/virologia , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Plantas Geneticamente Modificadas , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Potyvirus/fisiologia , Potyvirus/metabolismo , Endopeptidases
12.
PLoS Pathog ; 20(9): e1012473, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39235994

RESUMO

Viroporins are small, hydrophobic viral proteins that modify cellular membranes to form tiny pores for influx of ions and small molecules. Previously, viroporins were identified exclusively in vertebrate viruses. Recent studies have shown that both plant-infecting positive-sense single-stranded (+ss) and negative-sense single-stranded (-ss) RNA viruses also encode functional viroporins. These seminal discoveries not only advance our understanding of the distribution and evolution of viroporins, but also open up a new field of plant virus research.


Assuntos
Doenças das Plantas , Vírus de Plantas , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Plantas/virologia
13.
PLoS Pathog ; 20(8): e1012510, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39208401

RESUMO

Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.


Assuntos
Ácidos Indolacéticos , Doenças das Plantas , Fatores de Transcrição , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/virologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tospovirus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/virologia , Arabidopsis/metabolismo , Arabidopsis/genética
14.
PLoS Pathog ; 20(6): e1012311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885273

RESUMO

The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.


Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , Morfogênese
15.
PLoS Pathog ; 20(8): e1012424, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102439

RESUMO

Manipulating evolutionary forces imposed by hosts on pathogens like genetic drift and selection could avoid the emergence of virulent pathogens. For instance, increasing genetic drift could decrease the risk of pathogen adaptation through the random fixation of deleterious mutations or the elimination of favorable ones in the pathogen population. However, no experimental proof of this approach is available for a plant-pathogen system. We studied the impact of pepper (Capsicum annuum) lines carrying the same major resistance gene but contrasted genetic backgrounds on the evolution of Potato virus Y (PVY). The pepper lines were chosen for the contrasted levels of genetic drift (inversely related to Ne, the effective population size) they exert on PVY populations, as well as for their contrasted resistance efficiency (inversely related to the initial replicative fitness, Wi, of PVY in these lines). Experimental evolution was performed by serially passaging 64 PVY populations every month on six contrasted pepper lines during seven months. These PVY populations exhibited highly divergent evolutionary trajectories, ranging from viral extinctions to replicative fitness gains. The sequencing of the PVY VPg cistron, where adaptive mutations are likely to occur, allowed linking these replicative fitness gains to parallel adaptive nonsynonymous mutations. Evolutionary trajectories were well explained by the genetic drift imposed by the host. More specifically, Ne, Wi and their synergistic interaction played a major role in the fate of PVY populations. When Ne was low (i.e. strong genetic drift), the final PVY replicative fitness remained close to the initial replicative fitness, whereas when Ne was high (i.e. low genetic drift), the final PVY replicative fitness was high independently of the replicative fitness of the initially inoculated virus. We show that combining a high resistance efficiency (low Wi) and a strong genetic drift (low Ne) is the best solution to increase resistance durability, that is, to avoid virus adaptation on the long term.


Assuntos
Capsicum , Deriva Genética , Doenças das Plantas , Potyvirus , Capsicum/virologia , Capsicum/genética , Potyvirus/genética , Potyvirus/patogenicidade , Doenças das Plantas/virologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética , Resistência à Doença/genética , Adaptação Fisiológica/genética , Mutação
16.
PLoS Pathog ; 20(4): e1012174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630801

RESUMO

As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.


Assuntos
Cucumovirus , Vírus Auxiliares , RNA Satélite , RNA Viral , Replicação Viral , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Cucumovirus/genética , Cucumovirus/metabolismo , Cucumovirus/fisiologia , RNA Satélite/metabolismo , RNA Satélite/genética , RNA Viral/genética , RNA Viral/metabolismo , Doenças das Plantas/virologia , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética
17.
PLoS Pathog ; 20(5): e1012034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814986

RESUMO

Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.


Assuntos
Ilarvirus , Doenças das Plantas , Interferência de RNA , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Códon de Terminação/genética , Ilarvirus/genética , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
PLoS Pathog ; 20(6): e1012318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865374

RESUMO

Many plant arboviruses are persistently transmitted by piercing-sucking insect vectors. However, it remains largely unknown how conserved insect Toll immune response exerts antiviral activity and how plant viruses antagonize it to facilitate persistent viral transmission. Here, we discover that southern rice black-streaked dwarf virus (SRBSDV), a devastating planthopper-transmitted rice reovirus, activates the upstream Toll receptors expression but suppresses the downstream MyD88-Dorsal-defensin cascade, resulting in the attenuation of insect Toll immune response. Toll pathway-induced the small antibacterial peptide defensin directly interacts with viral major outer capsid protein P10 and thus binds to viral particles, finally blocking effective viral infection in planthopper vector. Furthermore, viral tubular protein P7-1 directly interacts with and promotes RING E3 ubiquitin ligase-mediated ubiquitinated degradation of Toll pathway adaptor protein MyD88 through the 26 proteasome pathway, finally suppressing antiviral defensin production. This virus-mediated attenuation of Toll antiviral immune response to express antiviral defensin ensures persistent virus infection without causing evident fitness costs for the insects. E3 ubiquitin ligase also is directly involved in the assembly of virus-induced tubules constructed by P7-1 to facilitate viral spread in planthopper vector, thereby acting as a pro-viral factor. Together, we uncover a previously unknown mechanism used by plant arboviruses to suppress Toll immune response through the ubiquitinated degradation of the conserved adaptor protein MyD88, thereby facilitating the coexistence of arboviruses with their vectors in nature.


Assuntos
Arbovírus , Insetos Vetores , Transdução de Sinais , Receptores Toll-Like , Animais , Arbovírus/imunologia , Receptores Toll-Like/metabolismo , Insetos Vetores/virologia , Insetos Vetores/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Reoviridae/fisiologia , Reoviridae/imunologia , Hemípteros/virologia , Hemípteros/imunologia , Oryza/virologia , Oryza/imunologia , Proteínas de Insetos/metabolismo , Imunidade Inata
19.
PLoS Pathog ; 20(7): e1012399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024402

RESUMO

In geminiviruses belonging to the genus Begomovirus, coat protein (CP) expression depends on viral AL2 protein, which derepresses and activates the CP promoter through sequence elements that lie within the viral intergenic region (IR). However, AL2 does not exhibit sequence-specific DNA binding activity but is instead directed to responsive promoters through interactions with host factors, most likely transcriptional activators and/or repressors. In this study, we describe a repressive plant-specific transcription factor, Arabidopsis thaliana TCP24 (AtTCP24), that interacts with AL2 and recognizes a class II TCP binding site in the CP promoter (GTGGTCCC). This motif corresponds to the previously identified conserved late element (CLE). We also report that histone 3 lysine 27 trimethylation (H3K27me3), an epigenetic mark associated with facultative repression, is enriched over the viral IR. H3K27me3 is deposited by Polycomb Repressive Complex 2 (PRC2), a critical regulator of gene expression and development in plants and animals. Remarkably, mutation of the TCP24 binding site (the CLE) in tomato golden mosaic virus (TGMV) and cabbage leaf curl virus (CaLCuV) CP promoters greatly diminishes H3K27me3 levels on viral chromatin and causes a dramatic delay and attenuation of disease symptoms in infected Arabidopsis and Nicotiana benthamiana plants. Symptom remission is accompanied by decreased viral DNA levels in systemically infected tissue. Nevertheless, in transient replication assays CLE mutation delays but does not limit the accumulation of viral double-stranded DNA, although single-stranded DNA and CP mRNA levels are decreased. These findings suggest that TCP24 binding to the CLE leads to CP promoter repression and H3K27me3 deposition, while TCP24-AL2 interaction may recruit AL2 to derepress and activate the promoter. Thus, a repressive host transcription factor may be repurposed to target a viral factor essential for promoter activity. The presence of the CLE in many begomoviruses suggests a common scheme for late promoter regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Begomovirus , Cromatina , Histonas , Regiões Promotoras Genéticas , Arabidopsis/virologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Cromatina/genética , Begomovirus/genética , Begomovirus/metabolismo , Histonas/metabolismo , Histonas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Mutação , Doenças das Plantas/virologia , Doenças das Plantas/genética , Geminiviridae/genética , Geminiviridae/metabolismo , Regulação Viral da Expressão Gênica , Proteínas Virais
20.
Nucleic Acids Res ; 52(16): 9904-9916, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38967001

RESUMO

Small RNAs (sRNAs) are essential for normal plant development and range in size classes of 21-24 nucleotides. The 22nt small interfering RNAs (siRNAs) and miRNAs are processed by Dicer-like 2 (DCL2) and DCL1 respectively and can initiate secondary siRNA production from the target transcript. 22nt siRNAs are under-represented due to competition between DCL2 and DCL4, while only a small number of 22nt miRNAs exist. Here we produce abundant 22nt siRNAs and other siRNA size classes using long hairpin RNA (hpRNA) transgenes. By introducing asymmetric bulges into the antisense strand of hpRNA, we shifted the dominant siRNA size class from 21nt of the traditional hpRNA to 22, 23 and 24nt of the asymmetric hpRNAs. The asymmetric hpRNAs effectively silenced a ß-glucuronidase (GUS) reporter transgene and the endogenous ethylene insensitive-2 (EIN2) and chalcone synthase (CHS) genes. Furthermore, plants containing the asymmetric hpRNA transgenes showed increased amounts of 21nt siRNAs downstream of the hpRNA target site compared to plants with the traditional hpRNA transgenes. This indicates that these asymmetric hpRNAs are more effective at inducing secondary siRNA production to amplify silencing signals. The 22nt asymmetric hpRNA constructs enhanced virus resistance in plants compared to the traditional hpRNA constructs.


Assuntos
Arabidopsis , Plantas Geneticamente Modificadas , RNA Interferente Pequeno , Transgenes , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Plantas Geneticamente Modificadas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interferência de RNA , Aciltransferases/genética , Aciltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nicotiana/genética , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA