Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Cell ; 149(7): 1549-64, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726441

RESUMO

Secretory fibroblast growth factors (FGFs) and their receptors are known for their regulatory function in the early stages of neural development. FGF13, a nonsecretory protein of the FGF family, is expressed in cerebral cortical neurons during development and is a candidate gene for syndromal and nonspecific forms of X-chromosome-linked mental retardation (XLMR). However, its function during development remains unclear. We show that FGF13 acts intracellularly as a microtubule-stabilizing protein required for axon and leading process development and neuronal migration in the cerebral cortex. FGF13 is enriched in axonal growth cones and interacts directly with microtubules. Furthermore, FGF13 polymerizes tubulins and stabilizes microtubules. The loss of FGF13 impairs neuronal polarization and increases the branching of axons and leading processes. Genetic deletion of FGF13 in mice results in neuronal migration defects in both the neocortex and the hippocampus. FGF13-deficient mice also exhibit weakened learning and memory, which is correlated to XLMR patients' intellectual disability.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Movimento Celular , Polaridade Celular , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Cones de Crescimento/metabolismo , Hipocampo/citologia , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Dados de Sequência Molecular , Polimerização , Tubulina (Proteína)/metabolismo
2.
Nat Rev Mol Cell Biol ; 14(3): 166-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23403721

RESUMO

Fibroblast growth factors (FGFs) mediate a broad range of functions in both the developing and adult organism. The accumulated wealth of structural information on the FGF signalling pathway has begun to unveil the underlying molecular mechanisms that modulate this system to generate a myriad of distinct biological outputs in development, tissue homeostasis and metabolism. At the ligand and receptor level, these mechanisms include alternative splicing of the ligand (FGF8 subfamily) and the receptor (FGFR1-FGFR3), ligand homodimerization (FGF9 subfamily), site-specific proteolytic cleavage of the ligand (FGF23), and interaction of the ligand and the receptor with heparan sulphate cofactor and Klotho co-receptor.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Processamento Alternativo , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/química , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Proteínas Klotho , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
3.
Nature ; 553(7689): 501-505, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342135

RESUMO

Canonical fibroblast growth factors (FGFs) activate FGF receptors (FGFRs) through paracrine or autocrine mechanisms in a process that requires cooperation with heparan sulfate proteoglycans, which function as co-receptors for FGFR activation. By contrast, endocrine FGFs (FGF19, FGF21 and FGF23) are circulating hormones that regulate critical metabolic processes in a variety of tissues. FGF19 regulates bile acid synthesis and lipogenesis, whereas FGF21 stimulates insulin sensitivity, energy expenditure and weight loss. Endocrine FGFs signal through FGFRs in a manner that requires klothos, which are cell-surface proteins that possess tandem glycosidase domains. Here we describe the crystal structures of free and ligand-bound ß-klotho extracellular regions that reveal the molecular mechanism that underlies the specificity of FGF21 towards ß-klotho and demonstrate how the FGFR is activated in a klotho-dependent manner. ß-Klotho serves as a primary 'zip code'-like receptor that acts as a targeting signal for FGF21, and FGFR functions as a catalytic subunit that mediates intracellular signalling. Our structures also show how the sugar-cutting enzyme glycosidase has evolved to become a specific receptor for hormones that regulate metabolic processes, including the lowering of blood sugar levels. Finally, we describe an agonistic variant of FGF21 with enhanced biological activity and present structural insights into the potential development of therapeutic agents for diseases linked to endocrine FGFs.


Assuntos
Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Transdução de Sinais , Sítios de Ligação , Cristalografia por Raios X , Espaço Extracelular/metabolismo , Fator de Crescimento de Fibroblastos 23 , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Células HEK293 , Humanos , Proteínas Klotho , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Especificidade por Substrato
4.
Nature ; 553(7689): 461-466, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342138

RESUMO

The ageing suppressor α-klotho binds to the fibroblast growth factor receptor (FGFR). This commits FGFR to respond to FGF23, a key hormone in the regulation of mineral ion and vitamin D homeostasis. The role and mechanism of this co-receptor are unknown. Here we present the atomic structure of a 1:1:1 ternary complex that consists of the shed extracellular domain of α-klotho, the FGFR1c ligand-binding domain, and FGF23. In this complex, α-klotho simultaneously tethers FGFR1c by its D3 domain and FGF23 by its C-terminal tail, thus implementing FGF23-FGFR1c proximity and conferring stability. Dimerization of the stabilized ternary complexes and receptor activation remain dependent on the binding of heparan sulfate, a mandatory cofactor of paracrine FGF signalling. The structure of α-klotho is incompatible with its purported glycosidase activity. Thus, shed α-klotho functions as an on-demand non-enzymatic scaffold protein that promotes FGF23 signalling.


Assuntos
Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/química , Glucuronidase/metabolismo , Comunicação Parácrina , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação/genética , Líquidos Corporais/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Glucuronidase/genética , Heparitina Sulfato/metabolismo , Humanos , Proteínas Klotho , Ligantes , Masculino , Camundongos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Solubilidade
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 269-274, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38557379

RESUMO

OBJECTIVES: To observe the correlation between growth impairment induced by long-term oral glucocorticoids (GC) therapy and the ratio of FGF23/Klotho in children with primary nephrotic syndrome (PNS). METHODS: A prospective study was conducted on 56 children with GC-sensitive PNS who had discontinued GC therapy for more than 3 months and revisited the Department of Pediatrics of the First Affiliated Hospital of Henan University of Traditional Chinese Medicine between June 2022 and December 2022. After monitoring qualitative and quantitative urine protein levels upon admission, the children with proteinuria relapse were treated with GC (GC group; n=29), while those without relapse did not receive GC treatment (non-GC group; n=27). In addition, 29 healthy children aged 3 to prepuberty were selected as the control group. Height, bone age, growth rate, and the FGF23/Klotho ratio were compared among the groups. The correlations of the FGF23/Klotho ratio with height, bone age, and growth rate were analyzed. RESULTS: The FGF23/Klotho ratio in the GC group was significantly higher than that in the non-GC group after 1 month of GC therapy (P<0.05), and the height and bone age growth rates within 6 months were lower than those in the non-GC group (P<0.05). Correlation analysis showed significant negative correlations between the FGF23/Klotho ratio after 1 month of treatment and the growth rates of height and bone age within 6 months in children with PNS (r=-0.356 and -0.436, respectively; P<0.05). CONCLUSIONS: The disturbance in FGF23/Klotho homeostasis is one of the mechanisms underlying the growth impairment caused by long-term oral GC therapy.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Glucocorticoides , Glucuronidase , Transtornos do Crescimento , Proteínas Klotho , Criança , Humanos , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Estudos Prospectivos , Recidiva , Proteínas Klotho/química , Proteínas Klotho/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23/química , Fator de Crescimento de Fibroblastos 23/efeitos dos fármacos , Transtornos do Crescimento/induzido quimicamente
6.
Proc Natl Acad Sci U S A ; 117(46): 29025-29034, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144503

RESUMO

As a physiological regulator of bile acid homeostasis, FGF19 is also a potent insulin sensitizer capable of normalizing plasma glucose concentration, improving lipid profile, ameliorating fatty liver disease, and causing weight loss in both diabetic and diet-induced obesity mice. There is therefore a major interest in developing FGF19 as a therapeutic agent for treating type 2 diabetes and cholestatic liver disease. However, the known tumorigenic risk associated with prolonged FGF19 administration is a major hurdle in realizing its clinical potential. Here, we show that nonmitogenic FGF19 variants that retain the full beneficial glucose-lowering and bile acid regulatory activities of WT FGF19 (FGF19WT) can be engineered by diminishing FGF19's ability to induce dimerization of its cognate FGF receptors (FGFR). As proof of principle, we generated three such variants, each with a partial defect in binding affinity to FGFR (FGF19ΔFGFR) and its coreceptors, i.e., ßklotho (FGF19ΔKLB) or heparan sulfate (FGF19ΔHBS). Pharmacological assays in WT and db/db mice confirmed that these variants incur a dramatic loss in mitogenic activity, yet are indistinguishable from FGF19WT in eliciting glycemic control and regulating bile acid synthesis. This approach provides a robust framework for the development of safer and more efficacious FGF19 analogs.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mitógenos/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2 , Dimerização , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/farmacologia , Engenharia Genética , Glucose/metabolismo , Células Hep G2 , Homeostase , Humanos , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
7.
Nat Chem Biol ; 16(3): 351-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932717

RESUMO

Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3's structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.


Assuntos
Fatores de Crescimento de Fibroblastos/química , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Células CHO , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos , Isoenzimas/metabolismo , Lectinas/metabolismo , N-Acetilgalactosaminiltransferases/fisiologia , Treonina/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
8.
FASEB J ; 35(2): e21286, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484478

RESUMO

Human Fibroblast Growth Factor 19 (FGF19) and mouse ortholog Fgf15 play similar roles in liver regeneration and metabolism via the activation of Fgfr4/b-klotho (Klb). Monomeric FGF19 and dimeric Fgf15 are both necessary for liver regeneration and proper bile acid (BA) metabolism. FGF19 elicits stronger effects than Fgf15 on glucose and fatty acid metabolism and only FGF19 induces hepatocellular carcinoma (HCC). However, inhibiting FGF19/FGFR4 signaling in HCC patients is associated with toxicity due to elevated BA levels. Here, we examine the structure/function relationship in Fgf15/FGF19 to better understand the molecular basis for their distinct functions. We demonstrate that FGF19 is a more effective activator of Fgfr4 and of downstream signaling (Erk, Plcg1) than Fgf15. Furthermore, we use site-directed mutagenesis to show that the presence or absence of an unpaired cysteine in Fgf15/19 modulates ligand structure and determines the ability of these molecules to induce hepatocyte proliferation, with monomers being more potent activators. Consistent with these findings, an engineered dimeric variant of FGF19 is less effective than wild-type FGF19 at inducing liver growth in cooperation with the Wnt-enhancer RSPO3. In contrast to effects on proliferation, monomeric and dimeric ligands equally inhibited the expression of Cyp7a1, the enzyme catalyzing the rate limiting step in BA production. Thus, structure and function of Fgf15/FGF19 are intricately linked, explaining why FGF19, but not Fgf15, induces liver tumorigenesis. Our data provide insight into FGF19/FGFR4 signaling and may inform strategies to target this pathway while limiting on-target toxicity due to dysregulation of BA production or induction of hepatocyte proliferation.


Assuntos
Proliferação de Células , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Multimerização Proteica , Transdução de Sinais , Motivos de Aminoácidos , Animais , Colesterol 7-alfa-Hidroxilase/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Masculino , Camundongos , Mutação , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Trombospondinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(16): 7819-7824, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944224

RESUMO

The three members of the endocrine fibroblast growth factor (FGF) family designated FGF19, FGF21, and FGF23 mediate their pleiotropic cellular effects by binding to and activating binary complexes composed of an FGF receptor (FGFR) bound to either α-Klotho or ß-Klotho receptors. Structural analyses of ligand-occupied Klotho extracellular domains have provided important insights concerning mechanisms underlying the binding specificities of FGF21 and FGF23 to ß-Klotho or α-Klotho, respectively. They have also demonstrated that Klotho proteins function as primary high-affinity receptors while FGFRs function as the catalytic subunits that mediate intracellular signaling. Here we describe the crystal structure the C-terminal tail of FGF19 (FGF19CT) bound to sKLB and demonstrate that FGF19CT and FGF21CT bind to the same binding site on sKLB, via a multiturn D-P motif to site 1 and via a S-P-S motif to the pseudoglycoside hydrolase region (site 2). Binding affinities to sKLB and cellular stimulatory activities of FGF19CT, FGF21CT, and a variety of chimeric mutants to cells expressing ß-Klotho together with FGFR1c or FGFR4 were also analyzed. These experiments as well as detailed comparison of the structures of free and ligand-occupied sKLB to the structure of ligand-occupied sKLA reveal a general mechanism for recognition of endocrine FGFs by Klotho proteins and regulatory interactions with FGFRs that control their pleiotropic cellular responses.


Assuntos
Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Fator de Crescimento de Fibroblastos 23 , Humanos , Proteínas Klotho , Proteínas de Membrana/genética , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Ratos , Transdução de Sinais/fisiologia , Especificidade por Substrato
10.
Toxicol Appl Pharmacol ; 428: 115673, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364948

RESUMO

Pegbelfermin (PGBF) is a PEGylated fibroblast growth factor 21 (FGF21) analogue in development for treatment of nonalcoholic steatohepatitis (NASH). Mouse models highlight potential utility of FGF21 in NASH, but also suggest negative effects on bone, though these findings are confounded by profound FGF21-related decreases in body mass/growth. This study aimed to profile PGBF-related bone effects in adult nonhuman primates after long-term, clinically-relevant exposures. Adult male cynomolgus monkeys received weekly subcutaneous PGBF (0.3, 0.75 mg/kg) or control injections for 1 year (n = 5/group). Assessments included body weight, clinical chemistry, adiponectin levels, bone turnover biomarkers, skeletal radiography, pharmacokinetics, immunogenicity, and histopathology. Bone densitometry and body composition were evaluated in vivo and/or ex vivo with dual-energy x-ray absorptiometry, peripheral quantitative computed tomography, and biomechanical strength testing. After 1 year of PGBF administration, there was clear evidence of sustained PGBF pharmacology in monkeys (peak increase in serum adiponectin of 1.7× and 2.35× pretest at 0.3 and 0.75 mg/kg PGBF, respectively) and decreased body weight compared with control at exposures comparable to those tested in humans. At 0.75 mg/kg PGBF, pharmacologically-mediated reductions in lean mass, lean area, and fat area were observed relative to controls. There were no PGBF-related effects on bone biomarkers, radiography, densitometry, or strength. Together, these data demonstrate that PGBF did not adversely alter bone metabolism, density, or strength following 1 year of dosing at clinically relevant (0.7-2.2× human AUC[0-168 h] at 20 mg once weekly), pharmacologically-active exposures in adult monkeys, suggesting a low potential for negative effects on bone quality in adult humans.


Assuntos
Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/análogos & derivados , Polietilenoglicóis/administração & dosagem , Animais , Densidade Óssea/fisiologia , Remodelação Óssea/fisiologia , Esquema de Medicação , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/química , Haplorrinos , Macaca fascicularis , Masculino , Polietilenoglicóis/química , Fatores de Tempo
11.
Cancer Sci ; 111(5): 1750-1760, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32061104

RESUMO

Hepatocellular carcinoma (HCC) is a common and particularly fatal form of cancer for which very few drugs are effective. The fibroblast growth factor 19 (FGF19) has been viewed as a driver of HCC development and a potential Ab target for developing novel HCC therapy. However, a previously developed anti-FGF19 Ab disrupted FGF19's normal regulatory function and caused severe bile-acid-related side-effects despite of having potent antitumor effects in preclinical models. Here, we developed novel human Abs (G1A8 and HS29) that specifically target the N-terminus of FGF19. Both Abs inhibited FGF19-induced HCC cell proliferation in vitro and significantly suppressed HCC tumor growth in mouse models. Importantly, no bile-acid-related side effects were observed in preclinical cynomolgus monkeys. Fundamentally, our study demonstrates that it is possible to target FGF19 for anti-HCC therapies without adversely affecting its normal bile acid regulatory function, and highlights the exciting promise of G1A8 or HS29 as potential therapy for HCC.


Assuntos
Anticorpos/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Anticorpos/química , Anticorpos/imunologia , Antineoplásicos/química , Antineoplásicos/imunologia , Ácidos e Sais Biliares/sangue , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Modelos Animais de Doenças , Epitopos , Feminino , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Macaca fascicularis , Masculino , Camundongos
12.
FASEB J ; 33(9): 9858-9870, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31166803

RESUMO

Wound healing, especially for diabetic wounds, is a lengthy and complicated process involving interactions and responses at the protein, cell, and tissue levels. Loading of growth factors into a hydrogel to construct a sustained-release system is considered a promising approach to improve wound healing. The present study investigates the effect of thermosensitive heparin-poloxamer (HP) hydrogel-encapsulated recombinant human fibroblast growth factor 21 (rhFGF21) on wound healing in mice with streptozotocin-induced diabetes mellitus. First, we studied the in vitro release of rhFGF21 from the rhFGF21-HP coacervate. The results showed that HP might control the release of rhFGF21. Next, we examined the effect of rhFGF21-HP on skin wound healing in diabetic mice. Our data showed that rhFGF21-HP significantly improved wound closure; promoted granulation, collagen deposition, and re-epithelialization; and enhanced the expression of CD31. Moreover, rhFGF21-HP had obvious advantages in diabetic wound healing. Therefore, the results suggest that the rhFGF21-HP hydrogel polymer plays an important role in skin wound healing. This work provides a suitable sustained-release delivery system that can continuously release rhFGF21 and presents a promising therapeutic strategy for wound healing in patients with diabetes.-Liu, H., Zhao, Y., Zou, Y., Huang, W., Zhu, L., Liu, F., Wang, D., Guo, K., Hu, J., Chen, J., Ye, L., Li, X., Lin, L. Heparin-poloxamer hydrogel-encapsulated rhFGF21 enhances wound healing in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Fatores de Crescimento de Fibroblastos/farmacologia , Heparina/química , Hidrogéis/química , Poloxâmero/química , Cicatrização/efeitos dos fármacos , Animais , Glicemia , Formas de Dosagem , Liberação Controlada de Fármacos , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/química , Teste de Tolerância a Glucose , Humanos , Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes
13.
FASEB J ; 33(8): 9182-9193, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063704

RESUMO

Soluble klotho (sKlotho), the shed ectodomain of α-klotho, protects the heart by down-regulating transient receptor potential canonical isoform 6 (TRPC6)-mediated calcium signaling. Binding to α2-3-sialyllactose moiety of gangliosides in lipid rafts and inhibition of raft-dependent signaling underlies the mechanism. A recent 3-Å X-ray structure of sKlotho in complex with fibroblast growth factor receptor (FGFR) and fibroblast growth factor 23 (FGF23) indicates that its ß6α6 loop might block access to the proposed binding site for α2-3-sialyllactose. It was concluded that sKlotho only functions in complex with FGFR and FGF23 and that sKlotho's pleiotropic effects all depend on FGF23. Here, we report that sKlotho can inhibit TRPC6 channels expressed in cells lacking endogenous FGFRs. Structural modeling and molecular docking show that a repositioned ß6α6 loop allows sKlotho to bind α2-3-sialyllactose. Molecular dynamic simulations further show the α2-3-sialyllactose-bound sKlotho complex to be stable. Domains mimicking sKlotho's sialic acid-recognizing activity inhibit TRPC6. The results strongly support the hypothesis that sKlotho can exert effects independent of FGF23 and FGFR.-Wright, J. D., An, S.-W., Xie, J., Lim, C., Huang, C.-L. Soluble klotho regulates TRPC6 calcium signaling via lipid rafts, independent of the FGFR-FGF23 pathway.


Assuntos
Sinalização do Cálcio , Glucuronidase/metabolismo , Microdomínios da Membrana/metabolismo , Canal de Cátion TRPC6/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/química , Células HEK293 , Humanos , Proteínas Klotho , Lactose/análogos & derivados , Lactose/química , Lactose/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Solubilidade , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/química
14.
Mol Pharm ; 17(1): 284-300, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31794223

RESUMO

Therapeutic protein depots have limited clinical success because of the presence of critical preparation barriers such as low encapsulation, uncontrolled release, and activity loss during processing and storage. In the present study, we used our novel protein-nanoencapsulation (into sugar-glass nanoparticle; SGnP) platform to prepare a protein depot to overcome the abovementioned formidable challenges. The SGnP-mediated microparticle protein depot has been validated using four model proteins (bovine serum albumin, horseradish peroxidase, fibroblastic growth factor, and epidermal growth factor) and model biodegradable poly(lactic-co-glycolic acid) polymer system. The results show that our protein-nanoencapsulation-mediated platform provides a new generic platform to prepare a protein depot through the conventional emulsion method of any polymer and single/multiple protein systems. This protein depot has the required pharmaceutical properties such as high encapsulation efficiency, burst-free sustained release, and protein preservation during processing and storage, making it suitable for off-the-shelf use in therapeutic protein delivery and tissue engineering applications.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Proteínas/administração & dosagem , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Emulsões , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Vidro/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Células MCF-7 , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Esferoides Celulares/efeitos dos fármacos , Açúcares
15.
Cell Mol Life Sci ; 76(23): 4705-4724, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31350618

RESUMO

Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Nefropatias/patologia , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Glucuronidase/química , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Nefropatias/metabolismo , Proteínas Klotho , Domínios Proteicos , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais
16.
Handb Exp Pharmacol ; 262: 281-308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792685

RESUMO

FGF23 is a phosphotropic hormone produced by the bone. FGF23 works by binding to the FGF receptor-Klotho complex. Klotho is expressed in several limited tissues including the kidney and parathyroid glands. This tissue-restricted expression of Klotho is believed to determine the target organs of FGF23. FGF23 reduces serum phosphate by suppressing the expression of type 2a and 2c sodium-phosphate cotransporters in renal proximal tubules. FGF23 also decreases 1,25-dihydroxyvitamin D levels by regulating the expression of vitamin D-metabolizing enzymes, which results in reduced intestinal phosphate absorption. Excessive actions of FGF23 cause several types of hypophosphatemic rickets/osteomalacia characterized by impaired mineralization of bone matrix. In contrast, deficient actions of FGF23 result in hyperphosphatemic tumoral calcinosis with high 1,25-dihydroxyvitamin D levels. These results indicate that FGF23 is a physiological regulator of phosphate and vitamin D metabolism and indispensable for the maintenance of serum phosphate levels.


Assuntos
Hiperfosfatemia , Hipofosfatemia , Osteomalacia , Osso e Ossos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Minerais/química , Fosfatos/química , Fosfatos/metabolismo
17.
Molecules ; 25(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722255

RESUMO

Disruption of protein:protein interactions (PPIs) that regulate the function of voltage-gated Na+ (Nav) channels leads to neural circuitry aberrations that have been implicated in numerous channelopathies. One example of this pathophysiology is mediated by dysfunction of the PPI between Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). Thus, peptides derived from FGF14 might exert modulatory actions on the FGF14:Nav1.6 complex that are functionally relevant. The tetrapeptide Glu-Tyr-Tyr-Val (EYYV) mimics surface residues of FGF14 at the ß8-ß9 loop, a structural region previously implicated in its binding to Nav1.6. Here, peptidomimetics derived from EYYV (6) were designed, synthesized, and pharmacologically evaluated to develop probes with improved potency. Addition of hydrophobic protective groups to 6 and truncation to a tripeptide (12) produced a potent inhibitor of FGF14:Nav1.6 complex assembly. Conversely, addition of hydrophobic protective groups to 6 followed by addition of an N-terminal benzoyl substituent (19) produced a potentiator of FGF14:Nav1.6 complex assembly. Subsequent functional evaluation using whole-cell patch-clamp electrophysiology confirmed their inverse activities, with 12 and 19 reducing and increasing Nav1.6-mediated transient current densities, respectively. Overall, we have identified a negative and positive allosteric modulator of Nav1.6, both of which could serve as scaffolds for the development of target-selective neurotherapeutics.


Assuntos
Fatores de Crescimento de Fibroblastos/química , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Peptidomiméticos/síntese química , Peptidomiméticos/farmacologia , Regulação Alostérica , Sítios de Ligação , Desenho de Fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Canal de Sódio Disparado por Voltagem NAV1.6/química , Peptidomiméticos/química , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
18.
Chembiochem ; 20(2): 237-240, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30239102

RESUMO

Many circulating cancer-related proteins, such as fibroblast growth factors (FGFs), associate with glycosaminoglycans-particularly heparan sulfate-at the cell surface. Disaccharide analogues of heparan sulfate had previously been identified as the shortest components out of the sugars that bind to FGF-1 and FGF-2. Taking note of the typical pose of l-iduronic acid, we conceived of per-O-sulfonated analogues of such disaccharides, and devised a single-step procedure for per-O-sulfonation of unprotected sugars with concomitant 1,6-anhydro bridge formation to achieve such compounds through direct use of SO3 ⋅Et3 N as sulfonation reagent and dimethylformamide as solvent. The synthesized sugars based on the oligomaltose backbone bound FGF-1 and FGF-2 mostly at the sub-micromolar level, although the tetrasaccharide analogue achieved low-nanomolar binding with FGF-2.


Assuntos
Fatores de Crescimento de Fibroblastos/química , Heparitina Sulfato/química , Açúcares/química , Configuração de Carboidratos
19.
Glycoconj J ; 36(3): 227-236, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31055697

RESUMO

Glycosaminoglycans (GAGs) are known to play pivotal roles in physiological processes and pathological conditions. To study interactions of GAGs with proteins, immobilization of GAGs is often required. Current methodologies for immobilization involve modification of GAGs and/or surfaces, which can be time-consuming and may involve specialized equipment. Here, we use an efficient and low-cost method to immobilize GAGs without any (chemical) modification using highly concentrated salt solutions. A number of salts from the Hofmeister series were probed for their capacity to immobilize heparin and chondroitin-6-sulfate on microtiter plates applying single chain antibodies against GAGs for detection (ELISA). From all salts tested, the cosmotropic salt ammonium sulfate was most efficient, especially at high concentrations (80-100% (v/v) saturation). Immobilized GAGs were bioavailable as judged by their binding of FGF2 and VEGF, and by their susceptibility towards GAG lyases (heparinase I, II and III, chondroitinase ABC). Using 80% (v/v) saturated ammonium sulfate, block and continuous gradients of heparin were established and a gradient of FGF2 was created using a heparin block gradient as a template. In conclusion, high concentrations of ammonium sulfate are effective for immobilization of GAGs and for the establishment of gradients of both GAGs and GAG-binding molecules, which enables the study to the biological roles of GAGs.


Assuntos
Sulfatos de Condroitina/química , Fatores de Crescimento de Fibroblastos/química , Heparina/química , Fator A de Crescimento do Endotélio Vascular/química , Heparina Liase/metabolismo , Poliésteres/química , Impressão Tridimensional , Sais/química
20.
Biomacromolecules ; 20(1): 285-293, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30543415

RESUMO

Fibroblast growth factors (FGF) are involved in a wide range of biological processes such as cell proliferation and differentiation. In living organisms, the binding of FGF to its receptors are mediated through electrostatic interactions between FGF and naturally occurring heparin. Despite its prevalent use in medicine, heparin carries notable limitations; namely, its extraction from natural sources (expensive, low yield and extensive purification), viral contamination, and batch-to-batch heterogeneity. In this work a range of synthetic homopolymers and copolymers of sodium 2-acrylamido-2-methylpropanesulfonate were evaluated as potential FGF stabilizers. This was studied by measuring the proliferation of BaF3-FR1c cells, as a model assay, and the results will be compared with the natural stabilization and activation of FGF by heparin. This study explores the structure-activity relationship of these polysulfonated polymers with a focus on the effect of molecular weight, comonomer type, charge dispersion, and polymer architecture on protein stabilization.


Assuntos
Acrilamidas/química , Alcanossulfonatos/química , Materiais Biomiméticos/química , Fatores de Crescimento de Fibroblastos/química , Heparina/química , Células 3T3 , Acrilamidas/farmacologia , Alcanossulfonatos/farmacologia , Animais , Materiais Biomiméticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Heparina/farmacologia , Camundongos , Ligação Proteica , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA