Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.295
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38527901

RESUMO

MOTIVATION: Many diseases, particularly cardiometabolic disorders, exhibit complex multimorbidities with one another. An intuitive way to model the connections between phenotypes is with a disease-disease network (DDN), where nodes represent diseases and edges represent associations, such as shared single-nucleotide polymorphisms (SNPs), between pairs of diseases. To gain further genetic understanding of molecular contributors to disease associations, we propose a novel version of the shared-SNP DDN (ssDDN), denoted as ssDDN+, which includes connections between diseases derived from genetic correlations with intermediate endophenotypes. We hypothesize that a ssDDN+ can provide complementary information to the disease connections in a ssDDN, yielding insight into the role of clinical laboratory measurements in disease interactions. RESULTS: Using PheWAS summary statistics from the UK Biobank, we constructed a ssDDN+ revealing hundreds of genetic correlations between diseases and quantitative traits. Our augmented network uncovers genetic associations across different disease categories, connects relevant cardiometabolic diseases, and highlights specific biomarkers that are associated with cross-phenotype associations. Out of the 31 clinical measurements under consideration, HDL-C connects the greatest number of diseases and is strongly associated with both type 2 diabetes and heart failure. Triglycerides, another blood lipid with known genetic causes in non-mendelian diseases, also adds a substantial number of edges to the ssDDN. This work demonstrates how association with clinical biomarkers can better explain the shared genetics between cardiometabolic disorders. Our study can facilitate future network-based investigations of cross-phenotype associations involving pleiotropy and genetic heterogeneity, potentially uncovering sources of missing heritability in multimorbidities. AVAILABILITY AND IMPLEMENTATION: The generated ssDDN+ can be explored at https://hdpm.biomedinfolab.com/ddn/biomarkerDDN.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Endofenótipos , Estudo de Associação Genômica Ampla , Fenótipo , Doenças Cardiovasculares/genética , Biomarcadores , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
2.
Exp Eye Res ; 240: 109788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218362

RESUMO

Primary open-angle glaucoma (POAG) is a widespread condition responsible for irreversible blindness, and its prevalence is expected to increase substantially in the coming decades. Despite its significance, the exact cause of POAG remains elusive, necessitating a comprehensive exploration of its pathogenesis. Emerging research suggests a potential link between alterations in gut microbiota composition and POAG. However, establishing causality in these associations remains a challenge. In this study, we employed Mendelian randomization (MR) analysis to investigate the potential causal relationships between gut microbiota (GM) and POAG. Significant bacteria taxa were further analyzed with POAG endophenotypes. We utilized data from genome-wide association studies (GWAS) for GM and POAG, as well as for glaucoma endophenotypes, including intraocular pressure (IOP), retinal nerve fiber layer (RNFL) thickness, vertical cup-to-disc ratio (VCDR), and central corneal thickness (CCT). Univariable, multivariable MR and mediation effect analysis were conducted. Our analysis revealed that certain taxa, including phylum Euryarchaeota, genus Odoribacter, Rumnicoccaceae UCG009, Ruminiclostridium9, unknown genus id.2071, and Eubacterium rectale group, were associated with an increased risk of POAG. On the other hand, family Victivallaceae, Lacchnospiraceae, genus Lachnoclostridium, Oscillospira, Ruminococcaceae UCG011, Alloprevotella, and Faecalibacterium were found to be associated with a decreased risk of POAG. Furthermore, some of these taxa were found to be connected to glaucoma endophenotypes. Through further multivariable MR analysis, it was determined that IOP, VCDR, and CCT might played mediating roles between GM and POAG. In conclusion, this study utilizes MR analysis to elucidate potential causal associations between GM and POAG, providing insights into specific GM taxa that influence POAG risk and related endophenotypes. These findings emphasize the potential role of the gut microbiota in the pathogenesis of POAG and pave the way for future research and therapeutic interventions.


Assuntos
Microbioma Gastrointestinal , Glaucoma de Ângulo Aberto , Humanos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Endofenótipos , Estudo de Associação Genômica Ampla , Análise de Mediação , Análise da Randomização Mendeliana
3.
Mol Psychiatry ; 28(10): 4175-4184, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37500827

RESUMO

Deficits in effective executive function, including inhibitory control are associated with risk for a number of psychiatric disorders and significantly impact everyday functioning. These complex traits have been proposed to serve as endophenotypes, however, their genetic architecture is not yet well understood. To identify the common genetic variation associated with inhibitory control in the general population we performed the first trans-ancestry genome wide association study (GWAS) combining data across 8 sites and four ancestries (N = 14,877) using cognitive traits derived from the stop-signal task, namely - go reaction time (GoRT), go reaction time variability (GoRT SD) and stop signal reaction time (SSRT). Although we did not identify genome wide significant associations for any of the three traits, GoRT SD and SSRT demonstrated significant and similar SNP heritability of 8.2%, indicative of an influence of genetic factors. Power analyses demonstrated that the number of common causal variants contributing to the heritability of these phenotypes is relatively high and larger sample sizes are necessary to robustly identify associations. In Europeans, the polygenic risk for ADHD was significantly associated with GoRT SD and the polygenic risk for schizophrenia was associated with GoRT, while in East Asians polygenic risk for schizophrenia was associated with SSRT. These results support the potential of executive function measures as endophenotypes of neuropsychiatric disorders. Together these findings provide the first evidence indicating the influence of common genetic variation in the genetic architecture of inhibitory control quantified using objective behavioural traits derived from the stop-signal task.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Função Executiva , Herança Multifatorial/genética , Endofenótipos , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536343

RESUMO

Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.


Assuntos
Transtorno Autístico/genética , Encéfalo/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/genética , Animais , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Eletroencefalografia , Endofenótipos , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Mitocôndrias/patologia , Mutação/genética , Espécies Reativas de Oxigênio/metabolismo
5.
Psychiatry Clin Neurosci ; 78(1): 60-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37807577

RESUMO

AIM: Despite the emphasis on sensory dysfunction phenotypes in the revised diagnostic criteria for autism spectrum disorder (ASD), there has been limited research, particularly in the field of neurobiology, investigating the concordance in sensory features between individuals with ASD and their genetic relatives. Therefore, our objective was to examine whether neurobehavioral sensory patterns could serve as endophenotypic markers for ASD. METHODS: We combined questionnaire- and lab-based sensory evaluations with sensory fMRI measures to examine the patterns of sensory responsivity in 30 clinically diagnosed with ASD, 26 matched controls (CON), and 48 biological parents for both groups (27 parents of individuals with ASD [P-ASD] and 21 for individuals with CON [P-CON]). RESULTS: The ASD and P-ASD groups had higher sensory responsivity and rated sensory stimuli as more unpleasant than the CON and P-CON groups, respectively. They also exhibited greater hemodynamic responses within the sensory cortices. Overlapping activations were observed within these sensory cortices in the ASD and P-ASD groups. Using a machine learning approach with robust prediction models across cohorts, we demonstrated that the sensory profile of biological parents accurately predicted the likelihood of their offspring having ASD, achieving a prediction accuracy of 71.4%. CONCLUSIONS: These findings provide support for the hereditary basis of sensory alterations in ASD and suggest a potential avenue to improve ASD diagnosis by utilizing the sensory signature of biological parents, especially in families with a high risk of ASD. This approach holds promising prospects for early detection, even before the birth of the offspring.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Pais , Inquéritos e Questionários , Endofenótipos
6.
Psychiatry Clin Neurosci ; 78(2): 123-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984442

RESUMO

AIM: Blunted niacin response (BNR) was an endophenotype of schizophrenia, but the underlying mechanism remains unclarified. The objective of this study was to verify whether genes associated with BNR pathway constitute the genetic basis and the pathological mechanism of BNR phenotypic psychiatric patients. METHODS: Two independent sample sets consisting of 971 subjects were enrolled in this study. A total of 62 variants were genotyped in the discovery set, then the related variants were verified in the verification set. The published PGC GWAS data were used to validate the associations between the variants and psychiatry disorders. RT-PCR analysis, eQTL data, and Dual-Luciferase Reporter experiment were used to investigate the potential molecular mechanisms of the variants underlying BNR. RESULTS: The results showed that two SNPs, rs56959712 in HCAR2 and rs2454721 in HCAR3 were significantly associated with niacin response. The risk allele T of rs2454721 could affect the niacin responses of psychiatric patients through elevated HCAR3 gene expression. These two genes, especially HCAR3, were significantly associated with the risk of schizophrenia, as identified in this study and verified using the published GWAS data. CONCLUSION: HCAR3 is a novel schizophrenia susceptibility gene which is significantly associated with blunted niacin response in schizophrenia. In-depth investigation of HCAR3 is of great significance for uncovering the pathogenesis and propose new therapeutic targets for psychiatric disorders, especially for the BNR subgroup patients.


Assuntos
Niacina , Receptores Nicotínicos , Esquizofrenia , Humanos , Niacina/farmacologia , Niacina/uso terapêutico , Esquizofrenia/tratamento farmacológico , Endofenótipos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Receptores Nicotínicos/genética , Receptores Nicotínicos/uso terapêutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/uso terapêutico
7.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985223

RESUMO

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Endofenótipos , Predisposição Genética para Doença/genética , Cognição , Transtornos da Memória/genética , Polimorfismo de Nucleotídeo Único/genética
8.
Alzheimers Dement ; 20(2): 1334-1349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985399

RESUMO

INTRODUCTION: The molecular mechanisms that contribute to sex differences, in particular female predominance, in Alzheimer's disease (AD) prevalence, symptomology, and pathology, are incompletely understood. METHODS: To address this problem, we investigated cellular metabolism and immune responses ("immunometabolism endophenotype") across AD individuals as a function of sex with diverse clinical diagnosis of cognitive status at death (cogdx), Braak staging, and Consortium to Establish a Registry for AD (CERAD) scores using human cortex metabolomics and transcriptomics data from the Religious Orders Study / Memory and Aging Project (ROSMAP) cohort. RESULTS: We identified sex-specific metabolites, immune and metabolic genes, and pathways associated with the AD diagnosis and progression. We identified female-specific elevation in glycerophosphorylcholine and N-acetylglutamate, which are AD inflammatory metabolites involved in interleukin (IL)-17 signaling, C-type lectin receptor, interferon signaling, and Toll-like receptor pathways. We pinpointed distinct microglia-specific immunometabolism endophenotypes (i.e., lipid- and amino acid-specific IL-10 and IL-17 signaling pathways) between female and male AD subjects. In addition, female AD subjects showed evidence of diminished excitatory neuron and microglia communications via glutamate-mediated immunometabolism. DISCUSSION: Our results point to new understanding of the molecular basis for female predominance in AD, and warrant future independent validations with ethnically diverse patient cohorts to establish a likely causal relationship of microglial immunometabolism in the sex differences in AD. HIGHLIGHTS: Sex-specific immune metabolites, gene networks and pathways, are associated with Alzheimer's disease pathogenesis and disease progression. Female AD subjects exhibit microglial immunometabolism endophenotypes characterized by decreased glutamate metabolism and elevated interleukin-10 pathway activity. Female AD subjects showed a shift in glutamate-mediated cell-cell communications between excitatory neurons to microglia and astrocyte.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Doença de Alzheimer/patologia , Microglia/metabolismo , Endofenótipos , Caracteres Sexuais , Glutamatos/genética , Glutamatos/metabolismo
9.
J Neurochem ; 166(4): 763-776, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37497817

RESUMO

Maternal infections are among the main risk factors for cognitive impairments in the offspring. Zika virus (ZIKV) can be transmitted vertically, causing a set of heterogeneous birth defects, such as microcephaly, ventriculomegaly and corpus callosum dysgenesis. Nuclear distribution element like-1 (Ndel1) oligopeptidase controls crucial aspects of cerebral cortex development underlying cortical malformations. Here, we examine Ndel1 activity in an animal model for ZIKV infection, which was associated with deregulated corticogenesis. We observed here a reduction in Ndel1 activity in the forebrain associated with the congenital syndrome induced by ZIKV isolates, in an in utero and postnatal injections of different inoculum doses in mice models. In addition, we observed a strong correlation between Ndel1 activity and brain size of animals infected by ZIKV, suggesting the potential of this measure as a biomarker for microcephaly. More importantly, the increase of interferon (IFN)-beta signaling, which was used to rescue the ZIKV infection outcomes, also recovered Ndel1 activity to levels similar to those of uninfected healthy control mice, but with no influence on Ndel1 activity in uninfected healthy control animals. Taken together, we demonstrate for the first time here an association of corticogenesis impairments determined by ZIKV infection and the modulation of Ndel1 activity. Although further studies are still necessary to clarify the possible role(s) of Ndel1 activity in the molecular mechanism(s) underlying the congenital syndrome induced by ZIKV, we suggest here the potential of monitoring the Ndel1 activity to predict this pathological condition at early stages of embryos or offspring development, during while the currently employed methods are unable to detect impaired corticogenesis leading to microcephaly. Ndel1 activity may also be possibly used to follow up the positive response to the treatment, such as that employing the IFN-beta that is able to rescue the ZIKV-induced brain injury.


Assuntos
Microcefalia , Infecção por Zika virus , Zika virus , Animais , Camundongos , Infecção por Zika virus/complicações , Infecção por Zika virus/congênito , Infecção por Zika virus/patologia , Endofenótipos , Proteínas de Transporte
10.
Neurobiol Dis ; 179: 106056, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863527

RESUMO

The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.


Assuntos
Distonia , Distúrbios Distônicos , Traumatismos dos Nervos Periféricos , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Distonia/genética , Distonia/metabolismo , Distúrbios Distônicos/genética , Endofenótipos , Chaperonas Moleculares/genética , Traumatismos dos Nervos Periféricos/metabolismo , Substância Negra/metabolismo
11.
Eur J Neurosci ; 58(2): 2579-2602, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165673

RESUMO

Affective disorders, such as major depression, are frequently associated with metabolic disturbances involving mitochondria. Although dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is known to alter energy metabolism, the precise mechanisms linking stress and metabolic disturbances are not sufficiently understood. We used a mouse model of affective disorders to investigate the impact of a genetic predisposition for extremes in stress reactivity on behavioural and metabolic phenotypes as well as energy metabolism. Adult males of three independent mouse lines selectively bred for high, intermediate or low HPA axis reactivity were tested for exploratory and locomotor activity as well as stress-coping behaviour. Additionally, basal and stress-induced plasma corticosterone levels, body weight, food intake and body composition were measured. At the molecular level, the hippocampal transcriptome was analysed using microarray, serial analysis of gene expression and qRT-PCR. Finally, mitochondrial DNA copy number, damages and mitochondrial respiration were assessed. We found clear effects of the differential stress reactivity on the behavioural, morphometric and metabolic measures. Remarkably, the hyperactive behavioural and neuroendocrine stress-coping style of high-reactivity mice was associated with significant changes in the expression of an extended list of genes involved in energy metabolism and several mitochondrial functions. Yet, only minor changes were found in mitochondrial DNA copy number, damages and respiration. Thus, our findings support a prominent role of glucocorticoids in shaping the major endophenotypes of the stress reactivity mouse model and contribute towards understanding the important role of HPA axis dysregulation and changes in energy metabolism in the pathophysiology of affective disorders.


Assuntos
Sistema Hipotálamo-Hipofisário , Estresse Psicológico , Masculino , Camundongos , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Corticosterona , Hipocampo/metabolismo , Endofenótipos , Metabolismo Energético
12.
Crit Care Med ; 51(2): e45-e59, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661464

RESUMO

OBJECTIVES: Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN: Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING: Preclinical laboratory. SUBJECTS: Adult male C57BL/6J mice (n = 54). INTERVENTIONS: Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 µg/kg)/high-dose glibenclamide (10 µg/mouse). Seven-day subcutaneous infusions (0.4 µg/hr) were continued. MEASUREMENTS AND MAIN RESULTS: Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS: High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.


Assuntos
Contusão Encefálica , Edema Encefálico , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Masculino , Camundongos , Teorema de Bayes , Contusão Encefálica/complicações , Contusão Encefálica/tratamento farmacológico , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Endofenótipos , Glibureto/farmacologia , Glibureto/uso terapêutico , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL
13.
Psychol Med ; 53(4): 1611-1619, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34412712

RESUMO

BACKGROUND: Schizophrenia is a heterogeneous disorder with substantial heritability. The use of endophenotypes may help clarify its aetiology. Measures from the smooth pursuit and antisaccade eye movement tasks have been identified as endophenotypes for schizophrenia in twin and family studies. However, the genetic basis of the overlap between schizophrenia and these oculomotor markers is largely unknown. Here, we tested whether schizophrenia polygenic risk scores (PRS) were associated with oculomotor performance in the general population. METHODS: Analyses were based on the data of 2956 participants (aged 30-95) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Genotyping was performed on Omni-2.5 exome arrays. Using summary statistics from a recent meta-analysis based on the two largest schizophrenia genome-wide association studies to date, we quantified genetic risk for schizophrenia by creating PRS at different p value thresholds for genetic markers. We examined associations between PRS and oculomotor performance using multivariable regression models. RESULTS: Higher PRS were associated with higher antisaccade error rate and latency, and lower antisaccade amplitude gain. PRS showed inconsistent patterns of association with smooth pursuit velocity gain and were not associated with saccade rate during smooth pursuit or performance on a prosaccade control task. CONCLUSIONS: There is an overlap between genetic determinants of schizophrenia and oculomotor endophenotypes. Our findings suggest that the mechanisms that underlie schizophrenia also affect oculomotor function in the general population.


Assuntos
Movimentos Oculares , Esquizofrenia , Humanos , Esquizofrenia/genética , Endofenótipos , Estudo de Associação Genômica Ampla , Estudos de Coortes , Fatores de Risco
14.
Mol Psychiatry ; 27(12): 5028-5037, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151456

RESUMO

Endophenotypes are heritable and quantifiable traits indexing genetic liability for a disorder. Here, we examined three potential endophenotypes, working memory function, response inhibition, and reaction time variability, for attention-deficit hyperactivity disorder (ADHD) measured as a dimensional latent trait in a large general population sample derived from the Adolescent Brain Cognitive DevelopmentSM Study. The genetic risk for ADHD was estimated using polygenic risk scores (PRS) whereas ADHD traits were quantified as a dimensional continuum using Bartlett factor score estimates, derived from Attention Problems items from the Child Behaviour Checklist and Effortful Control items from the Early Adolescent Temperament Questionnaire-Revised. The three candidate cognitive endophenotypes were quantified using task-based performance measures. Higher ADHD PRSs were associated with higher ADHD traits, as well as poorer working memory performance and increased reaction time variability. Lower working memory performance, poorer response inhibition, and increased reaction time variability were associated with more pronounced ADHD traits. Working memory and reaction time variability partially statistically mediated the relationship between ADHD PRS and ADHD traits, explaining 14% and 16% of the association, respectively. The mediation effect was specific to the genetic risk for ADHD and did not generalise to genetic risk for four other major psychiatric disorders. Together, these findings provide robust evidence from a large general population sample that working memory and reaction time variability can be considered endophenotypes for ADHD that mediate the relationship between ADHD PRS and ADHD traits.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Memória de Curto Prazo , Criança , Adolescente , Humanos , Memória de Curto Prazo/fisiologia , Tempo de Reação , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Endofenótipos , Herança Multifatorial , Transtornos da Memória
15.
Eur J Epidemiol ; 38(5): 559-571, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36964431

RESUMO

Modifiable factors can influence the risk for Alzheimer's disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer's prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Endofenótipos , Adulto , Humanos , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/metabolismo , beta-Criptoxantina , Biomarcadores , Cafeína/efeitos adversos , Fatores de Risco , Proteínas tau
16.
Nature ; 547(7663): 340-344, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28700580

RESUMO

Long before infants reach, crawl or walk, they explore the world by looking: they look to learn and to engage, giving preferential attention to social stimuli, including faces, face-like stimuli and biological motion. This capacity-social visual engagement-shapes typical infant development from birth and is pathognomonically impaired in children affected by autism. Here we show that variation in viewing of social scenes, including levels of preferential attention and the timing, direction and targeting of individual eye movements, is strongly influenced by genetic factors, with effects directly traceable to the active seeking of social information. In a series of eye-tracking experiments conducted with 338 toddlers, including 166 epidemiologically ascertained twins (enrolled by representative sampling from the general population), 88 non-twins with autism and 84 singleton controls, we find high monozygotic twin-twin concordance (0.91) and relatively low dizygotic concordance (0.35). Moreover, the characteristics that are the most highly heritable, preferential attention to eye and mouth regions of the face, are also those that are differentially decreased in children with autism (χ2 = 64.03, P < 0.0001). These results implicate social visual engagement as a neurodevelopmental endophenotype not only for autism, but also for population-wide variation in social-information seeking. In addition, these results reveal a means of human biological niche construction, with phenotypic differences emerging from the interaction of individual genotypes with early life experience.


Assuntos
Atenção , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Desenvolvimento Infantil , Face , Fixação Ocular/genética , Relações Interpessoais , Transtorno Autístico/psicologia , Pré-Escolar , Endofenótipos , Olho , Face/anatomia & histologia , Feminino , Humanos , Lactente , Masculino , Boca , Irmãos , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
17.
Alzheimers Dement ; 19(8): 3731-3737, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36960767

RESUMO

New "omic" technologies are revealing shared and distinct biological pathways within and across neurodegenerative diseases (NDDs), allowing a better understanding of endophenotypes that exceeds the boundaries of the current diagnostic criteria. Moreover, a diagnostic framework is needed that can accommodate the co-pathology and the clinical overlap and heterogeneity of NDDs. Apart from dissecting the reasons for a revolution in how we conceive NDD, this article aims to prompt a change in how we diagnose and classify NDD, drafting a general scheme for a new nosology. As identifying a cause is the key to using the term "disease" properly, we propose using a tridimensional classification based on three axes: (1) etiology or pathogenic mechanism, (2) pathology markers and molecular biomarkers, (3) anatomic-clinical; and three hierarchical levels of etiology: (1) genetic/sporadic (2) cellular pathways and processes, and function of fluidic brain systems, and (3) risk factors.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Biomarcadores/metabolismo , Endofenótipos , Encéfalo/metabolismo
18.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175696

RESUMO

Induced pluripotent stem cells (iPSCs) have been established as a reliable in vitro disease model system and represent a particularly informative tool when animal models are not available or do not recapitulate the human pathophenotype. The recognized limit in using this technology is linked to some degree of variability in the behavior of the individual patient-derived clones. The development of CRISPR/Cas9-based gene editing solves this drawback by obtaining isogenic iPSCs in which the genetic lesion is corrected, allowing a straightforward comparison with the parental patient-derived iPSC lines. Here, we report the generation of a footprint-free isogenic cell line of patient-derived TBCD-mutated iPSCs edited using the CRISPR/Cas9 and piggyBac technologies. The corrected iPSC line had no genetic footprint after the removal of the selection cassette and maintained its "stemness". The correction of the disease-causing TBCD missense substitution restored proper protein levels of the chaperone and mitotic spindle organization, as well as reduced cellular death, which were used as read-outs of the TBCD KO-related endophenotype. The generated line represents an informative in vitro model to understand the impact of pathogenic TBCD mutations on nervous system development and physiology.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Sistemas CRISPR-Cas/genética , Endofenótipos , Diferenciação Celular/genética , Edição de Genes , Mutação , Proteínas Associadas aos Microtúbulos/metabolismo
19.
Acta Neuropsychiatr ; 35(3): 123-137, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36373497

RESUMO

The purpose of this study is to describe how to use the precision nomothetic psychiatry approach to (a) delineate the associations between schizophrenia symptom domains, including negative symptoms, psychosis, hostility, excitation, mannerism, formal thought disorders, psychomotor retardation (PHEMFP), and cognitive dysfunctions and neuroimmunotoxic and neuro-oxidative pathways and (b) create a new endophenotype class based on these features. We show that all symptom domains (negative and PHEMFP) may be used to derive a single latent trait called overall severity of schizophrenia (OSOS). In addition, neurocognitive test results may be used to extract a general cognitive decline (G-CoDe) index, based on executive function, attention, semantic and episodic memory, and delayed recall scores. According to partial least squares analysis, the impacts of adverse outcome pathways (AOPs) on OSOS are partially mediated by increasing G-CoDe severity. The AOPs include neurotoxic cytokines and chemokines, oxidative damage to proteins and lipids, IgA responses to neurotoxic tryptophan catabolites, breakdown of the vascular and paracellular pathways with translocation of Gram-negative bacteria, and insufficient protection through lowered antioxidant levels and impairments in the innate immune system. Unsupervised machine learning identified a new schizophrenia endophenotype class, named major neurocognitive psychosis (MNP), which is characterised by increased negative symptoms and PHEMFP, G-CoDe and the above-mentioned AOPs. Based on these pathways and phenome features, MNP is a distinct endophenotype class which is qualitatively different from simple psychosis (SP). It is impossible to draw any valid conclusions from research on schizophrenia that ignores the MNP and SP distinctions.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Endofenótipos , Transtornos Psicóticos/complicações , Transtornos Psicóticos/diagnóstico , Aprendizado de Máquina , Triptofano/metabolismo
20.
Psychiatr Danub ; 35(Suppl 2): 114-122, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37800212

RESUMO

INTRODUCTION: Schizophrenia is a severe mental illness causing significant impairment in personal, family, social, educational, occupational, and other important areas of life. While there is no widely accepted endophenotype, peripheral blood cells may serve as an accessible model of intracellular changes in schizophrenia. METHODS: We reviewed the literature on the query "peripheral blood mononuclear cells AND schizophrenia" in Medline (Pubmed), selecting studies that searched for specific biomarkers of schizophrenia. We considered both diagnostic biomarkers and biomarkers of therapeutic response, specific schizophrenia disorders or differential diagnostic biomarkers. RESULTS: We retrieved 41 articles matching the search criteria, among which were studies that considered changes in the production of pro-inflammatory and anti-inflammatory markers, proteins, receptors, enzyme activity, and gene expression as potential biomarkers. CONCLUSION: Approaches analysing a biological axis or a group of related biomarkers may hold the greatest promise for identifying schizophrenia. In addition, pharmacological status, smoking status, inflammatory markers and glucose metabolites, the presence of comorbidities should be considered. Certain biomarkers, while not specific for the diagnosis of schizophrenia, may indicate the prognosis and effectiveness of treatment in the established diagnosis.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Leucócitos Mononucleares/química , Leucócitos Mononucleares/metabolismo , Biomarcadores , Endofenótipos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA