Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.291
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 34: 243-64, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907217

RESUMO

Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.


Assuntos
Galectinas/metabolismo , Glicosiltransferases/metabolismo , Imunidade , Animais , Carboidratos/imunologia , Citoesqueleto , Galectinas/imunologia , Glicoproteínas/metabolismo , Humanos , Ligação Proteica , Agregação de Receptores
2.
Nat Immunol ; 24(11): 1813-1824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813965

RESUMO

Kupffer cells, the liver tissue resident macrophages, are critical in the detection and clearance of cancer cells. However, the molecular mechanisms underlying their detection and phagocytosis of cancer cells are still unclear. Using in vivo genome-wide CRISPR-Cas9 knockout screening, we found that the cell-surface transmembrane protein ERMAP expressed on various cancer cells signaled to activate phagocytosis in Kupffer cells and to control of liver metastasis. ERMAP interacted with ß-galactoside binding lectin galectin-9 expressed on the surface of Kupffer cells in a manner dependent on glycosylation. Galectin-9 formed a bridging complex with ERMAP and the transmembrane receptor dectin-2, expressed on Kupffer cells, to induce the detection and phagocytosis of cancer cells by Kupffer cells. Patients with low expression of ERMAP on tumors had more liver metastases. Thus, our study identified the ERMAP-galectin-9-dectin-2 axis as an 'eat me' signal for Kupffer cells.


Assuntos
Citofagocitose , Células de Kupffer , Humanos , Fagocitose/genética , Galectinas/genética , Galectinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Immunity ; 54(3): 484-498.e8, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33581044

RESUMO

Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.


Assuntos
Astrócitos/imunologia , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Lectinas Tipo C/metabolismo , Esclerose Múltipla/imunologia , Células Mieloides/imunologia , Inflamação Neurogênica/imunologia , Receptores Mitogênicos/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Modelos Animais de Doenças , Galectinas/metabolismo , Regulação da Expressão Gênica , Lectinas Tipo C/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Oncostatina M/genética , Oncostatina M/metabolismo , Subunidade beta de Receptor de Oncostatina M/metabolismo , Fragmentos de Peptídeos/imunologia , Receptores Mitogênicos/genética , Transdução de Sinais
4.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31995728

RESUMO

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisossomos/enzimologia , Ubiquitina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adolescente , Adulto , Animais , Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Feminino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglicemiantes/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Adulto Jovem
5.
Immunity ; 49(4): 709-724.e8, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30291028

RESUMO

B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins. Secreted IgD targeted basophils by interacting with the CD44-binding protein galectin-9. When engaged by antigen, basophil-bound IgD increased basophil secretion of interleukin-4 (IL-4), IL-5, and IL-13, which facilitated the generation of T follicular helper type 2 cells expressing IL-4. These germinal center T cells enhanced IgG1 and IgE but not IgG2a and IgG2b responses to the antigen initially recognized by basophil-bound IgD. In addition, IgD ligation by antigen attenuated allergic basophil degranulation induced by IgE co-ligation. Thus, IgD may link B cells with basophils to optimize humoral T helper type 2-mediated immunity against common environmental soluble antigens.


Assuntos
Basófilos/imunologia , Galectinas/imunologia , Receptores de Hialuronatos/imunologia , Imunoglobulina D/imunologia , Células Th2/imunologia , Animais , Basófilos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Galectinas/genética , Galectinas/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Imunoglobulina D/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos Endogâmicos BALB C , Ligação Proteica , Células Th2/metabolismo
6.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625033

RESUMO

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Assuntos
Autofagia , Galectinas/metabolismo , Lisossomos/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Galectinas/deficiência , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Serina-Treonina Quinases TOR/genética , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologia
7.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314577

RESUMO

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Assuntos
Decídua , Galectinas , Macrófagos , Pré-Eclâmpsia , Remodelação Vascular , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/imunologia , Gravidez , Feminino , Animais , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Decídua/metabolismo , Decídua/patologia , Camundongos Knockout , Útero/metabolismo , Útero/irrigação sanguínea , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Antígenos CD11
8.
Gastroenterology ; 167(2): 298-314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467382

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) has a desmoplastic tumor stroma and immunosuppressive microenvironment. Galectin-3 (GAL3) is enriched in PDAC, highly expressed by cancer cells and myeloid cells. However, the functional roles of GAL3 in the PDAC microenvironment remain elusive. METHODS: We generated a novel transgenic mouse model (LSL-KrasG12D/+;Trp53loxP/loxP;Pdx1-Cre;Lgals3-/- [KPPC;Lgals3-/-]) that allows the genetic depletion of GAL3 from both cancer cells and myeloid cells in spontaneous PDAC formation. Single-cell RNA-sequencing analysis was used to identify the alterations in the tumor microenvironment upon GAL3 depletion. We investigated both the cancer cell-intrinsic function and immunosuppressive function of GAL3. We also evaluated the therapeutic efficacy of GAL3 inhibition in combination with immunotherapy. RESULTS: Genetic deletion of GAL3 significantly inhibited the spontaneous pancreatic tumor progression and prolonged the survival of KPPC;Lgals3-/- mice. Single-cell analysis revealed that genetic deletion of GAL3 altered the phenotypes of immune cells, cancer cells, and other cell populations. GAL3 deletion significantly enriched the antitumor myeloid cell subpopulation with high major histocompatibility complex class II expression. We also identified that GAL3 depletion resulted in CXCL12 upregulation, which could act as a potential compensating mechanism on GAL3 deficiency. Combined inhibition of the CXCL12-CXCR4 axis and GAL3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly inhibited PDAC progression. In addition, deletion of GAL3 also inhibited the basal/mesenchymal-like phenotype of pancreatic cancer cells. CONCLUSIONS: GAL3 promotes PDAC progression and immunosuppression via both cancer cell-intrinsic and immune-related mechanisms. Combined treatment targeting GAL3, CXCL12-CXCR4 axis, and PD-1 represents a novel therapeutic strategy for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Progressão da Doença , Galectina 3 , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Microambiente Tumoral/imunologia , Camundongos , Humanos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral , Deleção de Genes , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Camundongos Knockout , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Transdução de Sinais , Galectinas/genética , Galectinas/metabolismo
9.
PLoS Pathog ; 19(6): e1011088, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352334

RESUMO

Macrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear. We found that Gal-9 binds directly to Mycobacterium tuberculosis (Mtb) and Salmonella enterica serovar Typhimurium (Stm) and localizes to Mtb in macrophages. To determine the combined contribution of membrane damage-sensing galectins to immunity, we generated Gal-3, -8, and -9 triple knockout (TKO) mice. Mtb infection of primary macrophages from TKO mice resulted in defective autophagic flux but normal bacterial replication. Surprisingly, these mice had no discernable defect in resistance to acute infection with Mtb, Stm or Listeria monocytogenes, and had only modest impairments in bacterial growth restriction and CD4 T cell activation during chronic Mtb infection. Collectively, these findings indicate that while Gal-3, -8, and -9 respond to an array of intracellular pathogens, together these membrane damage-sensing galectins play a limited role in host resistance to bacterial infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Galectina 3/genética , Tuberculose/metabolismo , Galectinas/genética , Galectinas/metabolismo , Macrófagos , Salmonella typhimurium , Camundongos Knockout
10.
EMBO Rep ; 24(9): e56841, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37381828

RESUMO

Lysosomal membrane damage represents a threat to cell viability. As such, cells have evolved sophisticated mechanisms to maintain lysosomal integrity. Small membrane lesions are detected and repaired by the endosomal sorting complex required for transport (ESCRT) machinery while more extensively damaged lysosomes are cleared by a galectin-dependent selective macroautophagic pathway (lysophagy). In this study, we identify a novel role for the autophagosome-lysosome tethering factor, TECPR1, in lysosomal membrane repair. Lysosomal damage promotes TECPR1 recruitment to damaged membranes via its N-terminal dysferlin domain. This recruitment occurs upstream of galectin and precedes the induction of lysophagy. At the damaged membrane, TECPR1 forms an alternative E3-like conjugation complex with the ATG12-ATG5 conjugate to regulate ATG16L1-independent unconventional LC3 lipidation. Abolishment of LC3 lipidation via ATG16L1/TECPR1 double knockout impairs lysosomal recovery following damage.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Proteínas Associadas aos Microtúbulos/metabolismo , Macroautofagia , Galectinas/metabolismo , Lisossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo
11.
J Biol Chem ; 299(12): 105400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898403

RESUMO

Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment. However, despite considerable progress, a full understanding of the biology and therapeutic potential of galectins has not been reached due to their diversity, multiplicity of cell targets, and receptor promiscuity. In this article, we discuss the multiple galectin-binding partners present in different cell types, focusing on their contributions to selected physiologic and pathologic settings. Understanding the molecular bases of galectin-ligand interactions, particularly their glycan-dependency, the biochemical nature of selected receptors, and underlying signaling events, might contribute to designing rational therapeutic strategies to control a broad range of pathologic conditions.


Assuntos
Galectinas , Neoplasias , Humanos , Galectinas/metabolismo , Polissacarídeos/metabolismo , Transdução de Sinais , Inflamação , Ligantes
12.
J Cell Physiol ; 239(6): e31288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685860

RESUMO

Galectin-12 is a tissue-specific galectin that has been largely defined by its role in the regulation of adipocyte differentiation and lipogenesis. This study aimed to evaluate the role of galectin-12 in the differentiation and polarization of neutrophils within a model of acute myeloid leukemia HL-60 cells. All-trans retinoic acid and dimethyl sulfoxide were used to induce differentiation of HL-60 cells which led to the generation of two phenotypes of neutrophil-like cells with opposite changes in galectin-12 gene (LGALS12) expression and different functional responses to N-formyl- l-methionyl- l-leucyl- l-phenylalanine. These phenotypes showed significant differences of differentially expressed genes on a global scale based on bioinformatics analysis of available Gene Expression Omnibus (GEO) data sets. We also demonstrated that HL-60 cells could secrete and accumulate galectin-12 in cell culture medium under normal growth conditions. This secretion was found to be entirely inhibited upon neutrophilic differentiation and was accompanied by an increase in intracellular lipid droplet content and significant enrichment of 22 lipid gene ontology terms related to lipid metabolism in differentiated cells. These findings suggest that galectin-12 could serve as a marker of neutrophilic plasticity or polarization into different phenotypes and that galectin-12 secretion may be influenced by lipid droplet biogenesis.


Assuntos
Galectinas , Leucemia Promielocítica Aguda , Neutrófilos , Humanos , Diferenciação Celular , Galectinas/metabolismo , Galectinas/genética , Células HL-60 , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Metabolismo dos Lipídeos/genética , Neutrófilos/metabolismo , Fenótipo , Tretinoína/farmacologia
13.
Glycobiology ; 34(1)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37815932

RESUMO

Galectin-3, well characterized as a glycan binding protein, has been identified as a putative RNA binding protein, possibly through participation in pre-mRNA maturation through interactions with splicosomes. Given recent developments with cell surface RNA biology, the putative dual-function nature of galectin-3 evokes a possible non-classical connection between glycobiology and RNA biology. However, with limited functional evidence of a direct RNA interaction, many molecular-level observations rely on affinity reagents and lack appropriate genetic controls. Thus, evidence of a direct interaction remains elusive. We demonstrate that antibodies raised to endogenous human galectin-3 can isolate RNA-protein crosslinks, but this activity remains insensitive to LGALS3 knock-out. Proteomic characterization of anti-galectin-3 IPs revealed enrichment of galectin-3, but high abundance of hnRNPA2B1, an abundant, well-characterized RNA-binding protein with weak homology to the N-terminal domain of galectin-3, in the isolate. Genetic ablation of HNRNPA2B1, but not LGALS3, eliminates the ability of the anti-galectin-3 antibodies to isolate RNA-protein crosslinks, implying either an indirect interaction or cross-reactivity. To address this, we introduced an epitope tag to the endogenous C-terminal locus of LGALS3. Isolation of the tagged galectin-3 failed to reveal any RNA-protein crosslinks. This result suggests that the galectin-3 does not directly interact with RNA and may be misidentified as an RNA-binding protein, at least in HeLa where the putative RNA associations were first identified. We encourage further investigation of this phenomenon employ gene deletions and, when possible, endogenous epitope tags to achieve the specificity required to evaluate potential interactions.


Assuntos
Galectina 3 , RNA , Humanos , Epitopos , Galectina 3/genética , Galectina 3/metabolismo , Galectinas/metabolismo , Proteômica , Proteínas de Ligação a RNA
14.
Br J Cancer ; 130(9): 1463-1476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438589

RESUMO

BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.


Assuntos
Proteínas Sanguíneas , Cistadenocarcinoma Seroso , Galectina 3 , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Prognóstico , Animais , Camundongos , Galectinas/genética , Galectinas/metabolismo , Movimento Celular
15.
Biochem Biophys Res Commun ; 697: 149544, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38245927

RESUMO

T-cell immunoglobulin and mucin protein 3 (Tim-3), also known as Hepatitis A virus cellular receptor 2, has been discovered to have a negative regulatory effect on murine T-cell responses. Galectin-9 exhibits various biological effects, including cell aggregation, eosinophil chemoattraction, activation, and apoptosis, observed in murine thymocytes, T-cells, and human melanoma cells. Such approach demonstrated that Galectin-9 acts as a binding partner on Tim-3 and mediates the T-cell inhibitory effects. Tl-gal is a homologous protein to galectin-9, isolated from the adult stage of the canine gastrointestinal nematode parasite Toxascaris leonina. However, molecular mechanism between Tim-3 and galectin-9 is still remain unknown. Here, we describe the cryo-electron microscopy and X-ray structures and interactions of the Tim-3 and Tl-gal complex as well as their biochemical and biophysical characterization. In the structure, Ser46 residue of Tl-gal NCRD was bound to Asp25 residue of hTim-3. Compared to our previous study, the binding site of the complex is the same as the sugar binding site (the Ser46 residue) of Tl-gal. In addition, analysis of the complex structure revealed that the four Tl-gal molecules were in an open form packing and one mTim-3 peptide was bound to one Tl-gal molecule. These observations suggest that how Tl-gal binds hTim3 is essential to understanding the molecular mechanism for the Tim-3-galectin 9 interaction that regulates immune responses. This could potentially serve as a therapeutic target for inflammatory diseases.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Toxascaris , Adulto , Camundongos , Animais , Humanos , Cães , Toxascaris/química , Toxascaris/metabolismo , Microscopia Crioeletrônica , Galectinas/metabolismo , Imunoglobulinas , Mucinas
16.
J Transl Med ; 22(1): 174, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369502

RESUMO

BACKGROUND: Overexpression of T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3) is related to the exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs) in diffuse large B-cell lymphoma (DLBCL). However, the mechanism of TIM3-mediated CD8+TILs exhaustion in DLBCL remains poorly understood. Therefore, we aimed to clarify the potential pathway involved in TIM3-mediated CD8+TILs exhaustion and its significance in DLBCL. METHODS: The expression of TIM3 and its correlation with CD8+TILs exhaustion, the key ligand of TIM3, and the potential pathway of TIM3-mediated CD8+TILs exhaustion in DLBCL were analyzed using single-cell RNA sequencing and validated by RNA sequencing. The biological significance of TIM3-related pathway in DLBCL was investigated based on RNA sequencing, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction data. Finally, the possible regulatory mechanism of TIM3-related pathway in DLBCL was explored using single-cell RNA sequencing and RNA sequencing. RESULTS: Our results demonstrated that CD8+TILs, especially the terminally exhausted state, were the major clusters that expressed TIM3 in DLBCL. Galectin-9, mainly expressed in M2 macrophages, is the key ligand of TIM3 and can induce the exhaustion of CD8+TILs through TIM3/Galectin-9 pathway. Meanwhile, high TIM3/Galectin-9 enrichment is related to immunosuppressive tumor microenvironment, severe clinical manifestations, inferior prognosis, and poor response to CHOP-based chemotherapy, and can predict the clinical efficacy of immune checkpoint blockade therapy in DLBCL. Furthermore, the TIM3/Galectin-9 enrichment in DLBCL may be regulated by the IFN-γ signaling pathway. CONCLUSIONS: Our study highlights that TIM3/Galectin-9 pathway plays a crucial role in CD8+TILs exhaustion and the immune escape of DLBCL, which facilitates further functional studies and could provide a theoretical basis for the development of novel immunotherapy in DLBCL.


Assuntos
Linfócitos T CD8-Positivos , Galectinas , Receptor Celular 2 do Vírus da Hepatite A , Linfoma Difuso de Grandes Células B , Humanos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Ligantes , Linfócitos do Interstício Tumoral , Linfoma Difuso de Grandes Células B/patologia , Microambiente Tumoral , Galectinas/metabolismo
17.
PLoS Pathog ; 18(7): e1010736, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857795

RESUMO

Intracellular pathogens cause membrane distortion and damage as they enter host cells. Cells perceive these membrane alterations as danger signals and respond by activating autophagy. This response has primarily been studied during bacterial invasion, and only rarely in viral infections. Here, we investigate the cellular response to membrane damage during adenoviral entry. Adenoviruses and their vector derivatives, that are an important vaccine platform against SARS-CoV-2, enter the host cell by endocytosis followed by lysis of the endosomal membrane. We previously showed that cells mount a locally confined autophagy response at the site of endosomal membrane lysis. Here we describe the mechanism of autophagy induction: endosomal membrane damage activates the kinase TBK1 that accumulates in its phosphorylated form at the penetration site. Activation and recruitment of TBK1 require detection of membrane damage by galectin 8 but occur independently of classical autophagy receptors or functional autophagy. Instead, TBK1 itself promotes subsequent autophagy that adenoviruses need to take control of. Deletion of TBK1 reduces LC3 lipidation during adenovirus infection and restores the infectivity of an adenovirus mutant that is restricted by autophagy. By comparing adenovirus-induced membrane damage to sterile lysosomal damage, we implicate TBK1 in the response to a broader range of types of membrane damage. Our study thus highlights an important role for TBK1 in the cellular response to adenoviral endosome penetration and places TBK1 early in the pathway leading to autophagy in response to membrane damage.


Assuntos
Infecções por Adenoviridae , Autofagia , Endossomos , Proteínas Serina-Treonina Quinases , Adenoviridae/metabolismo , Infecções por Adenoviridae/metabolismo , Endossomos/metabolismo , Galectinas/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética
18.
Glycoconj J ; 41(2): 93-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630380

RESUMO

Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.


Assuntos
Galectina 3 , Pectinas , Animais , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Proteínas Sanguíneas , Galectina 3/metabolismo , Galectina 3/antagonistas & inibidores , Galectinas/metabolismo , Galectinas/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Pectinas/farmacologia , Pectinas/química
19.
Cell Commun Signal ; 22(1): 175, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468333

RESUMO

Galectins constitute a class of lectins that specifically interact with ß-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.


Assuntos
Galectina 1 , Galectinas , Galectinas/metabolismo , Fatores de Crescimento de Fibroblastos , Glicoconjugados , Ribossomos/metabolismo
20.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750548

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Assuntos
Endocitose , Galectina 1 , Galectinas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Galectinas/metabolismo , Transdução de Sinais , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA