RESUMO
Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.
Assuntos
Fator de Transcrição E2F1/metabolismo , Glicoproteínas de Membrana/metabolismo , Poro Nuclear/fisiologia , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Carcinogênese , Núcleo Celular/metabolismo , Proliferação de Células , Fator de Transcrição GATA2/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Membrana Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares , Transdução de SinaisRESUMO
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.
Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Doença de Hirschsprung/genética , Proteínas Proto-Oncogênicas c-ret/genética , Alelos , Animais , Sítios de Ligação , Modelos Animais de Doenças , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Trato Gastrointestinal/embriologia , Humanos , Camundongos , Camundongos Transgênicos , RNA não Traduzido/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismoRESUMO
During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.
Assuntos
Transdiferenciação Celular , Fatores de Transcrição , Trofoblastos , Humanos , Trofoblastos/citologia , Trofoblastos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Blastocisto/metabolismo , Blastocisto/citologia , Gravidez , Diferenciação CelularRESUMO
Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Transcrição GATA2/metabolismo , Redes Reguladoras de Genes , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Fator de Transcrição GATA2/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Proteínas ras/genéticaRESUMO
The underlying mechanism(s) by which the PML::RARA fusion protein initiates acute promyelocytic leukemia is not yet clear. We defined the genomic binding sites of PML::RARA in primary mouse and human hematopoietic progenitor cells with V5-tagged PML::RARA, using anti-V5-PML::RARA chromatin immunoprecipitation sequencing and CUT&RUN approaches. Most genomic PML::RARA binding sites were found in regions that were already chromatin-accessible (defined by ATAC-seq) in unmanipulated, wild-type promyelocytes, suggesting that these regions are "open" prior to PML::RARA expression. We found that GATA binding motifs, and the direct binding of the chromatin "pioneering factor" GATA2, were significantly enriched near PML::RARA binding sites. Proximity labeling studies revealed that PML::RARA interacts with ~250 proteins in primary mouse hematopoietic cells; GATA2 and 33 others require PML::RARA binding to DNA for the interaction to occur, suggesting that binding to their cognate DNA target motifs may stabilize their interactions. In the absence of PML::RARA, Gata2 overexpression induces many of the same epigenetic and transcriptional changes as PML::RARA. These findings suggested that PML::RARA may indirectly initiate its transcriptional program by activating Gata2 expression: Indeed, we demonstrated that inactivation of Gata2 prior to PML::RARA expression prevented its ability to induce self-renewal. These data suggested that GATA2 binding creates accessible chromatin regions enriched for both GATA and Retinoic Acid Receptor Element motifs, where GATA2 and PML::RARA can potentially bind and interact with each other. In turn, PML::RARA binding to DNA promotes a feed-forward transcriptional program by positively regulating Gata2 expression. Gata2 may therefore be required for PML::RARA to establish its transcriptional program.
Assuntos
Fator de Transcrição GATA2 , Células-Tronco Hematopoéticas , Proteínas de Fusão Oncogênica , Animais , Humanos , Camundongos , Sítios de Ligação , Autorrenovação Celular , Cromatina/metabolismo , DNA/metabolismo , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Ligação Proteica , Receptor alfa de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/genéticaRESUMO
ABSTRACT: Long noncoding RNAs (lncRNAs) are extensively expressed in eukaryotic cells and have been revealed to be important for regulating cell differentiation. Many lncRNAs have been found to regulate erythroid differentiation in the mouse. However, given the low sequence conservation of lncRNAs between mouse and human, our understanding of lncRNAs in human erythroid differentiation remains incomplete. lncRNAs are often transcribed opposite to protein coding genes and regulate their expression. Here, we characterized a human erythrocyte-expressed lncRNA, GATA2AS, which is transcribed opposite to erythroid transcription regulator GATA2. GATA2AS is a 2080-bp long, primarily nucleus-localized noncoding RNA that is expressed in erythroid progenitor cells and decreases during differentiation. Knockout of GATA2AS in human HUDEP2 erythroid progenitor cells using CRISPR-Cas9 genome editing to remove the transcription start site accelerated erythroid differentiation and dysregulated erythroblast gene expression. We identified GATA2AS as a novel GATA2 and HBG activator. Chromatin isolation by RNA purification showed that GATA2AS binds to thousands of genomic sites and colocalizes at a subset of sites with erythroid transcription factors including LRF and KLF1. RNA pulldown and RNA immunoprecipitation confirmed interaction between GATA2AS and LRF and KLF1. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that knockout of GATA2AS reduces binding of these transcription factors genome wide. Assay for transposase-accessible chromatin sequencing (ATAC-seq) and H3K27ac ChIP-seq showed that GATA2AS is essential to maintain the chromatin regulatory landscape during erythroid differentiation. Knockdown of GATA2AS in human primary CD34+ cells mimicked results in HUDEP2 cells. Overall, our results implicate human-specific lncRNA GATA2AS as a regulator of erythroid differentiation by influencing erythroid transcription factor binding and the chromatin regulatory landscape.
Assuntos
Cromatina , Eritropoese , Fator de Transcrição GATA2 , RNA Longo não Codificante , Humanos , Eritropoese/genética , RNA Longo não Codificante/genética , Cromatina/metabolismo , Cromatina/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/citologiaRESUMO
Mast cells are important for eradication of intestinal nematodes; however, their precise mechanisms of action have remained elusive, especially in the early phase of infection. We found that Spi-B-deficient mice had increased numbers of mast cells and rapidly expelled the Heligmosomoides polygyrus (Hp) nematode. This was accompanied by induction of interleukin-13 (IL-13)-producing group 2 innate lymphoid cells (ILC2) and goblet cell hyperplasia. Immediately after Hp infection, mast cells were rapidly activated to produce IL-33 in response to ATP released from apoptotic intestinal epithelial cells. In vivo inhibition of the P2X7 ATP receptor rendered the Spi-B-deficient mice susceptible to Hp, concomitant with elimination of mast cell activation and IL-13-producing ILC2 induction. These results uncover a previously unknown role for mast cells in innate immunity in that activation of mast cells by ATP orchestrates the development of a protective type 2 immune response, in part by producing IL-33, which contributes to ILC2 activation.
Assuntos
Helmintíase/imunologia , Helmintíase/parasitologia , Helmintos/imunologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Mastócitos/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Celular , Diferenciação Celular , Modelos Animais de Doenças , Resistência à Doença/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Expressão Gênica , Helmintíase/genética , Imunofenotipagem , Interleucina-33/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/metabolismo , Masculino , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Chemotherapy is still the main therapeutic strategy for gastric cancer (GC). However, most patients eventually acquire multidrug resistance (MDR). Hyperactivation of the EGFR signaling pathway contributes to MDR by promoting cancer cell proliferation and inhibiting apoptosis. We previously identified the secreted protein CGA as a novel ligand of EGFR and revealed a CGA/EGFR/GATA2 positive feedback circuit that confers MDR in GC. Herein, we outline a microRNA-based treatment approach for MDR reversal that targets both CGA and GATA2. We observed increased expression of CGA and GATA2 and increased activation of EGFR in GC samples. Bioinformatic analysis revealed that miR-107 could simultaneously target CGA and GATA2, and the low expression of miR-107 was correlated with poor prognosis in GC patients. The direct interactions between miR-107 and CGA or GATA2 were validated by luciferase reporter assays and Western blot analysis. Overexpression of miR-107 in MDR GC cells increased their susceptibility to chemotherapeutic agents, including fluorouracil, adriamycin, and vincristine, in vitro. Notably, intratumor injection of the miR-107 prodrug enhanced MDR xenograft sensitivity to chemotherapies in vivo. Molecularly, targeting CGA and GATA2 with miR-107 inhibited EGFR downstream signaling, as evidenced by the reduced phosphorylation of ERK and AKT. These results suggest that miR-107 may contribute to the development of a promising therapeutic approach for the treatment of MDR in GC.
Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Fator de Transcrição GATA2 , MicroRNAs , Neoplasias Gástricas , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Humanos , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Animais , Resistência a Múltiplos Medicamentos/genética , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/efeitos dos fármacos , Feminino , Retroalimentação Fisiológica , Camundongos Nus , Masculino , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The midbrain reticular formation (MRF) is a mosaic of diverse GABAergic and glutamatergic neurons that have been associated with a variety of functions, including sleep regulation. However, the molecular characteristics and development of MRF neurons are poorly understood. As the transcription factor, Gata2 is required for the development of all GABAergic neurons derived from the embryonic mouse midbrain, we hypothesized that the genes expressed downstream of Gata2 could contribute to the diversification of GABAergic neuron subtypes in this brain region. Here, we show that Gata2 is required for the expression of several GABAergic lineage-specific transcription factors, including Nkx2-2 and Skor2, which are co-expressed in a restricted group of post-mitotic GABAergic precursors in the MRF. Both Gata2 and Nkx2-2 function is required for Skor2 expression in GABAergic precursors. In the adult mouse and rat midbrain, Nkx2-2-and Skor2-expressing GABAergic neurons locate at the boundary of the ventrolateral periaqueductal gray and the MRF, an area containing REM-off neurons regulating REM sleep. In addition to the characteristic localization, Skor2+ cells increase their activity upon REM-sleep inhibition, send projections to the dorsolateral pons, a region associated with sleep control, and are responsive to orexins, consistent with the known properties of midbrain REM-off neurons.
Assuntos
Neurônios GABAérgicos , Sono REM , Animais , Neurônios GABAérgicos/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Proteína Homeobox Nkx-2.2/metabolismo , Mesencéfalo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Sono/fisiologia , Sono REM/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA , Neuroblastoma , Humanos , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismoRESUMO
Among eutherian (placental) mammals, placental embedding into the maternal endometrium exhibits great differences, from being deeply invasive (e.g., humans) to noninvasive (e.g., cattle). The degree of invasion of placental trophoblasts is positively correlated with the rate of cancer malignancy. Previously, we have shown that fibroblasts from different species offer different levels of resistance to the invading trophoblasts as well as to cancer cell invasion. Here we present a comparative genomic investigation revealing cis-regulatory elements underlying these interspecies differences in invasibility. We identify transcription factors that regulate proinvasibility and antiinvasibility genes in stromal cells. Using an in vitro invasibility assay combined with CRISPR-Cas9 gene knockout, we found that the transcription factors GATA2 and TFDP1 strongly influence the invasibility of endometrial and skin fibroblasts. This work identifies genomic mechanisms explaining species differences in stromal invasibility, paving the way to therapies targeting stromal characteristics to regulate placental invasion, wound healing, and cancer dissemination.
Assuntos
Endométrio/metabolismo , Trofoblastos/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Endométrio/patologia , Feminino , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Técnicas de Inativação de Genes , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator de Transcrição DP1/metabolismo , Trofoblastos/patologiaRESUMO
Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.
Assuntos
Fator de Transcrição GATA2 , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Ubiquitina-Proteína Ligases , Humanos , Masculino , Antagonistas de Androgênios/uso terapêutico , Androgênios , Linhagem Celular Tumoral , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
IMPORTANCE: Hepatitis B virus (HBV) spliced variants are associated with viral persistence or pathogenicity. Hepatitis B doubly spliced protein (HBDSP), which has been previously reported as a pleiotropic transactivator protein, can potentially serve as an HBV virulence factor. However, the underlying mechanisms of HBDSP in HBV-associated liver diseases remain to be elucidated. In this study, we revealed that HBDSP promotes cellular apoptosis and induces wt-p53-dependent apoptotic signaling pathway in wt-p53 hepatocellular cells by transactivating p53 transcription, and increases the release of HBV progeny. Therefore, HBDSP may promote the HBV particles release through wt-p53-dependent hepatocellular apoptosis. Our findings suggest that blocking HBDSP-induced wt-p53-dependent apoptosis might have therapeutic values for chronic hepatitis B.
Assuntos
Apoptose , Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/virologia , Fator de Transcrição GATA2/metabolismo , Hepatite B/complicações , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Neoplasias Hepáticas/virologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição YY1/metabolismoRESUMO
Endometrial cancer (EC) is a reproductive system disease that occurs in perimenopausal and postmenopausal women. However, its etiology is unclear. Melatonin (MT) has been identified as a therapeutic agent for EC; however, its exact mechanism remains unclear. In the present study, we determined that GATA-binding protein 2 (GATA2) is expressed at low levels in EC and regulated by MT. MT upregulates the expression of GATA2 through MT receptor 1A (MTNR1A), whereas GATA2 can promote the expression of MTNR1A by binding to its promoter region. In addition, in vivo and in vitro experiments showed that MT inhibited the proliferation and metastasis of EC cells by upregulating GATA2 expression. The protein kinase B (AKT) pathway was also affected. In conclusion, these findings suggest that MT and GATA2 play significant roles in EC development.
Assuntos
Neoplasias do Endométrio , Melatonina , Humanos , Feminino , Melatonina/farmacologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Proliferação de Células , Linhagem Celular TumoralRESUMO
Most patients with acute promyelocytic leukemia (APL) can be cured with combined all-trans retinoic acid (ATRA) and arsenic trioxide therapy, which induces the destruction of PML-RARA, the initiating fusion protein for this disease. However, the underlying mechanisms by which PML-RARA initiates and maintains APL cells are still not clear. Therefore, we identified genes that are dysregulated by PML-RARA in mouse and human APL cells and prioritized GATA2 for functional studies because it is highly expressed in preleukemic cells expressing PML-RARA, its high expression persists in transformed APL cells, and spontaneous somatic mutations of GATA2 occur during APL progression in mice and humans. These and other findings suggested that GATA2 may be upregulated to thwart the proliferative signal generated by PML-RARA and that its inactivation by mutation (and/or epigenetic silencing) may accelerate disease progression in APL and other forms of acute myeloid leukemia (AML). Indeed, biallelic knockout of Gata2 with CRISPR/Cas9-mediated gene editing increased the serial replating efficiency of PML-RARA-expressing myeloid progenitors (as well as progenitors expressing RUNX1-RUNX1T1, or deficient for Cebpa), increased mouse APL penetrance, and decreased latency. Restoration of Gata2 expression suppressed PML-RARA-driven aberrant self-renewal and leukemogenesis. Conversely, addback of a mutant GATA2R362G protein associated with APL and AML minimally suppressed PML-RARA-induced aberrant self-renewal, suggesting that it is a loss-of-function mutation. These studies reveal a potential role for Gata2 as a tumor suppressor in AML and suggest that restoration of its function (when inactivated) may provide benefit for AML patients.
Assuntos
Fator de Transcrição GATA2/genética , Leucemia Promielocítica Aguda/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Progressão da Doença , Fator de Transcrição GATA2/metabolismo , Regulação Leucêmica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Camundongos , MutaçãoRESUMO
Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.
Assuntos
Deficiência de GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Criança , Humanos , Camundongos , Animais , Deficiência de GATA2/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/patologia , Células-Tronco Hematopoéticas/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismoRESUMO
In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.
Assuntos
Diferenciação Celular/fisiologia , Isoenzimas/metabolismo , Troca Materno-Fetal/fisiologia , Placenta/metabolismo , Proteína Quinase C/metabolismo , Trofoblastos/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Fator de Transcrição GATA2/metabolismo , Humanos , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , PPAR gama/metabolismo , Placenta/citologia , Placentação/fisiologia , Gravidez , Proteína Quinase C/genética , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Trofoblastos/citologiaRESUMO
This study sought to determine whether mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) carrying microRNA-378a-3p (miR-378a-3p) could affect the pathogenesis of inflammatory bowel disease (IBD) by regulating the GATA-binding protein 2 (GATA2)/aquaporin-4 (AQP4)/peroxisome proliferator-activated receptor α (PPAR-α) axis. Initially, colon mucosa biopsy tissues were harvested from healthy controls and patients with IBD for qRT-PCR and immunohistochemistry analysis. EVs harvested from MSCs and lipopolysaccharide (LPS) were used to stimulate the M064 cells to establish an in vitro inflammation cell model. Besides, 2,4,6-trinitrobenzene sulfonic acid intracolon administration was performed to establish in vivo IBD mouse models. After loss- and gain-of-function assays, the regulatory role of MSCs-derived EVs loaded with manipulated miR-378a-3p in IBD in relation to GATA2/AQP4/PPAR-α were explored. Upregulation of GATA2 was identified in the colon tissue of IBD patients. GATA2, which was a target gene of miR-378a-3p, transcriptionally upregulated AQP4. After silencing of GATA2, LPS-induced apoptosis of M064 cells was reduced by the downregulation of AQP4. Decreased AQP4 contributed to PPAR-α pathway inactivation and weakened the LPS-induced apoptosis of M064 cells. MSCs-EVs delivering miR-378a-3p suppressed the GATA2/AQP4/PPAR-α pathway, which reduced LPS-induced apoptosis of M064 cells and the occurrence of IBD in mice. Altogether, the current study illustrated that MSCs-EVs transfer miR-378a-3p to reduce the GATA2 expression, which downregulates AQP4 to block the PPAR-α signalling pathway, thus suppressing the occurrence of IBD.
Assuntos
Vesículas Extracelulares , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , MicroRNAs , Animais , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Lipopolissacarídeos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismoRESUMO
Mutations in the transcription factor GATA2 cause lymphedema. GATA2 is necessary for the development of lymphatic valves and lymphovenous valves, and for the patterning of lymphatic vessels. Here, we report that GATA2 is not necessary for valvular endothelial cell (VEC) differentiation. Instead, GATA2 is required for VEC maintenance and morphogenesis. GATA2 is also necessary for the expression of the cell junction molecules VE-cadherin and claudin 5 in lymphatic vessels. We identified miR-126 as a target of GATA2, and miR-126-/- embryos recapitulate the phenotypes of mice lacking GATA2. Primary human lymphatic endothelial cells (HLECs) lacking GATA2 (HLECΔGATA2) have altered expression of claudin 5 and VE-cadherin, and blocking miR-126 activity in HLECs phenocopies these changes in expression. Importantly, overexpression of miR-126 in HLECΔGATA2 significantly rescues the cell junction defects. Thus, our work defines a new mechanism of GATA2 activity and uncovers miR-126 as a novel regulator of mammalian lymphatic vascular development.
Assuntos
Células Endoteliais/metabolismo , Fator de Transcrição GATA2/metabolismo , MicroRNAs/metabolismo , Mutação , Angiopoietina-2/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Claudina-5/metabolismo , Família de Proteínas EGF/metabolismo , Endotélio Vascular/metabolismo , Feminino , Deleção de Genes , Humanos , Vasos Linfáticos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-SeqRESUMO
Specification of neurons in the spinal cord relies on extrinsic and intrinsic signals, which in turn are interpreted by expression of transcription factors. V2 interneurons develop from the ventral aspects of the spinal cord. We report here a novel neuronal V2 subtype, named V2s, in zebrafish embryos. Formation of these neurons depends on the transcription factors sox1a and sox1b. They develop from common gata2a- and gata3-dependent precursors co-expressing markers of V2b and V2s interneurons. Chemical blockage of Notch signalling causes a decrease in V2s and an increase in V2b cells. Our results are consistent with the existence of at least two types of precursor arranged in a hierarchical manner in the V2 domain. V2s neurons grow long ipsilateral descending axonal projections with a short branch at the ventral midline. They acquire a glycinergic neurotransmitter type during the second day of development. Unilateral ablation of V2s interneurons causes a delay in touch-provoked escape behaviour, suggesting that V2s interneurons are involved in fast motor responses.