Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2406138121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116131

RESUMO

DNA recognition is critical for assembly of double-stranded DNA viruses, particularly for the initiation of packaging the viral genome into the capsid. The key component that recognizes viral DNA is the small terminase protein. Despite prior studies, the molecular mechanism for DNA recognition remained elusive. Here, we address this question by identifying the minimal site in the bacteriophage HK97 genome specifically recognized by the small terminase and determining the structure of this complex by cryoEM. The circular small terminase employs an entirely unexpected mechanism in which DNA transits through the central tunnel, and sequence-specific recognition takes place as it emerges. This recognition stems from a substructure formed by the N- and C-terminal segments of two adjacent protomers which are unstructured when DNA is absent. Such interaction ensures continuous engagement of the small terminase with DNA, enabling it to slide along the DNA while simultaneously monitoring its sequence. This mechanism allows locating and instigating packaging initiation and termination precisely at the specific cos sequence.


Assuntos
DNA Viral , Genoma Viral , DNA Viral/genética , DNA Viral/metabolismo , DNA Viral/química , Microscopia Crioeletrônica , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Modelos Moleculares , Empacotamento do DNA , Montagem de Vírus/genética , Bacteriófagos/genética , Empacotamento do Genoma Viral
2.
PLoS Pathog ; 20(6): e1012301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913753

RESUMO

Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains-LT2 and 14028S-for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.


Assuntos
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Salmonella typhimurium/virologia , Salmonella typhimurium/genética , Transdução Genética , Transferência Genética Horizontal , Genoma Bacteriano , Empacotamento do DNA
3.
J Virol ; 98(5): e0006824, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661364

RESUMO

The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system. IMPORTANCE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.


Assuntos
Bacteriófago lambda , Proteínas do Capsídeo , Capsídeo , Montagem de Vírus , Bacteriófago lambda/fisiologia , Bacteriófago lambda/genética , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/genética , DNA Viral/metabolismo , Modelos Moleculares , Conformação Proteica , Vírion/metabolismo , Vírion/ultraestrutura
4.
Subcell Biochem ; 104: 181-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963488

RESUMO

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Assuntos
DNA Viral , Proteínas Virais , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Empacotamento do Genoma Viral/fisiologia , Empacotamento do DNA , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/metabolismo , Genoma Viral
5.
Nat Commun ; 15(1): 1915, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429336

RESUMO

Artificial biomolecular condensates are emerging as a versatile approach to organize molecular targets and reactions without the need for lipid membranes. Here we ask whether the temporal response of artificial condensates can be controlled via designed chemical reactions. We address this general question by considering a model problem in which a phase separating component participates in reactions that dynamically activate or deactivate its ability to self-attract. Through a theoretical model we illustrate the transient and equilibrium effects of reactions, linking condensate response and reaction parameters. We experimentally realize our model problem using star-shaped DNA motifs known as nanostars to generate condensates, and we take advantage of strand invasion and displacement reactions to kinetically control the capacity of nanostars to interact. We demonstrate reversible dissolution and growth of DNA condensates in the presence of specific DNA inputs, and we characterize the role of toehold domains, nanostar size, and nanostar valency. Our results will support the development of artificial biomolecular condensates that can adapt to environmental changes with prescribed temporal dynamics.


Assuntos
Condensados Biomoleculares , Empacotamento do DNA , Replicação do DNA , Conversão Gênica , Motivos de Nucleotídeos
6.
Methods Mol Biol ; 2740: 1-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393466

RESUMO

Proteins drive genome compartmentalization across different length scales. While the identities of these proteins have been well-studied, the physical mechanisms that drive genome organization have remained largely elusive. Studying these mechanisms is challenging owing to a lack of methodologies to parametrize physical models in cellular contexts. Furthermore, because of the complex, entangled, and dense nature of chromatin, conventional live imaging approaches often lack the spatial resolution to dissect these principles. In this chapter, we will describe how to image the interactions of λ-DNA with proteins under purified and cytoplasmic conditions. First, we will outline how to prepare biotinylated DNA, functionalize coverslips with biotin-conjugated poly-ethylene glycol (PEG), and assemble DNA microchannels compatible for the imaging of protein-DNA interactions using total internal fluorescence microscopy. Then we will describe experimental methods to image protein-DNA interactions in vitro and DNA loop extrusion using Xenopus laevis egg extracts.


Assuntos
Cromatina , DNA , Animais , Cromatina/genética , Cromossomos , Xenopus laevis , Empacotamento do DNA
7.
Methods Mol Biol ; 2773: 175-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236546

RESUMO

Necropsy is the postmortem examination of an animal's body. Experiments on laboratory animals are performed to gather scientific data relevant to basic and, even more often, translational research, mainly in the field of translational medicine. A necropsy conducted on laboratory animals subjected to experimental research provides an opportunity to exhaustively explore pathological processes that took place during life. In order to achieve that goal, procedures of biomaterial collection should be performed timely, bearing in mind the inevitable process of postmortem tissue decay, and precisely, to avoid mechanical tissue damage.In this chapter, procedures of collecting organs and tissue in a way that ensures the preservation of the organ structure, tissue organization, morphological characteristics of cells, and last but not least, intracellular protein and nucleic acid content and chromosome organization are going to be described step by step.


Assuntos
Materiais Biocompatíveis , Ácidos Nucleicos , Animais , Camundongos , Autopsia , Empacotamento do DNA , Pesquisa Translacional Biomédica
8.
J Phys Chem B ; 128(14): 3329-3339, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38557033

RESUMO

In nature, DNA exists primarily in a highly compacted form. The compaction of DNA in vivo is mediated by cationic proteins: histones in somatic nuclei and protamines in sperm chromatin. The extreme, nearly crystalline packaging of DNA by protamines in spermatozoa is thought to be essential for both efficient genetic delivery as well as DNA protection against damage by mutagens and oxidative species. The protective role of protamines is required in sperm, as they are sensitive to ROS damage due to the progressive loss of DNA repair mechanisms during maturation. The degree to which DNA packaging directly relates to DNA protection in the condensed state, however, is poorly understood. Here, we utilized different polycation condensing agents to achieve varying DNA packaging densities and quantify DNA damage by free radical oxidation within the condensates. Although we see that tighter DNA packaging generally leads to better protection, the length of the polycation also plays a significant role. Molecular dynamics simulations suggest that longer polyarginine chains offer increased protection by occupying more space on the DNA surface and forming more stable interactions. Taken together, our results suggest a complex interplay among polycation properties, DNA packaging density, and DNA protection against free radical damage within condensed states.


Assuntos
DNA , Polieletrólitos , Sêmen , Masculino , Humanos , DNA/química , Cromatina , Protaminas/química , Espermatozoides , Empacotamento do DNA , Dano ao DNA
9.
Viruses ; 16(2)2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399968

RESUMO

In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring-DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among pac site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms.


Assuntos
Bacteriófago T4 , DNA Viral , DNA Viral/metabolismo , Bacteriófago T4/genética , Fluorescência , Montagem de Vírus , Empacotamento do DNA , Endodesoxirribonucleases/metabolismo
10.
J Mol Biol ; 436(4): 168415, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135177

RESUMO

Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Staphylococcus aureus , Humanos , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/virologia , Fagos de Staphylococcus/genética , Fatores de Virulência/genética , Transdução Genética , Empacotamento do DNA , Conformação de Ácido Nucleico
11.
Nat Commun ; 15(1): 5446, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937458

RESUMO

Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.


Assuntos
Empacotamento do DNA , DNA Mitocondrial , Proteínas de Ligação a DNA , Transferência Ressonante de Energia de Fluorescência , Proteínas Mitocondriais , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Fatores de Transcrição , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Iniciação da Transcrição Genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Imagem Individual de Molécula , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Sequência de Bases , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA