RESUMO
SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.
Assuntos
Compostos Benzidrílicos , Carcinogênese , Estrogênios , Glândulas Mamárias Humanas , Fenóis , Proteoma , Sulfonas , Compostos Benzidrílicos/toxicidade , Carcinogênese/induzido quimicamente , Estrogênios/toxicidade , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Organoides/efeitos dos fármacos , Organoides/patologia , Fenóis/toxicidade , Proteoma/efeitos dos fármacos , Proteômica , Sulfonas/toxicidadeRESUMO
The masking of specific effects in in vitro assays by cytotoxicity is a commonly known phenomenon. This may result in a partial or complete loss of effect signals. For common in vitro assays, approaches for identifying and quantifying cytotoxic masking are partly available. However, a quantification of cytotoxicity-affected signals is not possible. As an alternative, planar bioassays that combine high-performance thin layer chromatography with in vitro assays, such as the planar yeast estrogen screen (p-YES), might allow for a quantification of cytotoxically affected signals. Affected signals form a typical ring structure with a supressed or completely lacking centre that results in a double peak chromatogram. This study investigates whether these double peaks can be used for fitting a peak function to extrapolate the theoretical, unaffected signals. The precision of the modelling was evaluated for four individual peak functions, using 42 ideal, undistorted peaks from estrogenic model compounds in the p-YES. Modelled ED50-values from bisphenol A (BPA) experiments with cytotoxically disturbed signals were 13 times higher than for the apparent data without compensation for cytotoxicity (320 ± 63 ng versus 24 ± 17 ng). This finding has a high relevance for the modelling of mixture effects according to concentration addition that requires unaffected, complete dose-response relationships. Finally, we applied the approach to results of a p-YES assay on leachate samples of an elastomer material used in water engineering. In summary, the fitting approach enables the quantitative evaluation of cytotoxically affected signals in planar in vitro assays and also has applications for other fields of chemical analysis like distorted chromatography signals.
Assuntos
Bioensaio , Bioensaio/métodos , Cromatografia em Camada Fina/métodos , Fenóis/toxicidade , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Estrogênios/análise , Estrogênios/toxicidadeRESUMO
Estrogens and estrogenic chemicals are endocrine-disrupting chemicals (EDCs). The potential toxicity of EDCs to humans and aquatic organisms has become increasingly concerning. However, at present, the potential toxic mechanisms of EDCs on neural and vascular development are still being fully investigated. During the study, we utilized zebrafish to assess the developmental neural and vascular toxicity of different estrogens. The results indicated that zebrafish treated with different estrogens, especially E2, exhibit developmental malformations, including increased mortality, decreased body length, decreased heart rate, aberrant swimming behavior, and increased developmental malformations, including spinal curvature (SC), yolk edema (YE) and pericaidial edema (PE), in a dose-dependent manner with 72â¯h-treated. Further morphological evaluation revealed that E2 exposure significantly induced motor neural abnormalities in zebrafish embryos. In addition, treated with these three estrogens also impaired the vascular development in the early stage of zebrafish embryos. Mechanistically, the identification of downstream factors revealed that several key neural and vascular development-related genes, including syn2a, gfap, gap43, shha, kdr, flt1 and flt4, were transcriptionally downregulated after estrogen exposure in zebrafish, suggesting that estrogen exposure might cause neural and vascular toxicity by interfering the mRNA levels of genes relevant to neural and vascular development.
Assuntos
Disruptores Endócrinos , Estrogênios , Poluentes Químicos da Água , Peixe-Zebra , Animais , Disruptores Endócrinos/toxicidade , Estrogênios/toxicidade , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Estradiol/toxicidadeRESUMO
Cervical cancer is the fourth most common cancer among women globally. The detrimental health effects of estrogenic endocrine disruptors (EED), such as bisphenol A (BPA) and phthalates, are recognized, but their role in cervical cancer progression remains unclear. To investigate this, a transcriptome analysis using bioinformatics was conducted. The Comparative Toxicogenomics Database (CTD) identified estrogen-responsive genes (ERGs) associated with EED. Cervical cancer expression and clinical data were sourced from The Cancer Genome Atlas (TCGA). The limma package identified differentially expressed ERGs (DERGs), which were further analyzed for molecular mechanisms through enrichment analysis. LASSO regression developed a prognostic risk score model, and COX analysis identified prognostic biomarkers. ssGSEA assessed immune tumor infiltration, and Autodock performed molecular docking. A total of 217 DERGs were linked to endocrine resistance, estrogen signaling, and the cell cycle. The prognostic risk score and nomogram based on DERGs were highly predictive of cervical cancer prognosis and could serve as independent risk factors. The risk score influenced the tumor immune microenvironment by affecting immune cell presence. SCARA3 and FASN emerged as independent prognostic factors, with molecular docking confirming strong binding between EED and FASN. DERGs can aid in creating a reliable prognostic model and predicting overall survival in cervical cancer patients, offering new insights into the impact of EED on cancer progression and highlighting environmental factors related to cancer risks and development.
Assuntos
Progressão da Doença , Disruptores Endócrinos , Neoplasias do Colo do Útero , Disruptores Endócrinos/toxicidade , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/induzido quimicamente , Humanos , Prognóstico , Perfilação da Expressão Gênica , Fenóis/toxicidade , Simulação de Acoplamento Molecular , Compostos Benzidrílicos/toxicidade , Transcriptoma/efeitos dos fármacos , Estrogênios/toxicidade , Ácidos Ftálicos/toxicidadeRESUMO
Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5⯵g/L), based on the lowest effective concentration (EC10 = 0.48⯵g/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17ß-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.
Assuntos
Disruptores Endócrinos , Estrogênios , Fenóis , Receptores Androgênicos , Hormônios Tireóideos , Vitelogeninas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fenóis/toxicidade , Masculino , Poluentes Químicos da Água/toxicidade , Feminino , Vitelogeninas/metabolismo , Disruptores Endócrinos/toxicidade , Hormônios Tireóideos/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Estrogênios/toxicidade , Estradiol/toxicidade , Antagonistas de Androgênios/toxicidade , Testosterona/metabolismo , Testosterona/análogos & derivados , HidrocortisonaRESUMO
Potential endocrine-disrupting properties of cyanotoxins, such as microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are of concern due to their increasing occurrence, the scarcity of reports on the topic (particularly for CYN) and the impact of human's health at different levels. Thus, this work performed for the first time the uterotrophic bioassay in rats, following the Organization for Economic Cooperation and Development (OECD) Test Guideline 440, to explore the oestrogenic properties of CYN and MC-LR (75, 150, 300 µg/kg b.w./day) in ovariectomized (OVX) rats. Results revealed neither changes in the wet and blotted uterus weights nor in the morphometric study of uteri. Moreover, among the steroid hormones analysed in serum, the most remarkable effect was the dose-dependent increase in progesterone (P) levels in rats exposed to MC-LR. Additionally, a histopathology study of thyroids and serum levels of thyroids hormones were determined. Tissue affectation (follicular hypertrophy, exfoliated epithelium, hyperplasia) was observed, as well as increased T3 and T4 levels in rats exposed to both toxins. Taken together, these results point out that CYN and MC-LR are not oestrogenic compounds at the conditions tested in the uterotrophic assay in OVX rats, but, however, thyroid disruption effects cannot be discarded.
Assuntos
Toxinas Bacterianas , Glândula Tireoide , Humanos , Animais , Ratos , Organização para a Cooperação e Desenvolvimento Econômico , Estrogênios/toxicidade , Toxinas Bacterianas/toxicidade , Toxinas de Cianobactérias , Microcistinas/toxicidade , Microcistinas/análiseRESUMO
In next generation risk assessment (NGRA), the Dietary Comparator Ratio (DCR) can be used to assess the safety of chemical exposures to humans in a 3R compliant approach. The DCR compares the Exposure Activity Ratio (EAR) for exposure to a compound of interest (EARtest) to the EAR for an established safe exposure level to a comparator compound (EARcomparator), acting by the same mode of action. It can be concluded that the exposure to a test compound is safe at a corresponding DCR ≤ 1. In this study, genistein (GEN) was selected as a comparator compound by comparison of reported safe internal exposures to GEN to its BMCL05, as no effect level, the latter determined in the in vitro estrogenic MCF7/Bos proliferation, T47D ER-CALUX, and U2OS ERα-CALUX assay. The EARcomparator was defined using the BMCL05 and EC50 values from the 3 in vitro assays and subsequently used to calculate the DCRs for exposures to 14 test compounds, predicting the (absence of) estrogenicity. The predictions were evaluated by comparison to reported in vivo estrogenicity in humans for these exposures. The results obtained support in the DCR approach as an important animal-free new approach methodology (NAM) in NGRA and show how in vitro assays can be used to define DCR values.
Assuntos
Estrogênios , Receptores de Estrogênio , Humanos , Estrogênios/toxicidade , Linhagem Celular Tumoral , Genisteína/toxicidade , Medição de RiscoRESUMO
Plasticizer pollution of the water environment is one of the world's most serious environmental issues. Phthalate plasticizers can disrupt endocrine function in vertebrates. Therefore, this study analyzed thyroid-related, reproduction-related, and estrogen-responsive genes in Japanese medaka (Oryzias latipes) to determine whether non-phthalate diisobutyl adipate (DIBA) plasticizer could affect endocrine hormone activity or not. Developmental toxicity during fish embryogenesis was also evaluated. At a concentration of 11.57 mg/l, embryonic exposure to DIBA increased the mortality rate. Although abnormal development, including body curvature, edema, and lack of swim bladder inflation, was observed at 3.54 and 11.57 mg/l DIBA, growth inhibition and reduced swimming performance were also observed. In addition, DIBA exposure increased the levels of thyroid-stimulating hormone beta-subunit (tshß) and deiodinase 1 (dio1) but decreased the levels of thyroid hormone receptor alpha (trα) and beta (trß). These results suggest that DIBA has thyroid hormone-disrupting activities in fish. However, kisspeptin (kiss1 and kiss2), gonadotropin-releasing hormone (gnrh1), follicle-stimulating hormone beta (fshß), luteinizing hormone beta (lhß), choriogenin H (chgH), and vitellogenin (vtg1) expression did not change dose-dependently in response to DIBA exposure, whereas gnrh2 and vtg2 expression was elevated. These results indicate that DIBA has low estrogenic activity and does not disrupt the endocrine reproduction system in fish. Overall, this is the first report indicating that non-phthalate DIBA plasticizer is embryotoxic and disrupt thyroid hormone activity in fish.
Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Plastificantes/toxicidade , Plastificantes/metabolismo , Oryzias/metabolismo , Sistema Endócrino , Estrogênios/toxicidade , Adipatos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismoRESUMO
This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.
Assuntos
Disruptores Endócrinos , Saúde Reprodutiva , Animais , Masculino , Humanos , Feminino , Estrogênios/toxicidade , Reprodução , Sistemas Neurossecretores , Comportamento Sexual , Disruptores Endócrinos/toxicidadeRESUMO
Because exposure to bisphenol A (BPA) has been linked to health problems in humans and wildlife, BPA analogues have been synthesized to be considered as replacement molecules. We here have examined estrogenic activity of BPA and five of its analogues, BPAF, BPE, BPC, BPC-Cl, and BPS by a combination of zebrafish-based in vivo and in vitro assays. We used transgenic estrogen reporter (5xERE:GFP) fish to study agonistic effects of bisphenols. Exposures to BPA, BPAF, BPE, and BPC, induced GFP expression in estrogen reporter fish at low exposure concentrations in the heart valves and at higher concentrations in the liver, whereas BPC-Cl activated GFP expression mainly in the liver, and BPS faintly in the heart only. The in vivo response was compared to in vitro estrogenicity of bisphenol exposure using reporter cells that express the zebrafish estrogen receptors driving expression of an estrogen response element (ERE)-luciferase reporter. In these cells, BPA, BPAF, BPC, BPE and BPS preferentially activated Esr1, whereas BPC-Cl preferentially activated Esr2a. By quantitative PCR we found that exposure to BPAF induced expression of the classical estrogen target genes vtg1, esr1, and cyp19a1b in a concentration response manner, but the most responsive target gene was f13a1a. Exposure to BPC-Cl resulted in a different expression pattern of vtg1 and f13a1a with an activation at low concentrations, followed by a declining expression at higher concentrations. Because expression of f13a1a was strongly activated by all compounds tested, we suggest including this mRNA as a biomarker for estrogenicity in larval fish. We further showed that exposure to BPAF and BPC-Cl increased E2 levels in zebrafish larvae, indicating that bisphenol exposures result in a feed-forward response that can further augment the estrogenic activity of these compounds.
Assuntos
Receptores de Estrogênio , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Compostos Benzidrílicos/toxicidade , Estrona , Estrogênios/toxicidade , Estrogênios/metabolismo , Larva/metabolismo , Luciferases , RNA MensageiroRESUMO
RATIONALE: Epidemiological studies have identified an associate between iron deficiency (ID) and the use of oral contraceptives (CC) and ischemic stroke (IS). To date, however, the underlying mechanism remains poorly understood. Both ID and CC have been demonstrated to upregulate the level and iron-binding ability of Tf (transferrin), with our recent study showing that this upregulation can induce hypercoagulability by potentiating FXIIa/thrombin and blocking antithrombin-coagulation proteases interactions. OBJECTIVE: To investigate whether Tf mediates IS associated with ID or CC and the underlying mechanisms. METHODS AND RESULTS: Tf levels were assayed in the plasma of IS patients with a history of ID anemia, ID anemia patients, venous thromboembolism patients using CC, and ID mice, and in the cerebrospinal fluid of some IS patients. Effects of ID and estrogen administration on Tf expression and coagulability and the underlying mechanisms were studied in vivo and in vitro. High levels of Tf and Tf-thrombin/FXIIa complexes were found in patients and ID mice. Both ID and estrogen upregulated Tf through hypoxia and estrogen response elements located in the Tf gene enhancer and promoter regions, respectively. In addition, ID, administration of exogenous Tf or estrogen, and Tf overexpression promoted platelet-based thrombin generation and hypercoagulability and thus aggravated IS. In contrast, anti-Tf antibodies, Tf knockdown, and peptide inhibitors of Tf-thrombin/FXIIa interaction exerted anti-IS effects in vivo. CONCLUSIONS: Our findings revealed that certain factors (ie, ID and CC) upregulating Tf are risk factors of thromboembolic diseases decipher a previously unrecognized mechanistic association among ID, CC, and IS and provide a novel strategy for the development of anti-IS medicine by interfering with Tf-thrombin/FXIIa interactions.
Assuntos
Anemia Ferropriva/complicações , Coagulação Sanguínea , Anticoncepcionais Orais Hormonais/efeitos adversos , Estrogênios/toxicidade , AVC Isquêmico/etiologia , Trombofilia/etiologia , Transferrina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia Ferropriva/sangue , Anemia Ferropriva/diagnóstico , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Fator XIIa/metabolismo , Feminino , Humanos , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Trombina/metabolismo , Trombofilia/sangue , Trombofilia/diagnóstico , Regulação para Cima , Adulto JovemRESUMO
In comparison with analytical tools, bioassays provide higher sensitivity and more complex evaluation of environmental samples and are indispensable tools for monitoring increasing in anthropogenic pollution. Nevertheless, the disadvantage in cellular assays stems from the material variability used within the assays, and an interlaboratory adaptation does not usually lead to satisfactory test sensitivities. The aim of this study was to evaluate the influence of material variability on CXCL12 secretion by T47D cells, the outcome of the CXCL-test (estrogenic activity assay). For this purpose, the cell line sources, sera suppliers, experimental and seeding media, and the amount of cell/well were tested. The multivariable linear model (MLM), employed as an innovative approach in this field for parameter evaluation, identified that all the tested parameters had significant effects. Knowledge of the contributions of each parameter has permitted step-by-step optimization. The most beneficial approach was seeding 20,000 cells/well directly in treatment medium and using DMEM for the treatment. Great differences in both basal and maximal cytokine secretions among the three tested cell lines and different impacts of each serum were also observed. Altogether, both these biologically based and highly variable inputs were additionally assessed by MLM and a subsequent two-step evaluation, which revealed a lower variability and satisfactory reproducibility of the test. This analysis showed that not only parameter and procedure optimization but also the evaluation methodology must be considered from the perspective of interlaboratory method adaptation. This overall methodology could be applied to all bioanalytical methods for fast multiparameter and accurate analysis.
Assuntos
Estrogênios , Poluentes Químicos da Água , Bioensaio , Linhagem Celular , Monitoramento Ambiental/métodos , Estrogênios/toxicidade , Estrona , Modelos Lineares , Reprodutibilidade dos TestesRESUMO
In the early 1960's, at Professor Bern's laboratory, University of California, Berkeley) in the US, Takasugi discovered ovary-independent, persistent vaginal changes in mice exposed neonatally to estrogen, which resulted in vaginal cancer later in life. Reproductive abnormalities in rodents were reported as a result of perinatal exposure to various estrogenic chemicals. Ten years later, vaginal cancers were reported in young women exposed in utero to the synthetic estrogen diethylstilbestrol (DES) and this has been called the "DES syndrome". The developing organism is particularly sensitive to developmental exposure to estrogens inducing long-term changes in various organs including the reproductive organs. The molecular mechanism underlying the persistent vaginal changes induced by perinatal estrogen exposure was partly demonstrated. Persistent phosphorylation and sustained expression of EGF-like growth factors, lead to estrogen receptor α (ESR1) activation, and then persistent vaginal epithelial cell proliferation. Agents which are weakly estrogenic by postnatal criteria may have major developmental effects, especially during a critical perinatal period. The present review outlines various studies conducted by four generations of investigators all under the influence of Prof. Bern. The studies include reports of persistent changes induced by neonatal androgen exposure, analyses of estrogen responsive genes, factors determining epithelial differentiation in the Müllerian duct, ESR and growth factor signaling, and polyovular follicles in mammals. This review is then expanded to the studies on the effects of environmental estrogens on wildlife and endocrine disruption in Daphnids.
Assuntos
Receptor alfa de Estrogênio/genética , Estrogênios/toxicidade , Hormônios Esteroides Gonadais/metabolismo , Neoplasias Vaginais/genética , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Dietilestilbestrol/farmacologia , Estrogênios/análogos & derivados , Feminino , Hormônios Esteroides Gonadais/biossíntese , Humanos , Camundongos , Ductos Paramesonéfricos/efeitos dos fármacos , Ductos Paramesonéfricos/metabolismo , Ductos Paramesonéfricos/patologia , Gravidez , Vagina/efeitos dos fármacos , Vagina/metabolismo , Vagina/patologia , Neoplasias Vaginais/induzido quimicamente , Neoplasias Vaginais/patologiaRESUMO
Many phenolic compounds have been found to have endocrine disrupting activities, but their arylamine analogs, the phenolic hydroxyl groups substituted by aniline amino groups, have rarely been reported. 4,4'-(9-Fluorenylidene)dianiline (BAFL) is an arylamine analog of fluorene-9-bisphenol (BHPF) and BHPF has been reported to be a strong antiestrogen which could cause endometrial atrophy, ovarian damage and adverse pregnancy outcomes in animals. BAFL has been widely used as material to synthetize polymers, such as polyimides, polyamide, and polyamine, for various uses since the 1970s. Here, we assessed the antiestrogenicity of BAFL using a variety of methods and looked into its impacts on the development of females in CD-1 mice. With the aid of a yeast estrogen screen assay, we found BAFL possessed obviously antiestrogenic activity (IC50 = 8.15 × 10-6 M), which close to that of tamoxifen and BHPF. Using a 10-d mouse uterotrophic assay, we found that BAFL obviously decreased uterine weight in a dose-dependent way. Histological analyses of mouse uteri revealed that BAFL induced marked endometrial atrophy and inhibited the uterine development. Immunohistochemical analyses showed that Sprr2d, an estrogen-responsive gene encoding protein, was mainly expressed in endometrial epithelial cells and BAFL decreased the areas and levels of Sprr2d staining in mouse uteri. It was clear from uterine transcriptome investigations that BAFL significantly downregulated the expressions of multiple genes responding to estrogen. Molecular docking showed that BAFL could effectively occupy the antagonist-binding pocket of hERα, and one of the amino groups of BAFL formed hydrogen bonds with the side chains of Arg394 and Glu353 in the receptor. These results indicated that BAFL exhibited clearly antiestrogenic characteristics and could interfere with normal female development in mice, which should be avoided using in commodities that come into direct contact with humans. Moreover, this study indicated that the arylamine analogs of phenolic endocrine disrupting chemicals might also have endocrine disrupting activities.
Assuntos
Antagonistas de Estrogênios , Estrogênios , Humanos , Gravidez , Camundongos , Feminino , Animais , Simulação de Acoplamento Molecular , Antagonistas de Estrogênios/química , Estrogênios/toxicidade , AtrofiaRESUMO
This study investigated the effect of BPF on male sexual performance and the quality of the offspring. Eighty (80) Male Wistar rats (n = 10 per group) were randomised into normal saline-treated control and control recovery, BPF varied doses (low, medium, and high), and BPF varied doses recovery (low, medium, and high) groups. The study was terminated after 28 days of BPF oral administration. The animals were sacrificed after 24 h from the last dose, while those in the recovery groups were allowed to recover for another 28 days before being sacrificed. BPF administration was found to impair sexual performance, as shown by a significant decrease in frequencies (mount, intromission, and ejaculation frequencies) and an increase in latencies (mount, intromission, and ejaculation latencies). This was accompanied by a significant decrease in plasma LH, FSH, testosterone, dopamine, acetylcholinesterase, nitric oxide, and penile cyclic guanosine monophosphate (cGMP) level. The level of plasma oestrogen and prolactin were significantly increased following BPF administration. BPF also reduced the sperm count, morphology, viability, and motility. Furthermore, BPF reduced fertility success and index, litter size, litter weight, and offspring survival rate. These toxic effects of BPF were dose-dependent and were not reversed by withdrawal following 28 days of recovery. This study concluded that BPF disrupts sexual competence and offspring quality by suppressing the hypothalamic-pituitary-gonadal axis and mediating oestrogen-induced hyperprolactinemia. These events were associated with reduced fertility index and success, poor semen quality, and reduced offspring survival rate. The observed toxic effects of BPF were dose-dependent and not reversed by cessation of BPF exposure.
Assuntos
Acetilcolinesterase , Prolactina , Animais , Compostos Benzidrílicos , Dopamina , Estrogênios/toxicidade , Hormônio Foliculoestimulante , Guanosina Monofosfato , Masculino , Óxido Nítrico , Fenóis , Ratos , Ratos Wistar , Solução Salina , Sêmen , Análise do Sêmen , TestosteronaRESUMO
Endometriosis is a chronic, inflammatory, estrogen-dependent gynecological disease characterized by the growth of endometrial stromal cells and glands outside the uterine cavity in response to hormones, which commonly occurs in reproductive-age women. Zearalenone (ZEA) is a toxic metabolite produced by Fusarium, which acts as estrogen activity because of the similarity of its structure to estrogen. In this study, we used an endometriosis mouse model: 15 days after ovariectomy, endometrial fragments were sutured on the pelvic wall, and exogenous estrogen was supplied using an estrogen-releasing silicone tube embedded subcutaneously. Mice were treated with different doses of ZEA by gavage for 21 days. The results show that ZEA significantly inhibited the growth of ectopic endometrium in a dose-dependent manner. The proliferation of cells decreased while apoptosis increased in the ectopic tissues of ZEA-treated mice compared to the vehicle group. The expression of estrogen receptor-α and its downstream targets MUC1 and p-AKT decreased, indicating an impaired estrogen signaling activity by ZEA treatment. In addition, the decreased expression of pro-inflammatory cytokine Tnf-α, Il-1ß, and Il-6, the lower number of macrophages and neutrophils cells, and the inhibited NF-κB signaling pathway suggest the inflammatory response in the ectopic endometrium was also suppressed by ZEA treatment. However, when the exogenous estrogen supply is removed, ZEA, in turn, plays an estrogen-like role that promotes cell proliferation in the ectopic endometrium. In summary, our data suggest ZEA acts as an antagonist in endometriotic tissue when estrogen is sufficient but turns to estrogenic activity in the absence of estrogen in the development of endometriosis. ZEA also inhibits ectopic tissue growth by inhibiting inflammatory response in the endometriosis model.
Assuntos
Endometriose , Zearalenona , Animais , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Estrogênios/toxicidade , Feminino , Humanos , Camundongos , Transdução de Sinais , Zearalenona/toxicidadeRESUMO
Statins are 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitor drugs that lead to serum-cholesterol-lowering effects. Rosuvastatin, a third-generation statin, has shown better results in reducing cholesterol concentrations when compared to other widely prescribed statins. Recent studies by our group reported that rosuvastatin impairs reproductive function in rats possibly by disrupting the reproductive-endocrine axis. In this study, we evaluated whether rosuvastatin presents estrogenic or antiestrogenic effects, by an in vivo uterotrophic assay in rats, and investigated the direct effect of this drug upon rat uterine tissue contractility both in non-gravid and gravid periods. Rosuvastatin exposure in vivo at doses of 0 (control), 3, and 10 mg/kg/d was not associated with estrogenic or antiestrogenic effects on uterine tissue. However, in vivo (doses of 0, 3, and 10 mg/kg/d) and ex vivo (concentrations of 0, 1, 10, and 100 µg/mL) exposures to this drug were related to alterations in uterine basal contraction pattern. Furthermore, in vivo and ex vivo rosuvastatin exposures potentially modulate the action of uterine contraction inducers carbachol, norepinephrine, and prostaglandin E2. Thus, rosuvastatin can affect uterine physiology not necessarily by an endocrine mechanism related to the estrogen signaling, but possibly by its pleiotropic effects, with indirect tissue and cellular interactions, since in vivo and ex vivo exposures of uterine fragments to rosuvastatin presented different responses in uterine contractile parameters, which require further studies upon the precise mechanism of action of this drug in female reproductive function.
Assuntos
Estrogênios , Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Colesterol , Estrogênios/toxicidade , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Gravidez , Ratos , Ratos Wistar , Rosuvastatina Cálcica/toxicidadeRESUMO
Bioanalytical tools, namely in vitro bioassays, can be employed in tandem with chemical analyses to assess the efficacy of wastewater treatment and the potential for adverse effects from the discharges of wastewater into receiving waters. In the present study, samples of untreated wastewater (i.e., influent) and treated wastewater (i.e., effluent) were collected from two wastewater treatment plants and a wastewater treatment lagoon to investigate potential differences in treatment performance. In addition, grab samples of surface water were collected downstream of the lagoon discharge to evaluate the water quality in the receiving stream. After solid-phase extraction (SPE) using ion exchange columns for basic/neutral and acidic compounds, respectively, the extracts were analyzed for a suite of 16 indicator compounds. The two SPE extracts were combined for analysis of biological responses in four in vitro cell-based bioassays. The concentrations of several indicator compounds, including the estrogens, 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2), were below the limits of detection. However, androstenedione and estrone were detected in several influent samples. The concentrations of these steroid hormones and some of the other indicator compounds declined during treatment, but acesulfame K, carbamazepine, trimethoprim and DEET persisted in the effluent. The MTS-CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) indicated that cell viability was not affected by exposure to the extracts. The Qiagen Nuclear Receptors 10-Pathway Reporter Array indicated that several cellular pathways were upregulated, with the greatest upregulation observed with the estrogen receptor (i.e., induction ratios of 12 to 47) and the liver X receptor (i.e., induction ratios of 10 to 45). The ERα CALUX assay indicated that estrogenic activity was lower in effluents compared to influents, but the expected improved removal of estrogenic activity during nitrification was not observed. The results of the Nrf2 Luciferase Luminescence Assay indicated a lower oxidative stress in the effluent samples, except for the lagoon. Overall, the present study further demonstrates that bioassays provide complementary information to chemical analyses and offer a way to assess treatment performance, even when target contaminants are not detected. There are thus advantages to using a combination of chemical analyses and in vitro bioassays to monitor the treatment efficiency of wastewater treatment plants and to predict the potential impacts of wastewater discharges into receiving waters.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Estrogênios/toxicidade , Estrona/análise , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Estrone (E1), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17ß-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17ß-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.
Assuntos
Esterco , Poluentes Químicos da Água , Animais , Criança , Monitoramento Ambiental , Estradiol/toxicidade , Estrogênios/análise , Estrogênios/toxicidade , Estrona/análise , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
For several years, environmental exogenous agents, called endocrine disruptors, are suspected to interfere with the essential functions of reproduction and development in many living organisms. In this study, endocrine disruptors including five phthalates and two bisphenols contents in finished products were assayed and their estrogenic activity were measured by using the Yeast Estrogen Screen system with respect to human and trout estrogen receptors hERα and rtERS. Independently of the estrogen receptor, only short-chain phthalates (DBP and BBP) and the two bisphenols exhibited an estrogenic activity. Besides, the risk of three end-products (agro-food, cosmetics, and pharmaceutical) was evaluated before and after forced aging. Only two cosmetics the face cream and the perfume presented a hazard which increases with aging. These results are consistent with the compounds identified by Gas chromatography-mass spectrometry. These findings confirmed that the YES system can be routinely used to evaluate the estrogenic hazards within finished products.