RESUMO
The present study aimed to develop a system using a combination of enzymatic and microbial degradation techniques for removing phenol from contaminated water. In our prior research, the HRP enzyme extracted from horseradish roots was utilized within a core-shell microcapsule to reduce phenolic shock, serving as a monolayer column. To complete the phenol removal process, a second column containing degrading microorganisms was added to the last column in this research. Phenol-degrading bacteria were isolated from different microbial sources on a phenolic base medium. Additionally, encapsulated calcium peroxide nanoparticles were used to provide dissolved oxygen for the microbial population. Results showed that the both isolated strains, WC1 and CC1, were able to completely remove phenol from the contaminated influent water the range within 5 to 7 days, respectively. Molecular identification showed 99.8% similarity for WC1 isolate to Stenotrophomonas rizophila strain e-p10 and 99.9% similarity for CC1 isolate to Bacillus cereus strain IAM 12,605. The results also indicated that columns using activated sludge as a microbial source had the highest removal rate, with the microbial biofilm completely removing 100% of the 100 mg/L phenol concentration in contaminated influent water after 40 days. Finally, the concurrent use of core-shell microcapsules containing enzymes and capsules containing Stenotrophomonas sp. WC1 strain in two continuous column reactors was able to completely remove phenol from polluted water with a concentration of 500 mg/L for a period of 20 days. The results suggest that a combination of enzymatic and microbial degrading systems can be used as a new system to remove phenol from polluted streams with higher concentrations of phenol by eliminating the shock of phenol on the microbial population.
Assuntos
Biodegradação Ambiental , Fenol , Poluentes Químicos da Água , Fenol/metabolismo , Poluentes Químicos da Água/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Purificação da Água/métodos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Biofilmes/crescimento & desenvolvimento , Armoracia/metabolismo , Esgotos/microbiologia , Bacillus cereus/metabolismo , Bacillus cereus/isolamento & purificação , Bacillus cereus/enzimologiaRESUMO
There are many available reports of secondary metabolites as bioactive molecules from culturable endophytes, nevertheless, there are scarce research pertaining to the levels of metabolites in plants with respect to the incidence and colonisation of fungal endophytes in the same foliar tissues. Therefore, the study was focussed to examine whether fungal endophyte colonisation and the accumulation of secondary metabolites, such as flavonoids and phenols, in the plants are related in any way. For this reason, the study aims to analyse phenols and flavonoids from the fronds of eleven pteridophytes along with the culture-dependent isolation of fungal endophytes from the host plants subsequently assigning them to morphological category and their quantitative analysis and further resolving its identities through molecular affiliation. The results revealed that nine morpho-categories of fungal endophytes were allotted based on culture attributes, hyphal patterns and reproductive structural characters. Highest numbers of species were isolated from Adiantum capillus-veneris and least was recorded from Pteris vittata and Dicranopteris linearis. Maximum phenol content was analysed from the fronds of P. vittata and lowest was recorded in A. capillus-veneris. Highest flavonoid content was measured in D. linearis and lowest was detected in Christella dentata. Significant negative correlation was observed between phenol content of ferns and species richness of fungi. Moreover, significant positive correlation was observed with the relative abundance of Chaetomium globosum and flavonoid content of ferns and negative significant relation was found between relative abundance of Pseudopestalotiopsis chinensis and phenol content of pteridophytes. The occurrence and the quantitative aspects of endophytes in ferns and their secondary metabolites are discussed.
Assuntos
Endófitos , Gleiquênias , Endófitos/metabolismo , Fenóis/metabolismo , Fenol/metabolismo , Gleiquênias/metabolismo , Plantas , Flavonoides/metabolismo , Fungos/genéticaRESUMO
Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was µmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.
Assuntos
Biodegradação Ambiental , Fenol , Filogenia , RNA Ribossômico 16S , Rhodococcus , Microbiologia do Solo , Poluentes do Solo , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/classificação , Rhodococcus/crescimento & desenvolvimento , Rhodococcus/isolamento & purificação , Poluentes do Solo/metabolismo , Fenol/metabolismo , RNA Ribossômico 16S/genética , Saccharum/metabolismo , Saccharum/microbiologia , Saccharum/crescimento & desenvolvimento , Solo/química , Genoma BacterianoRESUMO
The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.
Assuntos
Candida tropicalis , Petróleo , Humanos , Candida tropicalis/metabolismo , Biodegradação Ambiental , Leveduras/metabolismo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Fenol/metabolismo , Naftalenos/metabolismoRESUMO
The treatment efficiency of acidic phenol-containing wastewater is hindered by the absence of efficient acid-resistant phenol-degrading bacteria, and the acid-resistant mechanism of such bacteria remains poorly studied. In this study, the acid-resistant strain Hly3 was used as a research model to investigate its ability to degrade phenol and its underlying mechanism of acid resistance. Strain Hly3 exhibited robust acid resistance, capable of surviving in extremely acidic environments (pH 3) and degrading 1700 mg L-1 phenol in 72 h. Through the physiological response analysis of strain Hly3 to pH, the results indicated: firstly, the strain could reduce the relative permeability of the cell membrane and increase EPS secretion to prevent H+ from entering the cell (shielding effect); secondly, the strain could accumulate more buffering substances to neutralize the intracellular H+ (neutralization effect); thirdly, the strain could expel H+ from the cell by enhancing H+-ATPase activity (pumping effect); finally, the strain produced more active scavengers to reduce the toxicity of acid stress on cells (antioxidant effect). Subsequently, combining liquid chromatography-mass spectrometry (LC-MS) technology with exogenous addition experiments, it was verified that the acid resistance mechanism of microorganisms is achieved through the activation of acid-resistant response systems by glutamine, thereby enhancing functions such as shielding, neutralization, efflux, and antioxidation. This study elucidated the acid resistance mechanism of Acinetobacter pittii, providing a theoretical basis and guidance for the treatment of acidic phenol-containing wastewater.
Assuntos
Acinetobacter , Fenol , Acinetobacter/metabolismo , Fenol/metabolismo , Concentração de Íons de Hidrogênio , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Águas Residuárias/microbiologia , Ácidos/metabolismoRESUMO
The effluents from pulp and paper manufacturing industries contain high concentrations of phenol, which when discharged directly into surface water streams, increases the biological oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two dominant bacteria SP-4 and SP-8 were isolated from the effluent emanating with a pulp and paper industry. The selected phenol-degrading isolates were identified as Staphylococcus sp. and Staphylococcus sciuri respectively by using nucleotide sequence alignment and phylogenetic analysis of 16 S rRNA regions of the genome. The two isolates used for the biodegradation process effectively degraded phenol concentration of pulp and paper industry effluent upto 1600 and 1800 mg/L resepctively. The individual isolates and consortium were immobilized using activated carbon, wood dust, and coal ash. Additionally, the effluent was treated using a bio-filter tower packed column immobilized with bacterial cells at a constant flow rate of 5 mL/min. The present study showed that the developed immobilized microbial consortium can effectively degrade 99% of the phenol present in pulp and paper industry effluents, resulting in a significant reduction in BOD and COD of the system. This study can be well implemented on real-scale systems as the bio-filter towers packed with immobilized bacterial consortium can effectively treat phenol concentrations up to 1800 mg/L. The study can be implemented for bioremediation processes in phenolic wastewater-contaminated sites.
Assuntos
Biodegradação Ambiental , Fenol , Poluentes Químicos da Água , Fenol/metabolismo , Poluentes Químicos da Água/metabolismo , Resíduos Industriais , Filogenia , Consórcios Microbianos , Células Imobilizadas/metabolismo , Papel , Filtração , Eliminação de Resíduos Líquidos/métodos , Staphylococcus/metabolismo , RNA Ribossômico 16S/genética , Análise da Demanda Biológica de Oxigênio , Bactérias/metabolismo , Bactérias/genéticaRESUMO
Controlled environments are pivotal in all bioconversion processes, influencing the efficacy of biocatalysts. In this study, we designed a batch bioreactor system with a packed immobilization column and a decontamination chamber to enhance phenol and 2,4-dichlorophenol degradation using the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713. When free cells were employed to degrade phenol and 2,4-DCP at a concentration of 1000 mg/L, the cells completely removed the pollutants within 28 h and 66 h, respectively. Simultaneous reductions in chemical oxygen demand and biological oxygen demand were observed (phenol: 30.21 mg/L/h and 16.92 mg/L/h, respectively; 2,4-dichlorophenol: 12.85 mg/L/h and 7.21 mg/L/h, respectively). After assessing the degradation capabilities, the bacterium was immobilized on various matrices (sodium alginate, alginate-chitosan-alginate and polyvinyl alcohol-alginate) to enhance pollutant removal. Hybrid immobilized cells exhibited greater tolerance and degradation capabilities than those immobilized in a single matrix. Among them, polyvinyl alcohol-alginate immobilized cells displayed the highest degradation capacities (up to 2000 mg/L for phenol and 2500 mg/L for 2,4-dichlorophenol). Morphological analysis of the immobilized cells revealed enhanced cell preservation in hybrid matrices. Furthermore, the elucidation of the metabolic pathway through the catechol dioxygenase enzyme assay indicated higher activity of the catechol 1,2-dioxygenase enzyme, suggesting that the bacterium employed an ortho-degradation mechanism for pollutant removal. Additionally, enzyme zymography confirmed the presence of catechol 1,2-dioxygenase, with the molecular weight of the enzyme determined as 245 kDa.
Assuntos
Alginatos , Biodegradação Ambiental , Células Imobilizadas , Clorofenóis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Células Imobilizadas/metabolismo , Alginatos/metabolismo , Alginatos/química , Clorofenóis/metabolismo , Reatores Biológicos/microbiologia , Fenóis/metabolismo , Quitosana/química , Quitosana/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Ácido Glucurônico/química , Álcool de Polivinil/química , Poluentes Químicos da Água/metabolismo , Fenol/metabolismo , Análise da Demanda Biológica de OxigênioRESUMO
An approach based on the heat stress and microbial stress model of the medicinal plant Sparganium stoloniferum was proposed to elucidate the regulation and mechanism of bioactive phenol accumulation. This method integrates LC-MS/MS analysis, 16S rRNA sequencing, RT-qPCR, and molecular assays to investigate the regulation of phenolic metabolite biosynthesis in S. stoloniferum rhizome (SL) under stress. Previous research has shown that the metabolites and genes involved in phenol biosynthesis correlate to the upregulation of genes involved in plant-pathogen interactions. High-temperature and the presence of Pseudomonas bacteria were observed alongside SL growth. Under conditions of heat stress or Pseudomonas bacteria stress, both the metabolites and genes involved in phenol biosynthesis were upregulated. The regulation of phenol content and phenol biosynthesis gene expression suggests that phenol-based chemical defense of SL is stimulated under stress. Furthermore, the rapid accumulation of phenolic substances relied on the consumption of amino acids. Three defensive proteins, namely Ss4CL, SsC4H, and SsF3'5'H, were identified and verified to elucidate phenol biosynthesis in SL. Overall, this study enhances our understanding of the phenol-based chemical defense of SL, indicating that bioactive phenol substances result from SL's responses to the environment and providing new insights for growing the high-phenol-content medicinal herb SL.
Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Plantas Medicinais , Plantas Medicinais/metabolismo , Fenóis/metabolismo , Fenol/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rizoma/microbiologia , Rizoma/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Espectrometria de Massas em Tandem , RNA Ribossômico 16S/genéticaRESUMO
Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain Bacillus cereus ZWB3 was co-cultured with the Cr(VI)-reducing strain Bacillus licheniformis MZ-1 to enhance phenol biodegradation under Cr(â ¥) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(â ¥), and Cr(â ¥)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(â ¥) tolerance. The determination coefficients R2, RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(â ¥) and phenol.
Assuntos
Biodegradação Ambiental , Cromo , Aprendizado de Máquina , Fenol , Fenol/metabolismo , Cromo/metabolismo , Bacillus cereus/metabolismo , Poluentes Químicos da Água/metabolismo , Bacillus licheniformis/metabolismoRESUMO
The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.
Assuntos
Reatores Biológicos , Desnitrificação , Fermentação , Nitrificação , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Águas Residuárias/química , Fenol/metabolismo , Esgotos/microbiologia , Biodegradação AmbientalRESUMO
Bioactive dimeric (pre-)anthraquinones are ubiquitous in nature and are found in bacteria, fungi, insects, and plants. Their biosynthesis via oxidative phenol coupling (OPC) is catalyzed by cytochrome P450 enzymes, peroxidases, or laccases. While the biocatalysis of OPC in molds (Ascomycota) is well-known, the respective enzymes in mushroom-forming fungi (Basidiomycota) are unknown. Here, we report on the biosynthesis of the atropisomers phlegmacin A1 and B1 of the mushroom Cortinarius odorifer. The biosynthesis of these unsymmetrically 7,10'-homo-coupled dihydroanthracenones was heterologously reconstituted in the mold Aspergillus niger. Methylation of the parental monomer atrochrysone to its 6-O-methyl ether torosachrysone by the O-methyltransferase CoOMT1 precedes the regioselective homocoupling to phlegmacin, catalyzed by the enzyme CoUPO1 annotated as an "unspecific peroxygenase" (UPO). Our results reveal an unprecedented UPO reaction, thereby expanding the biocatalytic portfolio of oxidative phenol coupling beyond the commonly reported enzymes. The results show that Basidiomycota use peroxygenases to selectively couple aryls independently of and convergently to any other group of organisms, emphasizing the central role of OPC in natural processes.
Assuntos
Agaricales , Oxigenases de Função Mista , Oxirredução , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Agaricales/enzimologia , Estereoisomerismo , Fenóis/metabolismo , Fenóis/química , Fenol/química , Fenol/metabolismoRESUMO
In this study, three cold-tolerant phenol-degrading strains, Pseudomonas veronii Ju-A1 (Ju-A1), Leifsonia naganoensis Ju-A4 (Ju-A4), and Rhodococcus qingshengii Ju-A6 (Ju-A6), were isolated. All three strains can produce cis, cis-muconic acid by ortho-cleavage of catechol at 12 â. Response surface methodology (RSM) was used to optimize the proportional composition of low-temperature phenol-degrading microbiota. Degradation of phenol below 160 mg L-1 by low-temperature phenol-degrading microbiota followed first-order degradation kinetics. When the phenol concentration was greater than 200 mg L-1, the overall degradation trend was in accordance with the modified Gompertz model. The experiments showed that the microbial agent (three strains of low-temperature phenol-degrading bacteria were fermented separately and constructed in the optimal ratio) could completely degrade 200 mg L-1 phenol within 36 h. The above construction method is more advantageous in bio-enhanced treatment of actual wastewater. Through the construction of microbial agents to enhance the degradation effect of phenol, it provides a feasible scheme for the biodegradation of phenol wastewater at low temperature and shows good application potential.
Assuntos
Fenol , Águas Residuárias , Fenol/metabolismo , Temperatura , Fenóis/metabolismo , Temperatura Baixa , Biodegradação AmbientalRESUMO
Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.
Assuntos
Fenol , Proteômica , Biodegradação Ambiental , Cromo/química , Fenol/química , Fenol/metabolismo , Fenóis , Espectrometria de Massas em TandemRESUMO
Mixed culture of microorganisms is an effective method to remove high concentration of phenol from wastewater. Currently, the mechanism of how microorganisms collaborate to enhance the biodegradation of phenol is still a challenge. In this study, the isolated Bacillus subtilis ZWB1 and Bacillus velezensis ZWB2 were co-cultured to enhance phenol biodegradation, and the mechanism of microbial collaboration was further explored. The co-culture of strains could significantly increase the rate (16.7 mg/L·h, 1000 mg/L) and concentration of phenol degradation (1500 mg/L), comparing with mono-culture of ZWB1 (4.2 mg/L·h, 150 mg/L) and ZWB2 (6.9 mg/L·h, 1000 mg/L), among which the highest degraded concentration of phenol for ZWB1 and ZWB2 was 150 and 1000 mg/L. Further, the mechanism of microbial collaboration to enhance phenol biodegradation was raised: the decrease of antioxidant enzymes, and increase of degrading enzymes and surfactants on content after co-culture, assisted the microorganisms in withstanding phenol; Bacillus subtilis ZWB1 used the metabolites of Bacillus velezensis ZWB2 to promote its growth, and further to degrade phenol rapidly; Bacillus subtilis ZWB1 alleviated the damage, which resulted from the pH drop (5.8) of the fermentation broth during phenol degradation that inhibited the growth and degraded ability of Bacillus velezensis ZWB2, making the pH of fermentation broth stable at 7. Metabolic analysis showed that co-culture of strains could produce more alkaline and buffering compounds and pairs, to stabilize pH and reduce the toxicity of acidity on ZWB2, thus increasing the degradation rate. This study explains the mechanism of microbial collaboration on phenol biodegradation from multiple perspectives, especially pH stabilization, which provides a theoretical basis for the degradation of pollutants by co-culture microorganisms.
Assuntos
Bacillus , Fenol , Fenol/metabolismo , Fenóis/metabolismo , Bacillus/metabolismo , Biodegradação Ambiental , Bacillus subtilis , Concentração de Íons de HidrogênioRESUMO
OBJECTIVE: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of nigral dopaminergic neurons, leading to reduced motor control. A contributing factor for the nigrostriatal degeneration is known to be oxidative stress, while antioxidant/anti-inflammatory properties of natural polyphenols have been suggested to show beneficial effects. The present study questioned the potential neuroprotective effects of supplementary diet with Corinthian currant, using a rat rotenone PD model. METHODS: The alterations in motor activity, brain Corinthian currant polar phenols' accumulation, expression patterns of tyrosine hydroxylase (TH), dopamine transporter (DAT) and brain-derived neurotrophic factor (BDNF) in the nigrostriatal dopaminergic system were determined in rotenone-treated, currant-diet rats and matching controls. RESULTS: Rotenone treatment resulted in motor deficits and TH expression decreases in the nigrostriatal pathway, exhibiting PD-like behavioural motor and neurochemical phenotypes. Interestingly, 38 days Corinthian currant consumption resulted in differential accumulation of polar phenols in mesencephalon and striatum and had a significant effect on attenuating motor deficits and dopaminergic cell loss in substantia nigra pars compacta. In addition, it induced up-regulation of BDNF expression in the nigrostriatal dopaminergic system. DISCUSSION: Taken all together, evidence is provided for the potential neuroprotective influences of Corinthian currant consumption, involving the neurotrophic factor BDNF, in rescuing aspects of PD-like phenotype.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ribes , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Rotenona/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ribes/metabolismo , Fenol/metabolismo , Fenol/farmacologia , Encéfalo/metabolismo , Substância Negra , Neurônios Dopaminérgicos , Fármacos Neuroprotetores/farmacologia , Modelos Animais de DoençasRESUMO
Pseudomonas sp. harbors genetic diversity and readily adapts to environmental challenges, conferring upon it the ability to remediate. It is important to genetically determine the effects of bacterial application. The two-omics integration approach may shed more light on Pseudomonas isolates, filling the knowledge gap between genetic potential and dynamic function. In the present study, a strain from the Xi River was isolated using benzene-selective enrichment medium and phylogenetically identified as Pseudomonas sp. GDMCC 1.1703 by 16S rRNA gene sequencing. Its phenol degradability was optimally assessed at a rate of 45.7% (by statistics P < 0.05) in 12 h with a 200 mg/L concentration. Genomics and transcriptomics analyses were successively used to identify the genes and pathways responsible for phenol degradation. At least 42 genes were genomically identified to be involved in xenobiotic biodegradation. The degradative genes clustered into operons were hypothesized to have evolved through horizontal gene transfer. On the basis of genomic authentication, transcriptome analysis dynamically revealed that phenol degradation and responsive mechanisms were both upregulated as defense between the Ctrl (control) and PS (phenol-stressed) groups. Quantitative reverse transcription-PCR not only validated the key genes identified via RNA sequencing but also consistently confirmed the realistic intracellular expression. The approach of omics integration, which is effective in exploring the potential of isolates, will hopefully become an established method for determining the remediation potential of a candidate for development.
Assuntos
Fenol , Pseudomonas , Pseudomonas/metabolismo , Fenol/metabolismo , RNA Ribossômico 16S/metabolismo , Sequência de Bases , Bactérias/genética , Biodegradação AmbientalRESUMO
Microorganism-based methods have been widely applied for the treatment of phenol-polluted environments. The previously isolated Acinetobacter lwoffii NL1 strain could completely degrade 0.5 g/L phenol within 12 h, but not higher concentrations of phenol. In this study, we developed an evolutionary strain NL115, through adaptive laboratory evolution, which possessed improved degradation ability and was able to degrade 1.5 g/L phenol within 12 h. Compared with that of the starting strain NL1, the concentration of degradable phenol by the developed strain increased three-fold; its phenol tolerance was also enhanced. Furthermore, comparative genomics showed that sense mutations mainly occurred in genes encoding alkyl hydroperoxide reductase, phenol hydroxylase, 30S ribosomal protein, and mercury resistance operon. Comparative transcriptomics between A. lwoffii NL115 and NL1 revealed the enrichment of direct degradation, stress resistance, and vital activity processes among the metabolic responses of A. lwoffii adapted to phenol stress. Among these, all the upregulated genes (log2fold-change > 5) encoded peroxidases. A phenotypic comparison of A. lwoffii NL1 and NL115 found that the adapted strain NL115 exhibited strengthened antioxidant capacity. Furthermore, the increased enzymatic activities of phenol hydroxylase and alkyl hydroperoxide reductase in A. lwoffii NL115 validated their response to phenol. Overall, this study provides insight into the mechanism of efficient phenol degradation through adaptive microbial evolution and can help to drive improvements in phenol bioremediation.
Assuntos
Fenóis , Transcriptoma , Fenol/metabolismo , Biodegradação Ambiental , Genômica , Peroxirredoxinas/metabolismoRESUMO
Phenolic compounds are frequently occurring in wastewaters from various industrial processes at high concentrations, imposing prominent risk to aquatic biosphere and human health. Bioremediation has been proven to be an effective approach to remove these compounds, and hunting for functional organisms is still of primary importance to develop efficient processes. In this study, we report several newly isolated bacillus strains with superior performances in metabolizing phenols, one of which showed paramount efficiencies to metabolize phenol at concentrations up to 1200 mg L-1 and could simultaneously degrade a wide range of other phenolic compounds. The genes encoding for phenol hydroxylase (PH) and catechol-2,3-dioxygenase (C23O) have been detected and characterized, evidencing that phenol degradation occurs via the meta pathway. The GC level of the PH gene was found to be much higher than that of genes from other Bacilli but was quite close to that of the genes from Rhodococcus, and the induction of both enzymes by phenols was confirmed by RT-PCR experiments. We intend to believe this novel strain might be promising to serve as preferred organisms for developing more robust and efficient bioremediation processes of degrading phenolic compounds due to its validated performance.
Assuntos
Bacillus , Fenol , Humanos , Fenol/metabolismo , Águas Residuárias , Bacillus/metabolismo , Biodegradação Ambiental , Fenóis , CresóisRESUMO
Phenols are very soluble in water; as a result, they can pollute a massive volume of fresh water, wastewater, groundwater, oceans, and soil, negatively affecting plant germination and animal and human health. For the detoxification and bioremediation of phenol in wastewater, phenol biodegradation using novel bacteria isolated from sewage sludge was investigated. Twenty samples from sewage sludge (SS) were collected, and bacteria in SS contents were cultured in the mineral salt agar (MSA) containing phenol (500 mg/L). Twenty colonies (S1 up to S20) were recovered from all the tested SS samples. The characteristics of three bacterial properties, 16S rDNA sequencing, similarities, GenBank accession number, and phylogenetic analysis showed that strains S3, S10, and S18 were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Klebsiella variicola, respectively. P. aeruginosa, K. pneumoniae, and K. variicola were able to degrade 1000 mg/L phenol in the mineral salt medium. The bacterial strains from sewage sludge were efficient in removing 71.70 and 74.67% of phenol at 1000 mg/L within three days and could tolerate high phenol concentrations (2000 mg/L). The findings showed that P. aeruginosa, K. pneumoniae, and K. variicola could potentially treat phenolic water. All soybean and faba bean seeds were germinated after being treated with 250, 500, 750, and 1000 mg/L phenol in a mineral salt medium inoculated with these strains. The highest maximum phenol removal and detoxification rates were P. aeruginosa and K. variicola. These strains may help decompose and detoxify phenol from industrial wastewater with high phenol levels and bioremediating phenol-contaminated soils.
Assuntos
Fenol , Esgotos , Humanos , Esgotos/microbiologia , Fenol/metabolismo , Pseudomonas aeruginosa/metabolismo , Águas Residuárias , Glycine max/metabolismo , Biodegradação Ambiental , Filogenia , Fenóis/metabolismo , Bactérias/metabolismo , Klebsiella pneumoniae/metabolismo , Sementes/metabolismo , Minerais/metabolismoRESUMO
Phenol is a serious pollutant to the environment, therefore, it is urgent to find a rapid and effective method for its removal. In this study, Bacillus cereus ZWB3 immobilized on a polyurethane (PUF) carrier was studied. The PUF-ZWB3 required only 20 h for the degradation of 1,500 mg L-1 of phenol, shortened by 8 h than the free bacteria. In addition, the PUF-ZWB3 could increase the degradation concentration of phenol from 1,500 to 2,000 mg L-1, and the complete degradation of 2,000 mg L-1 phenol only used 44 h. In addition, the PUF-ZWB3 showed much higher removal of phenol than the free bacteria at different pH values, salt concentrations, and heavy metal ions. Particularly, the PUF-ZWB3 could still completely remove phenol in a strongly alkaline environment, such as pH 10 and 11. In addition, the removal efficiency of phenol by PUF-ZWB3 was still 100% after 10 cycles. This study showed that the PUF immobilization system had great potential in the field of remediation of organic pollution.