Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.062
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 159(6): 1277-89, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25480293

RESUMO

Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:ß-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galß1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.


Assuntos
Escherichia coli/fisiologia , Imunoglobulina M/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Plasmodium/fisiologia , Polissacarídeos/imunologia , Adulto , Animais , Anopheles/parasitologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Autoantígenos/imunologia , Linhagem Celular Tumoral , Criança , Escherichia coli/classificação , Escherichia coli/imunologia , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Humanos , Imunoglobulina M/sangue , Malária Falciparum/microbiologia , Malária Falciparum/parasitologia , Camundongos , Plasmodium/classificação , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Esporozoítos/imunologia , Receptor Toll-Like 9/agonistas
2.
Nature ; 588(7839): 676-681, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268897

RESUMO

Mapping the complex biogeography of microbial communities in situ with high taxonomic and spatial resolution poses a major challenge because of the high density1 and rich diversity2 of species in environmental microbiomes and the limitations of optical imaging technology3-6. Here we introduce high-phylogenetic-resolution microbiome mapping by fluorescence in situ hybridization (HiPR-FISH), a versatile technology that uses binary encoding, spectral imaging and decoding based on machine learning to create micrometre-scale maps of the locations and identities of hundreds of microbial species in complex communities. We show that 10-bit HiPR-FISH can distinguish between 1,023 isolates of Escherichia coli, each fluorescently labelled with a unique binary barcode. HiPR-FISH, in conjunction with custom algorithms for automated probe design and analysis of single-cell images, reveals the disruption of spatial networks in the mouse gut microbiome in response to treatment with antibiotics, and the longitudinal stability of spatial architectures in the human oral plaque microbiome. Combined with super-resolution imaging, HiPR-FISH shows the diverse strategies of ribosome organization that are exhibited by taxa in the human oral microbiome. HiPR-FISH provides a framework for analysing the spatial ecology of environmental microbial communities at single-cell resolution.


Assuntos
Hibridização in Situ Fluorescente/métodos , Microbiota , Algoritmos , Animais , Antibacterianos/farmacologia , Biofilmes , Escherichia coli/classificação , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos , Microbiota/efeitos dos fármacos , Boca/efeitos dos fármacos , Boca/microbiologia , Ribossomos/metabolismo , Análise de Célula Única
3.
BMC Genomics ; 25(1): 609, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886681

RESUMO

Adhesins are crucial factors in the virulence of bacterial pathogens such as Escherichia coli. However, to date no resources have been dedicated to the detailed analysis of E. coli adhesins. Here, we provide adhesiomeR software that enables characterization of the complete adhesin repertoire, termed the adhesiome. AdhesiomeR incorporates the most comprehensive database of E. coli adhesins and facilitates an extensive analysis of adhesiome. We demonstrate that adhesiomeR achieves 98% accuracy when compared with experimental analyses. Based on analysis of 15,000 E. coli genomes, we define novel adhesiome profiles and clusters, providing a nomenclature for a unified comparison of E. coli adhesiomes.


Assuntos
Adesinas de Escherichia coli , Escherichia coli , Software , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/classificação , Genoma Bacteriano , Biologia Computacional/métodos
4.
J Antimicrob Chemother ; 79(6): 1329-1336, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38629139

RESUMO

OBJECTIVES: To characterize and elucidate the spread of amikacin-resistant Enterobacteriaceae isolates from environmental samples on a pig farm in the UK, following the previous identification of index Salmonella isolates harbouring the rmtB gene, a 16S rRNA methylase. METHODS: Environmental samples were collected during two visits to a pig farm in the UK. Isolates were recovered using selective media (amikacin 128 mg/L) followed by real-time PCR and WGS to analyse rmtB-carrying Salmonella and Escherichia coli isolates. RESULTS: Salmonella and E. coli isolates harbouring the rmtB gene were detected at both farm visits. All Salmonella isolates were found to be monophasic S. enterica serovar Typhimurium variant Copenhagen of ST34. rmtB-harbouring E. coli isolates were found to be one of three STs: ST4089, ST1684 and ST34. Long-read sequencing identified the rmtB gene to be chromosomally located in Salmonella isolates and on IncFII-type plasmids in E. coli isolates. The results showed the rmtB gene to be flanked by IS26 elements and several resistance genes. CONCLUSIONS: We report on the occurrence of rmtB-harbouring Enterobacteriaceae on a pig farm in the UK. rmtB confers resistance to multiple aminoglycosides and this work highlights the need for surveillance to assess dissemination and risk.


Assuntos
Antibacterianos , Escherichia coli , Fazendas , Metiltransferases , Salmonella , Animais , Suínos/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Antibacterianos/farmacologia , Reino Unido , Salmonella/genética , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Salmonella/classificação , Metiltransferases/genética , Testes de Sensibilidade Microbiana , Amicacina/farmacologia , Sequenciamento Completo do Genoma , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Proteínas de Escherichia coli/genética
5.
J Antimicrob Chemother ; 79(9): 2142-2151, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001716

RESUMO

OBJECTIVES: Escherichia coli can cause infections in the urinary tract and in normally sterile body sites leading to invasive E. coli disease (IED), including bacteraemia and sepsis, with older populations at increased risk. We aimed to estimate the theoretical coverage rate by the ExPEC4V and 9V vaccine candidates. In addition, we aimed at better understanding the diversity of E. coli isolates, including their genetic and phenotypic antimicrobial resistance (AMR), sequence types (STs), O-serotypes and the bacterial population structure. METHODS: Blood and urine culture E. coli isolates (n = 304) were collected from hospitalized patients ≥60 years (n = 238) with IED during a multicentric, observational study across three continents. All isolates were tested for antimicrobial susceptibility, O-serotyped, whole-genome sequenced and bioinformatically analysed. RESULTS: A large diversity of STs and of O-serotypes were identified across all centres, with O25b-ST131, O6-ST73 and O1-ST95 being the most prevalent types. A total of 45.4% and 64.7% of all isolates were found to have an O-serotype covered by the ExPEC4V and ExPEC9V vaccine candidates, respectively. The overall frequency of MDR was 37.4% and ST131 was predominant among MDR isolates. Low in-patient genetic variability was observed in cases where multiple isolates were collected from the same patient. CONCLUSIONS: Our results highlight the predominance of MDR O25b-ST131 E. coli isolates across diverse geographic areas. These findings provide further baseline data on the theoretical coverage of novel vaccines targeting E. coli associated with IED in older adults and their associated AMR levels.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Sequenciamento Completo do Genoma , Humanos , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/classificação , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Idoso de 80 Anos ou mais , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Sorogrupo , Hospitalização , Variação Genética , Genômica , Genótipo , Saúde Global
6.
Int J Med Microbiol ; 316: 151628, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936338

RESUMO

Enteroaggregative Escherichia coli (EAEC) strains including those of serogroup O111 are important causes of diarrhea in children. In the Czech Republic, no information is available on the etiological role of EAEC in pediatric diarrhea due to the lack of their targeted surveillance. To fill this gap, we determined the proportion of EAEC among E. coli O111 isolates from children with gastrointestinal disorders ≤ 2 years of age submitted to the National Reference Laboratory for E. coli and Shigella during 2013-2022. EAEC accounted for 177 of 384 (46.1 %) E. coli O111 isolates, being the second most frequent E. coli O111 pathotype. Most of them (75.7 %) were typical EAEC that carried aggR, usually with aaiC and aatA marker genes; the remaining 24.3 % were atypical EAEC that lacked aggR but carried aaiC and/or aatA. Whole genome sequencing of 11 typical and two atypical EAEC O111 strains demonstrated differences in serotypes, sequence types (ST), virulence gene profiles, and the core genomes between these two groups. Typical EAEC O111:H21/ST40 strains resembled by their virulence profiles including the presence of the aggregative adherence fimbriae V (AAF/V)-encoding cluster to such strains from other countries and clustered with them in the core genome multilocus sequence typing (cgMLST). Atypical EAEC O111:H12/ST10 strains lacked virulence genes of typical EAEC and differed from them in cgMLST. All tested EAEC O111 strains displayed stacked-brick aggregative adherence to human intestinal epithelial cells. The AAF/V-encoding cluster was located on a plasmid of 95,749 bp or 93,286 bp (pAAO111) which also carried aggR, aap, aar, sepA, and aat cluster. EAEC O111 strains were resistant to antibiotics, in particular to aminopenicillins and cephalosporins; 88.3 % produced AmpC ß-lactamase, and 4.1 % extended spectrum ß-lactamase. We conclude that EAEC are frequent among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. To reliably assess the etiological role of EAEC in pediatric diarrhea, a serotype-independent, PCR-based pathotype surveillance system needs to be implemented in the future.


Assuntos
Diarreia , Infecções por Escherichia coli , Escherichia coli , Sequenciamento Completo do Genoma , Humanos , República Tcheca/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/classificação , Lactente , Diarreia/microbiologia , Fatores de Virulência/genética , Sorogrupo , Proteínas de Escherichia coli/genética , Gastroenteropatias/microbiologia , Antibacterianos/farmacologia , Pré-Escolar , Genoma Bacteriano , Masculino , Feminino , Recém-Nascido , Tipagem de Sequências Multilocus , Transativadores
7.
BMC Microbiol ; 24(1): 250, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978012

RESUMO

BACKGROUND: ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS: Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS: The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The ß-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION: We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Hospitais de Ensino , Filogenia , beta-Lactamases , Humanos , Gana/epidemiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Genoma Bacteriano/genética , Genômica , Fatores de Virulência/genética , Masculino , Feminino , Adulto
8.
BMC Microbiol ; 24(1): 425, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438804

RESUMO

BACKGROUND: Production of extended-spectrum ß-lactamases (ESBLs) is a common resistance mechanism in Enterobacteriaceae, leading to serious hospital-acquired infections. This study aimed to assess phenotypic, phylogenetic, and antibiotic resistance patterns among ESBL-producing Escherichia coli isolates recovered from two rural tertiary hospitals in Thailand. RESULTS: Among 467 Enterobacteriaceae isolates, E. coli was the most prevalent 356 (76.2%) followed by K. pneumoniae 88 (18.8%), K. aerogenes 8 (1.7%), K. variicola 3 (0.6%), K. quasipneumoniae 1 (0.2%%), K. oxytoca 1 (0.2%), and unidentified 9 (1.9%). Of the 202 cephalosporin-resistant E. coli isolates, 195 (96.5%) were ESBL-producing and 7 (3.5%) were non-ESBL-producing. Clermont typing revealed that phylogroup B2 was predominant (43.3%), followed by phylogroups F (11.3%), D (10.3%), C (9.7%), and A (8.7%). Among the beta-lactamase-encoding genes, blaCTX-M (83.6%) and blaTEM (81.0%) were widely found among the isolates, and blaCTX-M-1 (60.7%) was the most common among the five blaCTX-M subgroups detected. The predominant ESBL was blaCTX-M-15 (58.3%). All isolates were resistant to cefotaxime (100%) and ampicillin (100%), followed by ciprofloxacin (91.3 %), ceftazidime (72.8 %), and tetracycline (64.1%). CONCLUSION: Our findings show that phylogroup B2 was the most prevalent phylogroup among ESBL-producing E. coli isolates in northeastern Thailand. Notably, the isolates mostly carried the blaCTX-M gene(s).


Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Filogenia , beta-Lactamases , Tailândia/epidemiologia , beta-Lactamases/genética , Humanos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/classificação , Escherichia coli/enzimologia , Prevalência , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Farmacorresistência Bacteriana Múltipla/genética
9.
Microb Pathog ; 193: 106783, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969188

RESUMO

The current study was conducted to determine the phylogroups and antibiotic susceptibilities of Escherichia coli isolates recovered from fecal samples of Anatolian Ground Squirrels (Spermophilus xanthoprymnus) and to examine the relationship between them. Eighty-two E. coli isolates obtained from 150 fecal samples were investigated. The quadruplex polymerase chain reaction (PCR), phylogroup C-, and E-specific mPCR were subjected to phylogenetic typing of the isolates. The susceptibilities to fifteen antibiotics of the isolates were detected by the disk diffusion method. In the result of phylogenetic typing, phylogroup B2 was most predominant (58.6 %), followed by B1 (25.6 %), E (8.5 %), C (4.9 %), and D (2.4 %). The phylogroup A, F, and Escherichia clades were not detected. The antibiotic susceptibility test revealed that 59.8 % (49/82) and 19.5 % (16/82) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. Twenty-six (31.7 %), 19 (23.2 %), 11 (13.4 %), and 10 (12.2 %) of the isolates were found to be resistant to gentamicin, tetracycline, amoxicillin-clavulanic acid, and cefoxitin. Of the 49 E. coli isolates that were found to be resistant to any antibiotic analyzed, 30, 13, 4, and 2 were located in phylogroup B2, B1, E, and D, respectively. MDR isolates were mostly located in both phylogroup B1 (31.3 %) and B2 (31.3 %). In conclusion, data from the current study suggest that the isolates may potentially have pathogenic properties, since the majority (69.5 %) of E. coli isolates from fecal samples of Spermophilus xanthoprymnus were located in the pathogenic phylogroup and resistance to various antibiotics was detected.


Assuntos
Antibacterianos , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Filogenia , Sciuridae , Animais , Fezes/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Sciuridae/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Reação em Cadeia da Polimerase , Genótipo , Farmacorresistência Bacteriana
10.
Microb Pathog ; 194: 106843, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117015

RESUMO

Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Filogenia , Doenças das Aves Domésticas , Aves Domésticas , Sorogrupo , Fatores de Virulência , Animais , Fatores de Virulência/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Prevalência , Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Virulência/genética , Galinhas
11.
Microb Pathog ; 196: 106973, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39313136

RESUMO

The intensification of livestock farming has led to the widespread use of massive amounts of antibiotics worldwide. Poultry production, including white meat, eggs and the use of their manure as fertiliser, has been identified as one of the most crucial reservoirs for the emergence and spread of resistant bacteria, including E. coli in poultry as an important opportunistic pathogen representing the greatest biological hazard to human and wildlife health. Thus, this study aimed to analyse E. coli in the faecal carriage of healthy poultry flocks and to investigate the phenotypic and genotypic characteristics of antimicrobial resistance, including integrons genes and phylogenetic groups. A total of 431 cloacal swabs from apparently healthy poultry from four regions in Eastern Algeria from December 2021 to October 2022. 360 E. coli were isolated; from broilers (n = 151), broiler breeders (n = 91), laying hens (n = 72), and breeding hens (n = 46). Among this, 281 isolates exhibited multidrug resistance (MDR) phenotype, 17 of the 360 E. coli isolates exhibited ESBL, and one isolate exhibited both ESBL/pAmpC. A representative collection of 183 among 281 MDR E. coli was selected for further analysis by PCR to detect genes encoding resistance to different antibiotics, and sequencing was performed on all positive PCR products of blaCTX-M and blaCMY-2 genes. Phylogenetic groups were determined in 80 E. coli isolates (20 from each of the four kinds of poultry). The blaCTX-M gene was found in 16 (94.11 %) ESBL-producing E. coli isolates within 11 strains co-expressing the blaSHV gene and 8 strains co-expressing the blaTEM gene. Sequence analysis showed frequent diversity in CTX-M-group-1, with blaCTX-M-15 being the most predominant (n = 11), followed by blaCTX-M-1 (n = 5). The blaCMY-2 gene was detected only in one ESBL/pAmpC isolate. Among the 183 tested isolates, various antimicrobial resistance genes were found (number of strains) blaTEM (n = 121), blaSHV (n = 12), tetA (n = 100), tetB (n = 29), sul1(n = 67), sul2 (n = 32), qnrS (n = 45), qnrB (n = 10), qnrA (n = 1), catA1(n = 13), aac-(6')-Ib (n = 3). Furthermore, class 1 and class 2 integrons were found in 113 and 2 E. coli, respectively. The isolates were classified into multiple phylogroups, including A (35 %), B1 (27.5 %), B2 and D each (18.75 %). The detection of integrons and different classes of resistance genes in the faecal carriage of healthy poultry production indicates that commensal E. coli could potentially act as a reservoir for antimicrobial resistance, posing a significant One Health challenge encompassing the interconnected domains of human, animal health and the environment. Here, we present the first investigation to describe the diversity of blaCTX-M producing E. coli isolates with widespread detection of CTX-M-15 and CTX-M-1 in healthy breeders (Broiler and breeding hens) in Eastern Algeria.


Assuntos
Antibacterianos , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Fezes , Integrons , Filogenia , Doenças das Aves Domésticas , Aves Domésticas , beta-Lactamases , Animais , beta-Lactamases/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/classificação , Argélia/epidemiologia , Fezes/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Prevalência , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Integrons/genética , Testes de Sensibilidade Microbiana , Genótipo , Proteínas de Escherichia coli/genética
12.
Nature ; 559(7713): 259-263, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973719

RESUMO

The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine1,2. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens-Escherichia coli, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa-to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug-drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth Galleria mellonella, with one reverting resistance to the last-resort antibiotic colistin.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Animais , Benzaldeídos/farmacologia , Colistina/farmacologia , Combinação de Medicamentos , Interações Medicamentosas , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Aditivos Alimentares/farmacologia , Larva/efeitos dos fármacos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Filogenia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella typhimurium/classificação , Salmonella typhimurium/efeitos dos fármacos , Especificidade da Espécie
13.
Nature ; 564(7736): 444-448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518861

RESUMO

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Assuntos
Evolução Molecular Direcionada , Escherichia coli , Biossíntese de Proteínas , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Sequência de Bases , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Escherichia coli/classificação , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas/química , Ribossomos/química , Ribossomos/genética
14.
BMC Vet Res ; 20(1): 193, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734661

RESUMO

BACKGROUND: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS: The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS: The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.


Assuntos
Mastite Bovina , Leite , Streptococcus , Animais , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/epidemiologia , Polônia/epidemiologia , Feminino , Leite/microbiologia , Streptococcus/isolamento & purificação , Streptococcus/genética , Streptococcus/classificação , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Escherichia coli/classificação , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética
15.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928363

RESUMO

The pyelonephritis-associated fimbria (P fimbria) is one of the most recognized adhesion determinants of extraintestinal pathogenic Escherichia coli strains (ExPECs). Twelve variants have been described for the gene encoding the P fimbria major structural subunit PapA and three variants for the gene encoding the adhesin subunit PapG. However, their distribution among the ExPEC diversity has not been comprehensively addressed. A complete landscape of that distribution might be valuable for delineating basic studies about the pathogenicity mechanisms of ExPECs and following up on the evolution of ExPEC lineages, particularly those most epidemiologically relevant. Therefore, we performed a massive descriptive study to detect the papA and papG variants along different E. coli genotypes represented by genomic sequences contained in the NCBI Assembly Refseq database. The most common papA variants were F11, F10, F48, F16, F12, and F7-2, which were found in significant association with the most relevant ExPEC genotypes, the phylogroups B2 and D, and the sequence types ST95, ST131, ST127, ST69, ST12, and ST73. On the other hand, the papGII variant was by far the most common followed by papGIII, and both were also found to have a significant association with common ExPEC genotypes. We noticed the presence of genomes, mainly belonging to the sequence type ST12, harboring two or three papA variants and two papG variants. Furthermore, the most common papA and papG variants were also detected in records representing strains isolated from humans and animals such as poultry, bovine, and dogs, supporting previous hypotheses of potential cross-transmission. Finally, we characterized a set of 17 genomes from Chilean uropathogenic E. coli strains and found that ST12 and ST73 were the predominant sequence types. Variants F7-1, F7-2, F8, F9, F11, F13, F14, F16, and F48 were detected for papA, and papGII and papGIII variants were detected for papG. Significant associations with the sequence types observed in the analysis of genomes contained in the NCBI Assembly Refseq database were also found in this collection in 16 of 19 cases for papA variants and 7 of 9 cases for the papG variants. This comprehensive characterization might support future basic studies about P fimbria-mediated ExPEC adherence and future typing or epidemiological studies to monitor the evolution of ExPECs producing P fimbria.


Assuntos
Escherichia coli Extraintestinal Patogênica , Genótipo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/classificação , Humanos , Infecções por Escherichia coli/microbiologia , Adesinas de Escherichia coli/genética , Filogenia , Variação Genética , Proteínas de Fímbrias/genética , Proteínas de Escherichia coli/genética , Animais , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/classificação
16.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39408580

RESUMO

The diarrheagenic Escherichia coli (DEC) is the major cause of diarrheal diseases in Africa, including Ethiopia. However, the genetic diversity of E. coli pathotypes found in Ethiopia has not been studied well. This study aimed to characterize potential DEC belonging to enteropathogenic (EPEC), Shiga toxin-producing (STEC), enteroaggregative (EAEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) E. coli pathotypes from stool specimens of patients attending primary healthcare units (n = 260) in Addis Ababa and Hossana using whole-genome sequencing. Real-time PCR assays were used to identify DEC isolates belonging to EPEC, STEC, EAEC, ETEC, and EIEC pathotypes, which were then subjected to whole-genome sequencing on the Illumina platform. Twenty-four whole-genome nucleotide sequences of DEC strains with good enough quality were analyzed for virulence-associated genes (VAGs), antibiotic resistance genes (ARGs), phylogenetic groups, serogroups, and sequence types. The majority (62.5%) of DEC isolates belonged to the phylogenetic group B1. The identified DEC isolates belonged to 21 different serogroups and 17 different sequence types. All tested DEC isolates carried multiple VAGs and ARGs. The findings highlight the high diversity in the population structure of the studied DEC isolates, which is important for designing targeted interventions to reduce the diarrheal burden in Ethiopia.


Assuntos
Diarreia , Infecções por Escherichia coli , Fezes , Filogenia , Sequenciamento Completo do Genoma , Humanos , Etiópia/epidemiologia , Sequenciamento Completo do Genoma/métodos , Fezes/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Diarreia/microbiologia , Diarreia/epidemiologia , Atenção Primária à Saúde , Genoma Bacteriano , Feminino , Masculino , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/classificação , Criança , Adolescente , Adulto , Pré-Escolar , Lactente , Fatores de Virulência/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Virulência/genética
17.
PLoS Genet ; 16(10): e1009065, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112851

RESUMO

The genus Escherichia is composed of several species and cryptic clades, including E. coli, which behaves as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n = 7), E. fergusonii (n = 5), Escherichia clades (n = 32) and E. coli (n = 326), tested in a mouse model of sepsis. We found that the presence of the high-pathogenicity island (HPI), a ~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We confirmed the association in vivo by deleting key genes of the HPI in E. coli strains in two phylogenetic backgrounds. We then searched for correlations between virulence, iron capture systems and in vitro growth in a subset of E. coli strains (N = 186) previously phenotyped across growth conditions, including antibiotics and other chemical and physical stressors. We found that virulence and iron capture systems are positively correlated with growth in the presence of numerous antibiotics, probably due to co-selection of virulence and resistance. We also found negative correlations between virulence, iron uptake systems and growth in the presence of specific antibiotics (i.e. cefsulodin and tobramycin), which hints at potential "collateral sensitivities" associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia.


Assuntos
Infecções por Escherichia coli/genética , Escherichia coli/genética , Ferro/metabolismo , Sepse/genética , Sideróforos/genética , Animais , Modelos Animais de Doenças , Escherichia coli/classificação , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Ilhas Genômicas/genética , Humanos , Camundongos , Fenóis/metabolismo , Filogenia , Sepse/microbiologia , Sepse/patologia , Sideróforos/metabolismo , Tiazóis/metabolismo , Virulência/genética
18.
Genome Res ; 29(9): 1495-1505, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31439690

RESUMO

How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Evolução Molecular , Redes Reguladoras de Genes , Genoma Bacteriano , Humanos , Filogenia , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Simbiose
19.
BMC Microbiol ; 22(1): 60, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180845

RESUMO

BACKGROUND: Avian colibacillosis is an infectious bacterial disease caused by avian pathogenic Escherichia coli (APEC). APEC causes a wide variety of intestinal and extraintestinal infections, including InPEC and ExPEC, which result in enormous losses in the poultry industry. In this study, we investigated the prevalence of InPEC and ExPEC in Central China, and the isolates were characterized using molecular approaches and tested for virulence factors and antibiotic resistance. RESULTS: A total of 200 chicken-derived E. coli isolates were collected for study from 2019 and 2020. The prevalence of B2 and D phylogenic groups in the 200 chicken-derived E. coli was verified by triplex PCR, which accounted for 50.53% (48/95) and 9.52% (10/105) in ExPEC and InPEC, respectively. Additionally, multilocus sequence typing method was used to examine the genetic diversity of these E. coli isolates, which showed that the dominant STs of ExPEC included ST117 (n = 10, 20.83%), ST297 (n = 5, 10.42%), ST93 (n = 4, 8.33%), ST1426 (n = 4, 8.33%) and ST10 (n = 3, 6.25%), while the dominant ST of InPEC was ST117 (n = 2, 20%). Furthermore, antimicrobial susceptibility tests of 16 antibiotics for those strains were conducted. The result showed that more than 60% of the ExPEC and InPEC were resistant to streptomycin and nalidixic acid. Among these streptomycin resistant isolates (n = 49), 99.76% harbored aminoglycoside resistance gene strA, and 63.27% harbored strB. Among these nalidixic acid resistant isolates (n = 38), 94.74% harbored a S83L mutation in gyrA, and 44.74% harbored a D87N mutation in gyrA. Moreover, the prevalence of multidrug-resistant (MDR) in the isolates of ExPEC and InPEC was 31.25% (15/48) and 20% (2/10), respectively. Alarmingly, 8.33% (4/48) of the ExPEC and 20% (2/10) of the InPEC were extensively drug-resistant (XDR). Finally, the presence of 13 virulence-associated genes was checked in these isolates, which over 95% of the ExPEC and InPEC strains harbored irp2, feoB, fimH, ompT, ompA. 10.42% of the ExPEC and 10% of the InPEC were positive for kpsM. Only ExPEC isolates carried ibeA gene, and the rate was 4.17%. All tested strains were negative to LT and cnf genes. The carrying rate of iss and iutA were significantly different between the InPEC and ExPEC isolates (P < 0.01). CONCLUSIONS: To the best of our knowledge, this is the first report on the highly pathogenic groups of InPEC and ExPEC in Central China. We find that 50.53% (48/95) of the ExPEC belong to the D/B2 phylogenic group. The emergence of XDR and MDR strains and potential virulence genes may indicate the complicated treatment of the infections caused by APEC. This study will improve our understanding of the prevalence and pathogenicity of APEC.


Assuntos
Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Variação Genética , Filogenia , Animais , Antibacterianos/farmacologia , China/epidemiologia , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli Extraintestinal Patogênica/classificação , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/patogenicidade , Tipagem de Sequências Multilocus , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Prevalência , Virulência , Fatores de Virulência/genética
20.
PLoS Comput Biol ; 17(1): e1008596, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465077

RESUMO

The fitness landscape is a concept commonly used to describe evolution towards optimal phenotypes. It can be reduced to mechanistic detail using genome-scale models (GEMs) from systems biology. We use recently developed GEMs of Metabolism and protein Expression (ME-models) to study the distribution of Escherichia coli phenotypes on the rate-yield plane. We found that the measured phenotypes distribute non-uniformly to form a highly stratified fitness landscape. Systems analysis of the ME-model simulations suggest that this stratification results from discrete ATP generation strategies. Accordingly, we define "aero-types", a phenotypic trait that characterizes how a balanced proteome can achieve a given growth rate by modulating 1) the relative utilization of oxidative phosphorylation, glycolysis, and fermentation pathways; and 2) the differential employment of electron-transport-chain enzymes. This global, quantitative, and mechanistic systems biology interpretation of fitness landscape formed upon proteome allocation offers a fundamental understanding of bacterial physiology and evolution dynamics.


Assuntos
Escherichia coli , Aptidão Genética/genética , Proteoma , Trifosfato de Adenosina/metabolismo , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Modelos Genéticos , Nitratos/metabolismo , Fenótipo , Proteoma/genética , Proteoma/metabolismo , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA