Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.818
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413299

RESUMO

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Assuntos
Aquaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animais , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervoso Central/metabolismo , Edema/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Trifluoperazina/farmacologia
2.
Cell ; 161(3): 610-621, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910210

RESUMO

Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.


Assuntos
Edema Encefálico/patologia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Neurônios/metabolismo , Animais , Edema Encefálico/metabolismo , Morte Celular , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/química , Humanos , Técnicas In Vitro , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neurônios/patologia , Ratos , Sódio/metabolismo , Transportadores de Sulfato
3.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968397

RESUMO

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Sistema Glinfático , Norepinefrina , Animais , Camundongos , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilação , Receptores Adrenérgicos/metabolismo
4.
PLoS Biol ; 20(1): e3001526, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085235

RESUMO

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1ß (IL-1ß), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.


Assuntos
Edema Encefálico/genética , Lesões Encefálicas/genética , Microglia/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Acidente Vascular Cerebral/genética , Animais , Edema Encefálico/induzido quimicamente , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Bumetanida/farmacologia , Embrião de Mamíferos , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação , Injeções Intraventriculares , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fenótipo , Membro 2 da Família 12 de Carreador de Soluto/deficiência , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
5.
J Physiol ; 602(13): 3151-3168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924526

RESUMO

Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting brain microvessels. There is a rich literature on the role of AQP4 in experimental stroke. While its role in oedema formation following middle cerebral artery occlusion (MCAO) has been studied extensively, its specific impact on infarct volume remains unclear. This study investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery (dMCAO) occlusion. Compared to MCAO, this model induces smaller infarcts confined to neocortex, and less oedema. We show that AQP4 deletion significantly reduced infarct volume as assessed 1 week after dMCAO, suggesting that the role of AQP4 in stroke goes beyond its effect on oedema formation and dissolution. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas. No significant differences were observed in the number of microglia among the genotypes. These findings provide new insights in the role of AQP4 in ischaemic injury indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone. KEY POINTS: Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting microvessels. A rich literature exists on the role of AQP4 in oedema formation following middle cerebral artery occlusion (MCAO). We investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery occlusion (dMCAO), a model inducing smaller infarcts confined to neocortex and less oedema compared to MCAO. AQP4 deletion significantly reduced infarct volume 1 week after dMCAO, suggesting a broader role for AQP4 in stroke beyond oedema formation. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas, while no significant differences were observed in the number of microglia among the genotypes. These findings provide new insights into the role of AQP4 in stroke, indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone.


Assuntos
Aquaporina 4 , Astrócitos , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/genética , Camundongos Knockout , Edema Encefálico/patologia , Edema Encefálico/metabolismo , Edema Encefálico/genética
6.
Glia ; 72(2): 322-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828900

RESUMO

Cerebral edema is one of the deadliest complications of ischemic stroke for which there is currently no pharmaceutical treatment. Aquaporin-4 (AQP4), a water-channel polarized at the astrocyte endfoot, is known to be highly implicated in cerebral edema. We previously showed in randomized studies that (S)-roscovitine, a cyclin-dependent kinase inhibitor, reduced cerebral edema 48 h after induction of focal transient ischemia, but its mechanisms of action were unclear. In our recent blind randomized study, we confirmed that (S)-roscovitine was able to reduce cerebral edema by 65% at 24 h post-stroke (t test, p = .006). Immunofluorescence analysis of AQP4 distribution in astrocytes revealed that (S)-roscovitine decreased the non-perivascular pool of AQP4 by 53% and drastically increased AQP4 clusters in astrocyte perivascular end-feet (671%, t test p = .005) compared to vehicle. Non-perivascular and clustered AQP4 compartments were negatively correlated (R = -0.78; p < .0001), suggesting a communicating vessels effect between the two compartments. α1-syntrophin, AQP4 anchoring protein, was colocalized with AQP4 in astrocyte endfeet, and this colocalization was maintained in ischemic area as observed on confocal microscopy. Moreover, (S)-roscovitine increased AQP4/α1-syntrophin interaction (40%, MW p = .0083) as quantified by proximity ligation assay. The quantified interaction was negatively correlated with brain edema in both treated and placebo groups (R = -.57; p = .0074). We showed for the first time, that a kinase inhibitor modulated AQP4/α1-syntrophin interaction, and was implicated in the reduction of cerebral edema. These findings suggest that (S)-roscovitine may hold promise as a potential treatment for cerebral edema in ischemic stroke and as modulator of AQP4 function in other neurological diseases.


Assuntos
Edema Encefálico , AVC Isquêmico , Humanos , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , Roscovitina/uso terapêutico , Roscovitina/metabolismo , Aquaporina 4/metabolismo , Astrócitos/metabolismo
7.
J Neuroinflammation ; 21(1): 140, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807233

RESUMO

BACKGROUND: Perihematomal edema (PHE) after post-intracerebral hemorrhage (ICH) has complex pathophysiological mechanisms that are poorly understood. The complicated immune response in the post-ICH brain constitutes a crucial component of PHE pathophysiology. In this study, we aimed to characterize the transcriptional profiles of immune cell populations in human PHE tissue and explore the microscopic differences between different types of immune cells. METHODS: 9 patients with basal ganglia intracerebral hemorrhage (hematoma volume 50-100 ml) were enrolled in this study. A multi-stage profile was developed, comprising Group1 (n = 3, 0-6 h post-ICH, G1), Group2 (n = 3, 6-24 h post-ICH, G2), and Group3 (n = 3, 24-48 h post-ICH, G3). A minimal quantity of edematous tissue surrounding the hematoma was preserved during hematoma evacuation. Single cell RNA sequencing (scRNA-seq) was used to map immune cell populations within comprehensively resected PHE samples collected from patients at different stages after ICH. RESULTS: We established, for the first time, a comprehensive landscape of diverse immune cell populations in human PHE tissue at a single-cell level. Our study identified 12 microglia subsets and 5 neutrophil subsets in human PHE tissue. What's more, we discovered that the secreted phosphoprotein-1 (SPP1) pathway served as the basis for self-communication between microglia subclusters during the progression of PHE. Additionally, we traced the trajectory branches of different neutrophil subtypes. Finally, we also demonstrated that microglia-produced osteopontin (OPN) could regulate the immune environment in PHE tissue by interacting with CD44-positive cells. CONCLUSIONS: As a result of our research, we have gained valuable insight into the immune-microenvironment within PHE tissue, which could potentially be used to develop novel treatment modalities for ICH.


Assuntos
Edema Encefálico , Hemorragia Cerebral , Progressão da Doença , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Edema Encefálico/imunologia , Edema Encefálico/patologia , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/etiologia , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Hemorragia Cerebral/genética , Masculino , Feminino , Pessoa de Meia-Idade , Análise de Sequência de RNA/métodos , Idoso , Hematoma/patologia , Hematoma/imunologia , Hematoma/genética
8.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658922

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Assuntos
Hematoma , Acidente Vascular Cerebral Hemorrágico , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Recuperação de Função Fisiológica , Animais , Camundongos , Hematoma/tratamento farmacológico , Hematoma/patologia , Hematoma/metabolismo , Masculino , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/tratamento farmacológico , Microglia/efeitos dos fármacos , Microglia/metabolismo
9.
Brain Behav Immun ; 116: 160-174, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070624

RESUMO

Acute cerebral ischemia triggers a profound inflammatory response. While macrophages polarized to an M2-like phenotype clear debris and facilitate tissue repair, aberrant or prolonged macrophage activation is counterproductive to recovery. The inhibitory immune checkpoint Programmed Cell Death Protein 1 (PD-1) is upregulated on macrophage precursors (monocytes) in the blood after acute cerebrovascular injury. To investigate the therapeutic potential of PD-1 activation, we immunophenotyped circulating monocytes from patients and found that PD-1 expression was upregulated in the acute period after stroke. Murine studies using a temporary middle cerebral artery (MCA) occlusion (MCAO) model showed that intraperitoneal administration of soluble Programmed Death Ligand-1 (sPD-L1) significantly decreased brain edema and improved overall survival. Mice receiving sPD-L1 also had higher performance scores short-term, and more closely resembled sham animals on assessments of long-term functional recovery. These clinical and radiographic benefits were abrogated in global and myeloid-specific PD-1 knockout animals, confirming PD-1+ monocytes as the therapeutic target of sPD-L1. Single-cell RNA sequencing revealed that treatment skewed monocyte maturation to a non-classical Ly6Clo, CD43hi, PD-L1+ phenotype. These data support peripheral activation of PD-1 on inflammatory monocytes as a therapeutic strategy to treat neuroinflammation after acute ischemic stroke.


Assuntos
Edema Encefálico , AVC Isquêmico , Humanos , Camundongos , Animais , Monócitos/metabolismo , Edema Encefálico/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo
10.
Neurochem Res ; 49(3): 718-731, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38063947

RESUMO

Cerebral ischemic stroke is a cerebrovascular disease, which is related to DNA damage. Many researches have shown that Ku70 is a key regulator for DNA damage. Here, we aimed to explore Ku70 roles in cerebral ischemic stroke and its potential molecular mechanism. In our study, neural stem cells (NSCs) were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) for constructing cerebral ischemic stroke cell model. CCK8 assay, Brdu/GFP staining, flow cytometry and TUNEL staining were performed to examine cell proliferation, cell cycle and apoptosis, respectively. Relative mRNA and protein levels were detected by quantitative real-time PCR and western blot analysis, respectively. Ku70 positive cells were examined by immunofluorescence staining. Comet assay was employed to determine DNA damage. Animal experiments were performed to assess the effect of transplanting NSCs and Ku70-overexpressed NSCs on neurological deficits, infarct volume, brain edema and blood‒brain barrier (BBB) integrity in middle cerebral artery occlusion (MCAO) model. Our data found that Ku70 expression was decreased in NSCs after OGD/R. Overexpression of Ku70 reduced DNA damage and apoptosis of OGD/R-induced NSCs. Knockdown of Ku70 promoted the activity of ATM/p53. Moreover, KU60019 (ATM-specific inhibitor) reversed the promoting effects of Ku70 silencing on DNA damage and apoptosis in OGD/R-induced NSCs. In animal experiments, transplantation of NSCs-overexpressed Ku70 enhanced cell survival, improved motor function, reduced infarct volume, relieved brain edema and alleviated BBB dysfunction in MCAO mice models. In conclusion, Ku70 overexpression repressed the DNA damage and apoptosis in OGD/R-induced NSCs by regulating ATM/p53 pathway, and transplantation of NSCs-overexpressed Ku70 played neuroprotective effects in MCAO mice models.


Assuntos
Edema Encefálico , Isquemia Encefálica , AVC Isquêmico , Células-Tronco Neurais , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Camundongos , Animais , Edema Encefálico/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , AVC Isquêmico/metabolismo , Apoptose
11.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143309

RESUMO

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Assuntos
Edema Encefálico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutação/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Encéfalo/metabolismo , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
12.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773462

RESUMO

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Assuntos
Ponte Cardiopulmonar , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Piroptose , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Ponte Cardiopulmonar/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Edema Encefálico/prevenção & controle , Edema Encefálico/metabolismo , Edema Encefálico/enzimologia , Edema Encefálico/patologia , Anti-Inflamatórios/farmacologia , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Mediadores da Inflamação/metabolismo
13.
Metab Brain Dis ; 39(3): 403-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37606786

RESUMO

Brain edema is considered as a common feature associated with hepatic encephalopathy (HE). However, its central role as cause or consequence of HE and its implication in the development of the neurological alterations linked to HE are still under debate. It is now well accepted that type A and type C HE are biologically and clinically different, leading to different manifestations of brain edema. As a result, the findings on brain edema/swelling in type C HE are variable and sometimes controversial. In the light of the changing natural history of liver disease, better description of the clinical trajectory of cirrhosis and understanding of molecular mechanisms of HE, and the role of brain edema as a central component in the pathogenesis of HE is revisited in the current review. Furthermore, this review highlights the main techniques to measure brain edema and their advantages/disadvantages together with an in-depth description of the main ex-vivo/in-vivo findings using cell cultures, animal models and humans with HE. These findings are instrumental in elucidating the role of brain edema in HE and also in designing new multimodal studies by performing in-vivo combined with ex-vivo experiments for a better characterization of brain edema longitudinally and of its role in HE, especially in type C HE where water content changes are small.


Assuntos
Edema Encefálico , Encefalopatia Hepática , Animais , Humanos , Encefalopatia Hepática/metabolismo , Edema Encefálico/metabolismo , Encéfalo/metabolismo , Modelos Animais , Cirrose Hepática/complicações
14.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928258

RESUMO

Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.


Assuntos
Aquaporinas , Lesões Encefálicas Traumáticas , Lesões Encefálicas Traumáticas/metabolismo , Humanos , Animais , Aquaporinas/metabolismo , Edema Encefálico/metabolismo , Edema Encefálico/etiologia , Aquaporina 4/metabolismo , Hidrodinâmica , Encéfalo/metabolismo
15.
J Stroke Cerebrovasc Dis ; 33(7): 107738, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701940

RESUMO

OBJECTIVES: Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS: Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS: Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS: Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.


Assuntos
Edema Encefálico , Modelos Animais de Doenças , Edaravone , Interleucina-1beta , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Animais , Edaravone/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Interleucina-1beta/metabolismo , Edema Encefálico/patologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/enzimologia , Edema Encefálico/prevenção & controle , 4-Aminobutirato Transaminase/metabolismo , 4-Aminobutirato Transaminase/antagonistas & inibidores , Comportamento Animal/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Hemorragia Cerebral/enzimologia , Anti-Inflamatórios/farmacologia , Cognição/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Mediadores da Inflamação/metabolismo
16.
J Neurosci ; 42(43): 8169-8183, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36100398

RESUMO

Aquaporin-4 (AQP4) is characterized by the formation of orthogonal arrays of particles (OAPs) comprising its M1 and M23 isoforms in the plasma membrane. However, the biological importance of OAP formation is obscure. Here, we developed an OAP depolymerization male mouse model by transgenic knock-in of an AQP4-A25Q mutation. Analyses of the mutant brain tissue using blue native polyacrylamide gel electrophoresis, super-resolution imaging, and immunogold electron microscopy revealed remarkably reduced OAP structures and glial endfeet localization of the AQP4-A25Q mutant protein without effects on its overall mRNA and protein expression. AQP4A25Q/A25Q mice showed better survival and neurologic deficit scores when cerebral edema was induced by water intoxication or middle cerebral artery occlusion/reperfusion. The brain water content and swelling of pericapillary astrocytic endfeet processes in AQP4A25Q/A25Q mice were significantly reduced, functionally supporting decreased AQP4 protein expression at the blood-brain barrier. The infarct volume and neuronal damage were also reduced in AQP4A25Q/A25Q mice in the middle cerebral artery occlusion/reperfusion model. Astrocyte activation in the brain was alleviated in AQP4A25Q/A25Q mice, which may be associated with decreased cell swelling. We conclude that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.SIGNIFICANCE STATEMENT Aquaporin-4 (AQP4) is characterized by orthogonal arrays of particles (OAPs) comprising the M1 and M23 isoforms in the membrane. Here, an OAP depolymerization male mouse model induced by AQP4-A25Q mutation was first established, and the functions of OAP depolymerization in cerebral edema have been studied. The results revealed that AQP4 lost its OAP structure without affecting AQP4 mRNA and protein levels in AQP4-A25Q mice. AQP4-A25Q mutation mice has neuroprotective effects on cerebral edema induced by water intoxication and middle cerebral artery occlusion/reperfusion through relieving the activation of astrocytes and suppressed microglia-mediated neuroinflammation. We concluded that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.


Assuntos
Aquaporina 4 , Edema Encefálico , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Intoxicação por Água , Animais , Masculino , Camundongos , Aquaporina 4/genética , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Edema Encefálico/genética , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Membrana Celular/metabolismo , Edema/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fármacos Neuroprotetores/metabolismo , Mutação Puntual , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Intoxicação por Água/metabolismo
17.
J Neurochem ; 165(3): 426-444, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802066

RESUMO

Ferroptosis has been implicated in the pathogenesis of secondary brain injury following intracerebral hemorrhage (ICH), and regulating this process is considered a potential therapy for alleviating further brain injury. A previous study showed that CDGSH iron sulfur domain 2 (CISD2) can inhibit ferroptosis in cancer. Thus, we investigated the effects of CISD2 on ferroptosis and the mechanisms underlying its neuroprotective role in mice after ICH. CISD2 expression markedly increased after ICH. CISD2 over-expression significantly decreased the number of Fluoro-Jade C-positive neurons and alleviated brain edema and neurobehavioral deficits at 24 h after ICH. In addition, CISD2 over-expression up-regulated the expression of p-AKT, p-mTOR, ferritin heavy chain 1, glutathione peroxidase 4, ferroportin, glutathione, and glutathione peroxidase activity, which are markers of ferroptosis. Additionally, CISD2 over-expression down-regulated the levels of malonaldehyde, iron content, acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and cyclooxygenase-2 at 24 h after ICH. It also alleviated mitochondrial shrinkage and decreased the density of the mitochondrial membrane. Furthermore, CISD2 over-expression increased the number of GPX4-positive neurons following ICH induction. Conversely, knockdown of CISD2 aggravated neurobehavioral deficits, brain edema, and neuronal ferroptosis. Mechanistically, MK2206, an AKT inhibitor, suppressed p-AKT and p-mTOR and reversed the effects of CISD2 over-expression on markers of neuronal ferroptosis and acute neurological outcome. Taken together, CISD2 over-expression alleviated neuronal ferroptosis and improved neurological performance, which may be mediated through the AKT/mTOR pathway after ICH. Thus, CISD2 may be a potential target to mitigate brain injury via the anti-ferroptosis effect after ICH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edema Encefálico/metabolismo , Peroxidação de Lipídeos , Hemorragia Cerebral/metabolismo , Lesões Encefálicas/patologia , Serina-Treonina Quinases TOR/metabolismo , Ferro/metabolismo , Neurônios/metabolismo , Enxofre/metabolismo , Enxofre/farmacologia
18.
Biochem Biophys Res Commun ; 654: 136-144, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36931108

RESUMO

Intracerebral hemorrhage (ICH) is a devastating subtype of stroke characterized by high mortality and morbidity rates with no effective treatment. TGF-ß/ALK-5 signaling is reported to participated in the regulation of blood-brain barrier (BBB) integrity in the inflammation pain model, the effects of transforming growth factor (TGF)-ß1 and the potential mechanisms on BBB after ICH have not been fully elucidated. Herein, we have demonstrated that peripheral administration of TGF-ß1 reduces brain edema and ameliorated BBB injury after ICH. Consistent with previous results, TGF-ß1 is shown to promote activation of anti-inflammatory microglia and reduce the inflammatory response after ICH. Furthermore, TGF-ß1 administration improves long-term outcomes after ICH. Our data suggest that TGF-ß1 may be a promising therapeutic agent for ICH.


Assuntos
Edema Encefálico , Acidente Vascular Cerebral , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo
19.
Neurochem Res ; 48(2): 375-392, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36131212

RESUMO

Purpurogallin (PPG) has been demonstrated to exert an anti-inflammatory function in neurological diseases. This study aimed at investigating the role of PPG on microglial polarization post ischemic stroke as well as the underlying mechanism. Mouse hippocampal neurons HT-22 and microglial BV2 cells were treated by oxygen and glucose deprivation to simulate an in-vitro ischemia model. qRT-PCR and ELISA examined expression of cytokines in microglia. CCK8 and flow cytometry measured HT-22 cell viability and apoptosis, respectively. The levels of miR-124-3p and TRAF6/NF-κB were determined. A mouse cerebral ischemia model was set up using middle cerebral artery occlusion (MCAO) method. After being dealt with PPG, the neurological functions, brain edema, neuronal apoptosis, and microglia activation of the mice were evaluated. As suggested by the results, PPG transformed "M1" to "M2" polarization of BV2 cells, and abated HT-22 cell apoptosis. PPG enhanced the neurological functions, alleviated brain edema, and decreased neuroinflammatory responses, and neuronal apoptosis in the brain lesions of MCAO mice. Furthermore, PPG enhanced miR-124-3p and repressed the TRAF6/NF-κB pathway. miR-124-3p suppressed the TRAF6/NF-κB pathway by targeting TRAF6. Collectively, PPG alleviates ischemia-induced neuronal damage and microglial inflammation by modulating the miR-124-3p/TRAF6/NF-κB pathway.


Assuntos
Edema Encefálico , Isquemia Encefálica , MicroRNAs , Doenças do Sistema Nervoso , Camundongos , Animais , NF-kappa B/metabolismo , Microglia/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Transdução de Sinais/fisiologia , Edema Encefálico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Doenças do Sistema Nervoso/metabolismo , Apoptose
20.
Neurochem Res ; 48(2): 625-640, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36319778

RESUMO

8-Methoxypsoralen (8-MOP) has anti-inflammatory, antioxidant and tissue-repairing abilities. Here, we probed the function and mechanism of 8-MOP in traumatic brain injury (TBI). The in-vivo TBI model was constructed in Sprague-Dawley (SD) rats using controlled cortical impact (CCI) surgery. In parallel, BV2 microglia and HT22 neurons were activated by lipopolysaccharide (LPS) to establish an in-vitro model. The modified neurological score (mNSS) and the Morris water maze experiment were employed to evaluate the rats' neurological functions. The rats' brain edema was assessed by the dry and wet method, and neuronal apoptosis in damaged brain tissues was monitored by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and Nissl's staining. Immunohistochemistry (IHC) was applied to verify Iba1-microglial activation in brain lesions of rats. The expression of inflammatory cytokines in BV2 microglia and HT22 neurons in the injured lesion of TBI rats was examined by the enzyme-linked immunosorbent assay (ELISA). The levels of iNOS, COX2, TLR4, PPARγ, STAT3, and NF-κB in brain lesions, BV2 microglia and HT22 neurons were compared by Western blot. As a result, 8-MOP administration reduced inflammation and LPS-induced neuronal damage in BV2 microglia. In vivo, 8-MOP treatment relieved neurological deficits in TBI rats, improved cognitive, learning and motor functions and mitigated brain edema and neuroinflammation induced by TBI. Furthermore, LPS or TBI activated the NF-κB and STAT3 pathways and repressed the PPARγ expression. However, 8-MOP treatment attenuated NF-κB and STAT3 phosphorylation and elevated PPARγ levels. Hence, 8-MOP exerts neuroprotective and anti-inflammatory effects in TBI rats by modulating the PPARγ/NF-κB pathway.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Ratos , Animais , NF-kappa B/metabolismo , Metoxaleno/metabolismo , Metoxaleno/farmacologia , Metoxaleno/uso terapêutico , PPAR gama/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Edema Encefálico/metabolismo , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Anti-Inflamatórios/farmacologia , Microglia/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA