Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.409
Filtrar
1.
Cancer Sci ; 115(7): 2318-2332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705575

RESUMO

Persistent activation of estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in driving the progression of estrogen receptor positive (ER+) breast cancer (BC). In the current study, LINC00173, a long non-coding RNA, was found to bind both ERα and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFα) factor (LITAF), then cooperatively to inhibit ERα protein degradation by impeding the nuclear export of ERα. Concurrently, LITAF was found to attenuate TNFα transcription after binding to LINC00173, and this attenuating transcriptional effect was quite significant under lipopolysaccharide stimulation. Distinct functional disparities between estrogen subtypes emerge, with estradiol synergistically promoting ER+ BC cell growth with LINC00173, while estrone (E1) facilitated LITAF-transcriptional activation. In terms of therapeutic significance, silencing LINC00173 alongside moderate addition of E1 heightened TNFα and induced apoptosis, effectively inhibiting ER+ BC progression.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Estrona , RNA Longo não Codificante , Fatores de Transcrição , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Estrona/metabolismo , Estrona/farmacologia , Estrona/análogos & derivados , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Animais , Camundongos , Inativação Gênica
2.
Bioorg Med Chem ; 103: 117678, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489997

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC), representing over 90 % of pancreatic cancer diagnoses, is an aggressive disease with survivability among the worst of all cancers due to its difficulty in detection and its high metastatic properties. Current therapies for PDAC show limited success at extending life expectancies, primarily due to cancer resistance and lack of patient-specific targeted therapies. This work highlights the design and evaluation of estrone-derived analogs with both heterocyclic side-chain functionality and 11-oxygenated functionality for use in pancreatic cancer. First-round heterocyclic analogs show preliminary promise in AsPC-1 and Panc-1 cell lines, with IC50 values as low as 10.16 ± 0.83 µM. Their success, coupled with design choices from other studies, led to the synthesis of novel 11-hydroxyl and 11-keto estrone analogs that show potent in-vitro toxicity against various pancreatic cancer models. The three most cytotoxic analogs, KA1, KA2, and KA9 demonstrated low micromolar activities in both MTT and CellTiter assays in three pancreatic cancer cell lines: AsPC-1, Panc-1, and BxPC-3, as well as in a co-culture of Panc-1 and pancreatic stellate cells. IC50 values for KA9 (4.17 ± 0.90, 5.28 ± 1.87, and 5.70 ± 0.65 µM respectively) shows consistency in all cell lines tested. KA9 is also able to cause an increase in caspases 3 and 7 activity, key markers for apoptosis, at non-cytotoxic concentrations. Additional work was performed by generating 3D pancreatic cancer spheroids to better modulate the pancreatic tumor microenvironment, and KA9 continued to show the best IC50 values (21.0 and 24.3 µM) in both cell types tested. KA9 was also able to prevent the growth of spheroids whereas the standard chemotherapy, Gemcitabine, could not, suggesting that it may be a potent analog for future development of treatments. Molecular dynamic simulations were also performed to confirm biological findings and uncovered that KA9's preferential binding location is in the active site pocket of key proteins involved in cytotoxicity.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estrona/farmacologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Gencitabina , Pâncreas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673860

RESUMO

Directed structural modifications of natural products offer excellent opportunities to develop selectively acting drug candidates. Natural product hybrids represent a particular compound group. The components of hybrids constructed from different molecular entities may result in synergic action with diminished side effects. Steroidal homo- or heterodimers deserve special attention owing to their potentially high anticancer effect. Inspired by our recently described antiproliferative core-modified estrone derivatives, here, we combined them into heterodimers via Cu(I)-catalyzed azide-alkyne cycloaddition reactions. The two trans-16-azido-3-(O-benzyl)-17-hydroxy-13α-estrone derivatives were reacted with 3-O-propargyl-D-secoestrone alcohol or oxime. The antiproliferative activities of the four newly synthesized dimers were evaluated against a panel of human adherent gynecological cancer cell lines (cervical: Hela, SiHa, C33A; breast: MCF-7, T47D, MDA-MB-231, MDA-MB-361; ovarian: A2780). One heterodimer (12) exerted substantial antiproliferative activity against all investigated cell lines in the submicromolar or low micromolar range. A pronounced proapoptotic effect was observed by fluorescent double staining and flow cytometry on three cervical cell lines. Additionally, cell cycle blockade in the G2/M phase was detected, which might be a consequence of the effect of the dimer on tubulin polymerization. Computational calculations on the taxoid binding site of tubulin revealed potential binding of both steroidal building blocks, mainly with hydrophobic interactions and water bridges.


Assuntos
Antineoplásicos , Proliferação de Células , Estrona , Humanos , Estrona/farmacologia , Estrona/análogos & derivados , Estrona/química , Estrona/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Dimerização , Simulação de Acoplamento Molecular , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Células MCF-7
4.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762056

RESUMO

Four diastereomers of 16-azidomethyl substituted 3-O-benzyl estradiol (1-4) and their two estrone analogs (16AABE and 16BABE) were tested for their antiproliferative properties against human gynecological cancer cell lines. The estrones were selected for additional experiments based on their outstanding cell growth-inhibiting activities. Both compounds increased hypodiploid populations of breast cancer cells, and 16AABE elicited cell cycle disturbance as evidenced by flow cytometry. The two analogs substantially increased the rate of tubulin polymerization in vitro. 16AABE and 16BABE inhibited breast cancer cells' migration and invasive ability, as evidenced by wound healing and Boyden chamber assays. Since both estrone analogs exerted remarkable estrogenic activities, as documented by a luciferase reporter gene assay, they can be considered as promising drug candidates for hormone-independent malignancies.


Assuntos
Neoplasias da Mama , Estrona , Humanos , Feminino , Estrona/farmacologia , Estradiol , Aneuploidia , Bioensaio , Neoplasias da Mama/tratamento farmacológico
5.
J Environ Manage ; 348: 119392, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879179

RESUMO

With the development of livestock industry, contaminants such as divalent zinc ions (Zn (Ⅱ)) and estrone are often simultaneously detected in livestock wastewater. Nevertheless, the combined toxicity of these two pollutants on microalgae is still unclear. Moreover, microalgae have the potential for biosorption and bioaccumulation of heavy metals and organic compounds. Thus, this study investigated the joint effects of Zn (Ⅱ) and estrone on microalgae Chlorella sorokiniana, in terms of growth, photosynthetic activity and biomolecules, as well as pollutants removal by algae. Interestingly, a low Zn (Ⅱ) concentration promoted C. sorokiniana growth and photosynthetic activity, while the high concentration experienced inhibition. As the increase of estrone concentration, chlorophyll a content increased continuously to resist the environmental stress. Concurrently, the secretion of extracellular polysaccharides and proteins by algae increased with exposure to Zn (Ⅱ) and estrone, reducing toxicity of pollutants to microalgae. Reactive oxygen species and superoxide dismutase activity increased as the increase of pollutant concentration after 96 h cultivation, but high pollutant concentrations resulted in damage of cells, as proved by increased MDA content. Additionally, C. sorokiniana displayed remarkable removal efficiency for Zn (Ⅱ) and estrone, reaching up to 86.14% and 84.96% respectively. The study provides insights into the biochemical responses of microalgae to pollutants and highlights the potential of microalgae in pollutants removal.


Assuntos
Chlorella , Poluentes Ambientais , Microalgas , Estrona/metabolismo , Estrona/farmacologia , Microalgas/metabolismo , Clorofila A/metabolismo , Clorofila A/farmacologia , Zinco , Água Doce , Poluentes Ambientais/metabolismo , Biomassa
6.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175276

RESUMO

The introduction of a switchable function into the structure of a bioactive compound can endow it with unique capabilities for regulating biological activity under the influence of various types of external stimuli, which makes such hybrid compounds promising objects for photopharmacology, targeted drug delivery and bio-imaging. This work is devoted to the synthesis and study of new spirocyclic derivatives of important human hormones-ß-estradiol and estrone-possessing a wide range of biological activities. The obtained hybrid compounds represent an indoline spiropyrans family, a widely known class of organic photochromic compounds. The structure of the compounds was confirmed by 1H and 13C NMR, IR, HRMS and single-crystal X-ray analysis. The intermolecular interactions in the crystals of spiropyran (3) were defined by Hirshfeld surfaces and 2D fingerprint plots, which were successfully acquired from CrystalExplorer (v21.5). All target hybrids demonstrated pronounced activity in the visible region of the spectrum. The mechanisms of thermal isomerization processes of spiropyrans and their protonated merocyanine forms were studied by DFT methods, which revealed the energetic advantage of the protonation process with the formation of a ß-cisoid CCCH conformer at the first stage and its further isomerization to more stable ß-transoid forms. The proposed mechanism of acidochromic transformation was confirmed by the additional NMR study data that allowed for the detecting of the intermediate CCCH isomer. The study of the short-term cytotoxicity of new spirocyclic derivatives of estrogens and their 2-formyl-precursors was performed on the HeLa cell model. The precursors and spiropyrans differed in toxicity, suggesting their variable applicability in novel anti-cancer technologies.


Assuntos
Estradiol , Estrona , Humanos , Estrona/farmacologia , Células HeLa
7.
Molecules ; 28(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110733

RESUMO

Steroid hormones play a crucial role in several aspects of human life, and steroidogenesis is the process by which hormones are produced from cholesterol using several enzymes that work in concert to obtain the appropriate levels of each hormone at the right time. Unfortunately, many diseases, such as cancer, endometriosis, and osteoporosis as examples, are caused by an increase in the production of certain hormones. For these diseases, the use of an inhibitor to block the activity of an enzyme and, in doing so, the production of a key hormone is a proven therapeutic strategy whose development continues. This account-type article focuses on seven inhibitors (compounds 1-7) and an activator (compound 8) of six enzymes involved in steroidogenesis, namely steroid sulfatase, aldo-keto reductase 1C3, types 1, 2, 3, and 12 of the 17ß-hydroxysteroid dehydrogenases. For these steroid derivatives, three topics will be addressed: (1) Their chemical synthesis from the same starting material, estrone, (2) their structural characterization using nuclear magnetic resonance, and (3) their in vitro or in vivo biological activities. These bioactive molecules constitute potential therapeutic or mechanistic tools that could be used to better understand the role of certain hormones in steroidogenesis.


Assuntos
Estranos , Estrona , Feminino , Humanos , Estrona/farmacologia , Hormônios , 17-Hidroxiesteroide Desidrogenases , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Inibidores Enzimáticos/química
8.
Molecules ; 28(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687086

RESUMO

Cancers utilize sugar residues such as sialic acids (Sia) to improve their ability to survive. Sia presents a variety of functional group alterations, including O-acetylation on the C6 hydroxylated tail. Previously, sialylation has been reported to suppress EGFR activation and increase cancer cell sensitivity to Tyrosine Kinase Inhibitors (TKIs). In this study, we report on the effect of deacetylated Sia on the activity of three novel EGFR-targeting Cucurbitacin-inspired estrone analogs (CIEAs), MMA 294, MMA 321, and MMA 320, in lung and colon cancer cells. Acetylation was modulated by the removal of Sialate O-Acetyltransferase, also known as CAS1 Domain-containing protein (CASD1) gene via CRISPR-Cas9 gene editing. Using a variety of cell-based approaches including MTT cell viability assay, flow cytometry, immunofluorescence assay and in-cell ELISA we observed that deacetylated Sia-expressing knockout cells (1.24-6.49 µM) were highly sensitive to all CIEAs compared with the control cells (8.82-20.97 µM). Apoptosis and varied stage cell cycle arrest (G0/G1 and G2/M) were elucidated as mechanistic modes of action of the CIEAs. Further studies implicated overexpression of CIEAs' cognate protein target, phosphorylated EGFR, in the chemosensitivity of the deacetylated Sia-expressing knockout cells. This observation correlated with significantly decreased levels of key downstream proteins (phosphorylated ERK and mTOR) of the EGFR pathway in knockout cells compared with controls when treated with CIEAs. Collectively, our findings indicate that Sia deacetylation renders lung and colon cancer cells susceptible to EGFR therapeutics and provide insights for future therapeutic interventions.


Assuntos
Neoplasias do Colo , Ácido N-Acetilneuramínico , Estrona/farmacologia , Neoplasias do Colo/tratamento farmacológico , Receptores ErbB , Pulmão
9.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677690

RESUMO

Estradiol (E2) plays an important role in the progression of diseases such as breast cancer and endometriosis. Inhibition of 17ß-hydroxysteroid dehydrogenase type 1 (17ß-HSD1), the enzyme that catalyzes the last step in the biosynthesis of the estrogenic hormone E2, therefore constitutes an interesting approach for the treatment of these two estrogen-dependent diseases. In order to obtain new inhibitors of 17ß-HSD1, the impact of a m-carbamoylphenyloxy group at position three of an estrane nucleus was evaluated by preparing three derivatives of estrone (E1) and E2 using a microwave-assisted synthesis of diaryl ethers. Their inhibitory activity was addressed on two cell lines (T-47D and Z-12) representative of breast cancer and endometriosis, respectively, but unlike T-47D cells, Z-12 cells were not found suitable for testing potential 17ß-HSD1 inhibitors. Thus, the addition of the m-carbamoylphenyl group at C3 of E1 (compound 5) did not increase the inhibition of E1 to E2 transformation by 17ß-HSD1 present in T-47D cells (IC50 = 0.31 and 0.21 µM for 5 and E1, respectively), and this negative effect was more obvious for E2 derivatives 6 and 10 (IC50 = 1.2 and 1.3 µM, respectively). Molecular docking allowed us to identify key interactions with 17ß-HSD1 and to highlight these new inhibitors' actions through an opposite orientation than natural enzyme substrate E1's classical one. Furthermore, molecular modeling experiments explain the better inhibitory activity of E1-ether derivative 5, as opposed to the E2-ether derivatives 6 and 10. Finally, when tested on T-47D and Z-12 cells, compounds 5, 6 and 10 did not stimulate the proliferation of these two estrogen-dependent cell lines. In fact, they reduced it.


Assuntos
17-Hidroxiesteroide Desidrogenases , Neoplasias da Mama , Endometriose , Inibidores Enzimáticos , Feminino , Humanos , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Estradiol , Estrogênios , Estrona/farmacologia , Simulação de Acoplamento Molecular
10.
Biomacromolecules ; 23(6): 2572-2585, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35584062

RESUMO

The estrone ligand is used for modifying nanoparticle surfaces to improve their targeting effect on cancer cell lines. However, to date, there is no common agreement on the ideal linker length to be used for the optimum targeting performance. In this study, we aimed to investigate the impact of poly(poly ethylene glycol methyl ether methacrylate) (PPEGMEMA) linker length on the cellular uptake behavior of polymer-coated upconverting nanoparticles (UCNPs). Different triblock terpolymers, poly(poly (ethylene glycol) methyl ether methacrylate)-block-polymethacrylic acid-block-polyethylene glycol methacrylate phosphate (PPEGMEMAx-b-PMAAy-b-PEGMP3: x = 7, 15, 33, and 80; y = 16, 20, 18, and 18), were synthesized with different polymer linker chain lengths between the surface and the targeting ligand by reversible addition-fragmentation chain transfer polymerization. The estrone ligand was attached to the polymer via specific terminal conjugation. The cellular association of polymer-coated UCNPs with linker chain lengths was evaluated in MCF-7 cells by flow cytometry. Our results showed that the bioactivity of ligand modification is dependent on the length of the polymer linker. The shortest polymer PPEGMEMA7-b-PMAA16-b-PEGMP3 with estrone at the end of the polymer chain was found to have the best cellular association behavior in the estrogen receptor (ER)α-positive expression cell line MCF-7. Additionally, the anticancer drug doxorubicin•HCl was encapsulated in the nanocarrier to evaluate the 2D and 3D cytotoxicity. The results showed that estrone modification could efficiently improve the cellular uptake in ERα-positive expression cell lines and in 3D spheroid models.


Assuntos
Éteres Metílicos , Nanopartículas , Estrona/farmacologia , Humanos , Ligantes , Metacrilatos , Polietilenoglicóis , Polímeros/farmacologia
11.
Bioorg Med Chem ; 76: 117086, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455509

RESUMO

Introducing different functional groups into steroid can bring unexpected changes in biological activity of the steroid. Using estrone as a raw material, through the functional group conversion and modification of the 17-carbonyl, the structural fragments with selenocyano groups were instilled in the form of amide, ester, and oxime ester, respectively, and various 17-substituted estrone selenocyanate derivatives were synthesized. In addition, different 3-substituted estrone selenocyanate derivatives were synthesized by introducing different selenocyanoalkoxy fragments into the 3-position of estrone in the form of alkyl ether. Furthermore, the selenocyano-containing moieties were embedded into the 2-position of estrone by means of amide, affording diverse 2-selenocyanoamide-estrone derivatives. The antiproliferative activities of the target compounds were screened by selecting tumor cell lines related to the expression of human hormones. The results showed that the introduction of selenocyano group into estrone could endow estrone with significant biological activity of inhibiting the proliferation of tumor cells. Structure-activity relationship research showed that the cytotoxicity of 3-selenocyanoalkoxy-estrone was further increased with the extension of alkyl carbon-chain within 8 carbon chain lengths. In addition, the cytotoxicity of the products with selenocyano via the form of amide was stronger than that of ester or ether. Selenocyano moiety instilled at the 2-position of estrone in the form of amide was more cytotoxic than that of 17- or 3-position. Among them, compound 21a has better inhibitory activity on tested tumor cells than positive controls Abiraterone and 2-methoxyestradiol. Research showed that the compound 21c induced programmed apoptosis in Sk-Ov-3 cancer cells, and compound 17d inhibited significantly the growth of human cervical cancer zebrafish xenografts in vivo, offering useful insights into the synthesis of steroid antitumor drugs.


Assuntos
Estrona , Éter , Humanos , Animais , Estrona/farmacologia , Peixe-Zebra , Relação Estrutura-Atividade , Amidas , Ésteres , Carbono
12.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364293

RESUMO

Hybridization of steroids and other pharmacophores often modifies the bioactivity of the parent compounds, improving selectivity and side effect profile. In this study, estradiol and 3'-(un)substituted benzisoxazole moieties were combined into novel molecules by structural integration of their aromatic rings. Simple estrogen starting materials, such as estrone, estradiol and estradiol-3-methylether were used for the multistep transformations. Some of the heterocyclic derivatives were prepared from the estrane precursor by a formylation or Friedel-Crafts acylation-oximation-cyclization sequence, whereas others were obtained by a functional group interconversion strategy. The antiproliferative activities of the synthesized compounds were assessed on various human cervical, breast and prostate cancer cell lines (HeLa, MCF-7, PC3, DU-145) and non-cancerous MRC-5 fibroblast cells. Based on the primary cytotoxicity screens, the most effective cancer-selective compounds were selected, their IC50 values were determined and their apoptosis-inducing potential was evaluated by quantitative real-time PCR. Pharmacological studies revealed a strong structure-function relationship, where derivatives with a hydroxyl group on C-17 exhibited stronger anticancer activity compared to the 17-acetylated counterparts. The present study concludes that novel estradiol-benzisoxazole hybrids exert remarkable cancer cell-specific antiproliferative activity and trigger apoptosis in cancer cells.


Assuntos
Antineoplásicos , Estradiol , Masculino , Humanos , Estradiol/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Estrona/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
13.
Toxicol Appl Pharmacol ; 429: 115704, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474082

RESUMO

Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13α-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13α/ß-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1-overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13α/ß-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13α/ß-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13α-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13α-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [3H]2-bromo-13α-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13α-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Estrona/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Estrona/análogos & derivados , Estrona/metabolismo , Humanos , Moduladores de Transporte de Membrana/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
Bioorg Chem ; 112: 104914, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932771

RESUMO

Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific membrane transporter mediating the cellular uptake of various exo- and endobiotics, including drugs and steroid hormones. Increased uptake of steroid hormones by OATP2B1 may increase tumor proliferation. Therefore, understanding OATP2B1's substrate/inhibitor recognition and inhibition of its function, e.g., in hormone-dependent tumors, would be highly desirable. To identify the crucial structural features that correlate with OATP2B1 inhibition, here we designed modifications at four positions of the estrane skeleton. 13α- or 13ß-estrone phosphonates modified at ring A or ring D were synthesized. Hirao and Cu(I)-catalyzed azide-alkyne click reactions served in the syntheses as key steps. 13ß-Derivatives displayed outstanding OATP2B1 inhibitory action with IC50 values in the nanomolar range (41-87 nM). A BODIPY-13α-estrone conjugate was additionally synthesized, modified at C-3-O of the steroid, containing a four-carbon linker between the triazole moiety and the BODIPY core. The fluorescent conjugate displayed efficient, submicromolar OATP2B1 inhibitory potency. The newly identified inhibitors and the structure-activity relationships specified here promote our understanding about drug recognition of OATP2B1.


Assuntos
Desenho de Fármacos , Estrona/farmacologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Organofosfonatos/farmacologia , Relação Dose-Resposta a Droga , Estrona/síntese química , Estrona/química , Humanos , Estrutura Molecular , Transportadores de Ânions Orgânicos/metabolismo , Organofosfonatos/síntese química , Organofosfonatos/química , Relação Estrutura-Atividade
15.
J Enzyme Inhib Med Chem ; 36(1): 1500-1508, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34227437

RESUMO

Enzymes AKR1C regulate the action of oestrogens, androgens, and progesterone at the pre-receptor level and are also associated with chemo-resistance. The activities of these oestrone halides were investigated on recombinant AKR1C enzymes. The oestrone halides with halogen atoms at both C-2 and C-4 positions (13ß-, 13α-methyl-17-keto halogen derivatives) were the most potent inhibitors of AKR1C1. The lowest IC50 values were for the 13α-epimers 2_2I,4Br and 2_2I,4Cl (IC50, 0.7 µM, 0.8 µM, respectively), both of which selectively inhibited the AKR1C1 isoform. The 13α-methyl-17-keto halogen derivatives 2_2Br and 2_4Cl were the most potent inhibitors of AKR1C2 (IC50, 1.5 µM, 1.8 µM, respectively), with high selectivity for the AKR1C2 isoform. Compound 1_2Cl,4Cl showed the best AKR1C3 inhibition, and it also inhibited AKR1C1 (Ki: AKR1C1, 0.69 µM; AKR1C3, 1.43 µM). These data show that halogenated derivatives of oestrone represent a new class of potent and selective AKR1C inhibitors as lead compounds for further optimisations.


Assuntos
20-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Estrona/farmacologia , 20-Hidroxiesteroide Desidrogenases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrona/análogos & derivados , Estrona/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
J Enzyme Inhib Med Chem ; 36(1): 1931-1937, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34445919

RESUMO

Microwave-assisted phospha-Michael addition reactions were carried out in the 13α-oestrone series. The exocyclic 16-methylene-17-ketones as α,ß-unsaturated ketones were reacted with secondary phosphine oxides as nucleophilic partners. The addition reactions furnished the two tertiary phosphine oxide diastereomers in high yields. The main product was the 16α-isomer. The antiproliferative activities of the newly synthesised organophosphorus compounds against a panel of nine human cancer cell lines were investigated by means of MTT assays. The most potent compound, the diphenylphosphine oxide derivative in the 3-O-methyl-13α-oestrone series (9), exerted selective cell growth-inhibitory activity against UPCI-SCC-131 and T47D cell lines with low micromolar IC50 values. Moreover, it displayed good tumour selectivity property determined against non-cancerous mouse fibroblast cells.


Assuntos
Antineoplásicos/química , Estrona/síntese química , Estrona/farmacologia , Compostos Organofosforados/química , Fosfinas/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/citologia , Humanos , Camundongos , Micro-Ondas , Modelos Moleculares , Relação Estrutura-Atividade
17.
J Enzyme Inhib Med Chem ; 36(1): 895-902, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33771084

RESUMO

Facile syntheses of 3-O-carbamoyl, -sulfamoyl, or -pivaloyl derivatives of 13α-oestrone and its 17-deoxy counterpart have been carried out. Microwave-induced, Ni-catalysed Suzuki-Miyaura couplings of the newly synthesised phenol esters with phenylboronic acid afforded 3-deoxy-3-phenyl-13α-oestrone derivatives. The carbamate and pivalate esters proved to be suitable for regioselective arylations. 2-(4-Substituted) phenyl derivatives were synthesised via Pd-catalysed, microwave-assisted C-H activation reactions. An efficient, one-pot, tandem methodology was elaborated for the introduction of the carbamoyl or pivaloyl group followed by regioselective C-2-arylation and subsequent removal of the directing group. The antiproliferative properties of the novel 13α-oestrone derivatives were evaluated in vitro on five human adherent cancer cell lines of gynaecological origin. 3-Sulfamate derivatives displayed substantial cell growth inhibitory potential against certain cell lines. The newly identified antiproliferative compounds having hormonally inactive core might be promising candidates for the design of more active anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Estrona/farmacologia , Elementos de Transição/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrona/análogos & derivados , Estrona/química , Humanos , Camundongos , Micro-Ondas , Estrutura Molecular , Células NIH 3T3 , Relação Estrutura-Atividade
18.
J Enzyme Inhib Med Chem ; 36(1): 58-67, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33121276

RESUMO

2- or 4-Substituted 3-N-benzyltriazolylmethyl-13α-oestrone derivatives were synthesised via bromination of ring A and subsequent microwave-assisted, Pd-catalysed C(sp2)-P couplings. The antiproliferative activities of the newly synthesised brominated and phosphonated compounds against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231) were investigated by means of MTT assays. The most potent compound, the 3-N-benzyltriazolylmethyl-4-bromo-13α-oestrone derivative exerted substantial selective cell growth-inhibitory activity against A2780 cell line with a submicromolar IC50 value. Computational calculations reveal strong interactions of the 4-bromo derivative with both colchicine and taxoid binding sites of tubulin. Disturbance of tubulin function has been confirmed by photometric polymerisation assay.


Assuntos
Antineoplásicos/farmacologia , Estrona/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrona/análogos & derivados , Estrona/química , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Células NIH 3T3 , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
19.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361004

RESUMO

This article reviews evidence suggesting that a common mechanism of initiation leads to the development of many prevalent types of cancer. Endogenous estrogens, in the form of catechol estrogen-3,4-quinones, play a central role in this pathway of cancer initiation. The catechol estrogen-3,4-quinones react with specific purine bases in DNA to form depurinating estrogen-DNA adducts that generate apurinic sites. The apurinic sites can then lead to cancer-causing mutations. The process of cancer initiation has been demonstrated using results from test tube reactions, cultured mammalian cells, and human subjects. Increased amounts of estrogen-DNA adducts are found not only in people with several different types of cancer but also in women at high risk for breast cancer, indicating that the formation of adducts is on the pathway to cancer initiation. Two compounds, resveratrol, and N-acetylcysteine, are particularly good at preventing the formation of estrogen-DNA adducts in humans and are, thus, potential cancer-prevention compounds.


Assuntos
Acetilcisteína/farmacologia , Carcinogênese/efeitos dos fármacos , Estradiol/farmacologia , Estrona/farmacologia , Quinonas/farmacologia , Resveratrol/farmacologia , Animais , Antioxidantes/farmacologia , Carcinogênese/genética , Adutos de DNA , Estradiol/toxicidade , Estrogênios/farmacologia , Estrogênios/toxicidade , Estrona/toxicidade , Humanos , Quinonas/toxicidade
20.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064380

RESUMO

The interest in the introduction of the oxime group in molecules aiming to improve their biological effects is increasing. This work aimed to develop new steroidal oximes of the estrane series with potential antitumor interest. For this, several oximes were synthesized by reaction of hydroxylamine with the 17-ketone of estrone derivatives. Then, their cytotoxicity was evaluated in six cell lines. An estrogenicity assay, a cell cycle distribution analysis and a fluorescence microscopy study with Hoechst 3358 staining were performed with the most promising compound. In addition, molecular docking studies against estrogen receptor α, steroid sulfatase, 17ß-hydroxysteroid dehydrogenase type 1 and ß-tubulin were also accomplished. The 2-nitroestrone oxime showed higher cytotoxicity than the parent compound on MCF-7 cancer cells. Furthermore, the oximes bearing halogen groups in A-ring evidenced selectivity for HepaRG cells. Remarkably, the Δ9,11-estrone oxime was the most cytotoxic and arrested LNCaP cells in the G2/M phase. Fluorescence microscopy studies showed the presence of condensed DNA typical of prophase and condensed and fragmented nuclei characteristic of apoptosis. However, this oxime promoted the proliferation of T47-D cells. Interestingly, molecular docking studies estimated a strong interaction between Δ9,11-estrone oxime and estrogen receptor α and ß-tubulin, which may account for the described effects.


Assuntos
Simulação de Acoplamento Molecular , Oximas/síntese química , Oximas/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Estrona/síntese química , Estrona/química , Estrona/farmacologia , Fluoruracila/farmacologia , Humanos , Concentração Inibidora 50 , Oximas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA