Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(13): 3338-3356.e30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810644

RESUMO

Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.


Assuntos
Diapausa , Animais , Evolução Biológica , Diapausa/genética , Embrião não Mamífero/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peixes Listrados/genética , Peixes Listrados/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Peixes/genética , Masculino , Feminino
2.
J Fish Biol ; 104(5): 1537-1547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403734

RESUMO

The maximum rate at which fish can take up oxygen from their environment to fuel aerobic metabolism is an important feature of their physiology and ecology. Methods to quantify maximum oxygen uptake rate (MO2), therefore, should reliably and reproducibly estimate the highest possible MO2 by an individual or species under a given set of conditions (peak MO2). This study determined peak MO2 and its repeatability in Gulf killifish, Fundulus grandis, subjected to three methods to elevate metabolism: swimming at increasing water speeds, during recovery after an exhaustive chase, and after ingestion of a large meal. Estimates of peak MO2 during swimming and after an exhaustive chase were repeatable across two trials, whereas peak MO2 after feeding was not. Peak MO2 determined by the three methods was significantly different from one another, being highest during swimming, lowest after an exhaustive chase, and intermediate after feeding. In addition, peak MO2 during recovery from an exhaustive chase depended on the length of time of recovery: in nearly 60% of the trials, values within the first hour of the chase were lower than those measured later. A novel and important finding was that an individual's peak MO2 was not repeatable when compared across methods. Therefore, the peak MO2 estimated for a group of fish, as well as the ranking of individual MO2 within that group, depends on the method used to elevate aerobic metabolism.


Assuntos
Fundulidae , Consumo de Oxigênio , Natação , Animais , Fundulidae/fisiologia , Fundulidae/metabolismo , Reprodutibilidade dos Testes , Oxigênio/metabolismo
3.
Science ; 384(6700): 1105-1110, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843334

RESUMO

Axis formation in fish and amphibians typically begins with a prepattern of maternal gene products. Annual killifish embryogenesis, however, challenges prepatterning models as blastomeres disperse and then aggregate to form the germ layers and body axes. We show that huluwa, a prepatterning factor thought to break symmetry by stabilizing ß-catenin, is truncated and inactive in Nothobranchius furzeri. Nuclear ß-catenin is not selectively stabilized on one side of the blastula but accumulates in cells forming the aggregate. Blocking ß-catenin activity or Nodal signaling disrupts aggregate formation and germ layer specification. Nodal signaling coordinates cell migration, establishing an early role for this signaling pathway. These results reveal a surprising departure from established mechanisms of axis formation: Huluwa-mediated prepatterning is dispensable, and ß-catenin and Nodal regulate morphogenesis.


Assuntos
Fundulidae , Morfogênese , Proteína Nodal , beta Catenina , Animais , beta Catenina/metabolismo , Blástula/metabolismo , Padronização Corporal , Movimento Celular , Núcleo Celular/metabolismo , Fundulidae/embriologia , Fundulidae/metabolismo , Camadas Germinativas/metabolismo , Proteína Nodal/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA