Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.967
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2208361120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881622

RESUMO

Crowding effects critically impact the self-organization of densely packed cellular assemblies, such as biofilms, solid tumors, and developing tissues. When cells grow and divide, they push each other apart, remodeling the structure and extent of the population's range. Recent work has shown that crowding has a strong impact on the strength of natural selection. However, the impact of crowding on neutral processes, which controls the fate of new variants as long as they are rare, remains unclear. Here, we quantify the genetic diversity of expanding microbial colonies and uncover signatures of crowding in the site frequency spectrum. By combining Luria-Delbrück fluctuation tests, lineage tracing in a novel microfluidic incubator, cell-based simulations, and theoretical modeling, we find that the majority of mutations arise behind the expanding frontier, giving rise to clones that are mechanically "pushed out" of the growing region by the proliferating cells in front. These excluded-volume interactions result in a clone-size distribution that solely depends on where the mutation first arose relative to the front and is characterized by a simple power law for low-frequency clones. Our model predicts that the distribution depends on a single parameter-the characteristic growth layer thickness-and hence allows estimation of the mutation rate in a variety of crowded cellular populations. Combined with previous studies on high-frequency mutations, our finding provides a unified picture of the genetic diversity in expanding populations over the whole frequency range and suggests a practical method to assess growth dynamics by sequencing populations across spatial scales.


Assuntos
Biofilmes , Gastrópodes , Animais , Microfluídica , Mutação , Taxa de Mutação
2.
Proc Natl Acad Sci U S A ; 120(38): e2305575120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695909

RESUMO

Animal cytoplasmic fatty acid synthase (FAS) represents a unique family of enzymes that are classically thought to be most closely related to fungal polyketide synthase (PKS). Recently, a widespread family of animal lipid metabolic enzymes has been described that bridges the gap between these two ubiquitous and important enzyme classes: the animal FAS-like PKSs (AFPKs). Although very similar in sequence to FAS enzymes that produce saturated lipids widely found in animals, AFPKs instead produce structurally diverse compounds that resemble bioactive polyketides. Little is known about the factors that bridge lipid and polyketide synthesis in the animals. Here, we describe the function of EcPKS2 from Elysia chlorotica, which synthesizes a complex polypropionate natural product found in this mollusc. EcPKS2 starter unit promiscuity potentially explains the high diversity of polyketides found in and among molluscan species. Biochemical comparison of EcPKS2 with the previously described EcPKS1 reveals molecular principles governing substrate selectivity that should apply to related enzymes encoded within the genomes of photosynthetic gastropods. Hybridization experiments combining EcPKS1 and EcPKS2 demonstrate the interactions between the ketoreductase and ketosynthase domains in governing the product outcomes. Overall, these findings enable an understanding of the molecular principles of structural diversity underlying the many molluscan polyketides likely produced by the diverse AFPK enzyme family.


Assuntos
Produtos Biológicos , Gastrópodes , Policetídeos , Animais , Policetídeo Sintases/genética , Ácido Graxo Sintases , Lipídeos
3.
Dev Biol ; 515: 7-17, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38942110

RESUMO

In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.


Assuntos
Actinas , Actomiosina , Exoesqueleto , Gastrópodes , Morfogênese , Proteína cdc42 de Ligação ao GTP , Animais , Gastrópodes/embriologia , Gastrópodes/metabolismo , Exoesqueleto/metabolismo , Exoesqueleto/crescimento & desenvolvimento , Exoesqueleto/embriologia , Actinas/metabolismo , Actomiosina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Miosina Tipo II/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
4.
EMBO J ; 40(24): e110128, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34796973

RESUMO

Endosomes are important cellular compartments for sorting internalized cargo and immune sensing. In this issue, Wang et al describe a novel signaling pathway induced by endocytosed bacterial outer membrane vesicles, where sorting nexin 10 and caspase-5 act at the endosome to promote cytosolic exposure of LPS and initiate signaling to alter epithelial layer integrity. This study presents the first example of a specialized function for caspase-5, distinct from the inflammasome function executed by the closely related paralog caspase-4.


Assuntos
Gastrópodes , Lipopolissacarídeos , Animais , Caspases/genética , Caspases/metabolismo , Endossomos/metabolismo , Gastrópodes/metabolismo , Lipopolissacarídeos/metabolismo , Transporte Proteico
5.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905013

RESUMO

Salah Elias is Associate Professor in Developmental Biology at The University of Southampton, UK. His research aims to understand the mechanisms underlying oriented cell divisions in the mammary gland, focusing on how these divisions influence epithelial differentiation and architecture, and how their dysregulation can lead to malignant transformation. Salah set up his research group back in 2017 and has since been involved in various initiatives, including the 'New PIs in Cell and Developmental Biology' forum and activities relating to Equality, Diversity and Inclusion. We chatted with Salah over Zoom to find out more about his career and his transition to becoming an independent group leader.


Assuntos
Gastrópodes , Animais
6.
Syst Biol ; 73(3): 521-531, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456663

RESUMO

The molluskan order Neogastropoda encompasses over 15,000 almost exclusively marine species playing important roles in benthic communities and in the economies of coastal countries. Neogastropoda underwent intensive cladogenesis in the early stages of diversification, generating a "bush" at the base of their evolutionary tree, which has been hard to resolve even with high throughput molecular data. In the present study to resolve the bush, we use a variety of phylogenetic inference methods and a comprehensive exon capture dataset of 1817 loci (79.6% data occupancy) comprising 112 taxa of 48 out of 60 Neogastropoda families. Our results show consistent topologies and high support in all analyses at (super)family level, supporting monophyly of Muricoidea, Mitroidea, Conoidea, and, with some reservations, Olivoidea and Buccinoidea. Volutoidea and Turbinelloidea as currently circumscribed are clearly paraphyletic. Despite our analyses consistently resolving most backbone nodes, 3 prove problematic: First, the uncertain placement of Cancellariidae, as the sister group to either a Ficoidea-Tonnoidea clade or to the rest of Neogastropoda, leaves monophyly of Neogastropoda unresolved. Second, relationships are contradictory at the base of the major "core Neogastropoda" grouping. Third, coalescence-based analyses reject monophyly of the Buccinoidea in relation to Vasidae. We analyzed phylogenetic signal of targeted loci in relation to potential biases, and we propose the most probable resolutions in the latter 2 recalcitrant nodes. The uncertain placement of Cancellariidae may be explained by orthology violations due to differential paralog loss shortly after the whole genome duplication, which should be resolved with a curated set of longer loci.


Assuntos
Gastrópodes , Filogenia , Animais , Gastrópodes/classificação , Gastrópodes/genética
7.
PLoS Biol ; 20(11): e3001857, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346789

RESUMO

Kleptoplasty, the process by which a host organism sequesters and retains algal chloroplasts, is relatively common in protists. The origin of the plastid varies, as do the length of time it is retained in the host and the functionality of the association. In metazoa, the capacity for long-term (several weeks to months) maintenance of photosynthetically active chloroplasts is a unique characteristic of a handful of sacoglossan sea slugs. This capability has earned these slugs the epithets "crawling leaves" and "solar-powered sea slugs." This Unsolved Mystery explores the basis of chloroplast maintenance and function and attempts to clarify contradictory results in the published literature. We address some of the mysteries of this remarkable association. Why are functional chloroplasts retained? And how is the function of stolen chloroplasts maintained without the support of the algal nucleus?


Assuntos
Gastrópodes , Fotossíntese , Animais , Cloroplastos/metabolismo , Plastídeos/metabolismo
8.
BMC Biol ; 22(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233809

RESUMO

BACKGROUND: How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS: The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS: Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.


Assuntos
Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Evolução Molecular , Moluscos/genética , Cromossomos , Fenótipo , Expressão Gênica
9.
J Neurosci ; 43(20): 3647-3657, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37094932

RESUMO

Similar design characterizes neuronal networks for goal-directed motor control across the complex, segmented vertebrates, insects, and polychaete annelids with jointed appendages. Evidence is lacking for whether this design evolved independently in those lineages, evolved in parallel with segmentation and appendages, or could have been present in a soft-bodied common ancestor. We examined coordination of locomotion in an unsegmented, ciliolocomoting gastropod, the sea slug Pleurobranchaea californica, which may better resemble the urbilaterian ancestor. Previously, bilateral A-cluster neurons in cerebral ganglion lobes were found to compose a multifunctional premotor network controlling the escape swim and feeding suppression, and mediating action selection for approach or avoidance turns. Serotonergic As interneurons of this cluster were critical elements for swimming, turning, and behavioral arousal. Here, known functions were extended to show that the As2/3 cells of the As group drove crawling locomotion via descending signals to pedal ganglia effector networks for ciliolocomotion and were inhibited during fictive feeding and withdrawal. Crawling was suppressed in aversive turns, defensive withdrawal, and active feeding, but not during stimulus-approach turns or prebite proboscis extension. Ciliary beating was not inhibited during escape swimming. These results show how locomotion is adaptively coordinated in tracking, handling, and consuming resources, and in defense. Taken with previous results, they also show that the A-cluster network acts similarly to the vertebrate reticular formation with its serotonergic raphe nuclei in facilitating locomotion, postural movements, and motor arousal. Thus, the general scheme controlling locomotion and posture might well have preceded the evolution of segmented bodies and articulated appendages.SIGNIFICANCE STATEMENT Similar design in the neuronal networks for goal-directed motor control is seen across the complex, segmented vertebrates, insects, and polychaete annelids with jointed appendages. Whether that design evolved independently or in parallel with complexity in body and behavior has been unanswered. Here it is shown that a simple sea slug, with primitive ciliary locomotion and lacking segmentation and appendages, has similar modular design in network coordination as vertebrates for posture in directional turns and withdrawal, locomotion, and general arousal. This suggests that a general neuroanatomical framework for the control of locomotion and posture could have arisen early during the evolution of bilaterians.


Assuntos
Gastrópodes , Pleurobranchaea , Animais , Pleurobranchaea/fisiologia , Neurônios Serotoninérgicos , Locomoção/fisiologia , Natação/fisiologia , Vertebrados
10.
Dev Biol ; 503: 83-94, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37619713

RESUMO

Within the chordates, only some colonial ascidians experience whole body regeneration (WBR), where amputated small colonial fragments containing blood-vessels have the capability to regenerate the entire functional adult zooid within 1-3 weeks. Studying WBR in small colonial fragments taken at different blastogenic stages (the weekly developmental process characteristic to botryllid ascidians) from the ascidian Botrylloides leachii, about half of the fragments were able to complete regeneration (cWBR) three weeks following separation, about half were still in uncomplete, running regeneration (rWBR), and only a small percentage died. cWBR significantly increased in fragments that originated from a late blastogenic stage compared to an early stage. Most B. leachii populations reside in shallow waters, under variable daily natural UV irradiation, and it is of interest to elucidate irradiation effects on development and regeneration. Here, we show that UV-B irradiation resulted in enhanced mortality, with abnormal morphological changes in surviving fragments, yet with non-significant cWBR vs. rWBRs. Further, UV-B irradiation influenced the proportion of blood cells (morula cells, hemoblasts) and of multinucleated cells, a new WBR-associated cell type. At 24-h post-amputation we observed enhanced expression of ß-catenin (a signaling pathway that plays indispensable roles in cell renewal and regeneration), H3 and PCNA in all cell types of non-irradiated as compared to irradiated fragments. These elevated levels were considerably reduced 9-days later. Since WBR is a highly complex phenomenon, the employment of specific experimental conditions, as UV-B irradiation, alongside blastogenesis (the weekly developmental process), elucidates undisclosed facets of this unique biological occurrence such as transient expression of signature genes.


Assuntos
Cordados , Gastrópodes , Urocordados , Animais , Amputação Cirúrgica , Corpo Celular
11.
BMC Genomics ; 25(1): 941, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375624

RESUMO

BACKGROUND: Sequencing and annotating genomes of non-model organisms helps to understand genome architecture, the genetic processes underlying species traits, and how these genes have evolved in closely-related taxa, among many other biological processes. However, many metazoan groups, such as the extremely diverse molluscs, are still underrepresented in the number of sequenced and annotated genomes. Although sequencing techniques have recently improved in quality and quantity, molluscs are still neglected due to difficulties in applying standardized protocols for obtaining genomic data. RESULTS: In this study, we present the chromosome-level genome assembly and annotation of the sacoglossan sea slug species Elysia timida, known for its ability to store the chloroplasts of its food algae. In particular, by optimizing the long-read and chromosome conformation capture library preparations, the genome assembly was performed using PacBio HiFi and Arima HiC data. The scaffold and contig N50s, at 41.8 Mb and 1.92 Mb, respectively, are approximately 30-fold and fourfold higher compared to other published sacoglossan genome assemblies. Structural annotation resulted in 19,904 protein-coding genes, which are more contiguous and complete compared to publicly available annotations of Sacoglossa with respect to metazoan BUSCOs. We found no evidence for horizontal gene transfer (HGT), i.e. no photosynthetic genes encoded in the sacoglossan nucleus genome. However, we detected genes encoding polyketide synthases in E. timida, indicating that polypropionates are produced. HPLC-MS/MS analysis confirmed the presence of a large number of polypropionates, including known and yet uncharacterised compounds. CONCLUSIONS: We can show that our methodological approach helps to obtain a high-quality genome assembly even for a "difficult-to-sequence" organism, which may facilitate genome sequencing in molluscs. This will enable a better understanding of complex biological processes in molluscs, such as functional kleptoplasty in Sacoglossa, by significantly improving the quality of genome assemblies and annotations.


Assuntos
Cromossomos , Gastrópodes , Genoma , Anotação de Sequência Molecular , Animais , Gastrópodes/genética , Cromossomos/genética , Genômica/métodos
12.
BMC Genomics ; 25(1): 77, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243187

RESUMO

BACKGROUND: The Peruvian 'chanque' or Chilean 'loco' Concholepas concholepas is an economically, ecologically, and culturally important muricid gastropod heavily exploited by artisanal fisheries in the temperate southeastern Pacific Ocean. In this study, we have profited from a set of bioinformatics tools to recover important biological information of C. concholepas from low-coverage short-read NGS datasets. Specifically, we calculated the size of the nuclear genome, ploidy, and estimated transposable elements content using an in silico k-mer approach, we discovered, annotated, and quantified those transposable elements, we assembled and annotated the 45S rDNA RNA operon and mitochondrial genome, and we confirmed the phylogenetic position of C. concholepas within the muricid subfamily Rapaninae based on translated protein coding genes. RESULTS: Using a k-mer approach, the haploid genome size estimated for the predicted diploid genome of C. concholepas varied between 1.83 Gbp (with kmer = 24) and 2.32 Gbp (with kmer = 36). Between half and two thirds of the nuclear genome of C. concholepas was composed of transposable elements. The most common transposable elements were classified as Long Interspersed Nuclear Elements and Short Interspersed Nuclear Elements, which were more abundant than DNA transposons, simple repeats, and Long Terminal Repeats. Less abundant repeat elements included Helitron mobile elements, 45S rRNA DNA, and Satellite DNA, among a few others.The 45S rRNA DNA operon of C. concholepas that encodes for the ssrRNA, 5.8S rRNA, and lsrRNA genes was assembled into a single contig 8,090 bp long. The assembled mitochondrial genome of C. concholepas is 15,449 bp long and encodes 13 protein coding genes, two ribosomal genes, and 22 transfer RNAs. CONCLUSION: The information gained by this study will inform the assembly of a high quality nuclear genome for C. concholepas and will support bioprospecting and biomonitoring using environmental DNA to advance development of conservation and management plans in this overexploited marine snail.


Assuntos
Gastrópodes , Genoma Mitocondrial , Animais , Gastrópodes/genética , Gastrópodes/metabolismo , Elementos de DNA Transponíveis/genética , Tamanho do Genoma , Filogenia , RNA Nuclear/metabolismo , Caramujos/genética , Óperon , Ploidias
13.
Emerg Infect Dis ; 30(3): 572-576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407225

RESUMO

A high prevalence of Echinostoma mekongi infection (13.9%; 260/1,876) was found among schoolchildren and adults in Kandal Province, Cambodia, by fecal examination, worm expulsion, and molecular analysis of cox1 and nd1 genes. The source of infection was consumption of Pila sp. snails, a finding confirmed morphologically and molecularly.


Assuntos
Echinostoma , Gastrópodes , Animais , Camboja/epidemiologia , Prevalência , Sorogrupo
14.
Emerg Infect Dis ; 30(13): S21-S27, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561638

RESUMO

Institution-level wastewater-based surveillance was implemented during the COVID-19 pandemic, including in carceral facilities. We examined the relationship between COVID-19 diagnostic test results of residents in a jail in Atlanta, Georgia, USA (average population ≈2,700), and quantitative reverse transcription PCR signal for SARS-CoV-2 in weekly wastewater samples collected during October 2021‒May 2022. The jail offered residents rapid antigen testing at entry and periodic mass screenings by reverse transcription PCR of self-collected nasal swab specimens. We aggregated individual test data, calculated the Spearman correlation coefficient, and performed logistic regression to examine the relationship between strength of SARS-CoV-2 PCR signal (cycle threshold value) in wastewater and percentage of jail population that tested positive for COVID-19. Of 13,745 nasal specimens collected, 3.9% were COVID-positive (range 0%-29.5% per week). We observed a strong inverse correlation between diagnostic test positivity and cycle threshold value (r = -0.67; p<0.01). Wastewater-based surveillance represents an effective strategy for jailwide surveillance of COVID-19.


Assuntos
COVID-19 , Gastrópodes , Humanos , Animais , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Georgia/epidemiologia , Águas Residuárias , Prisões Locais , Pandemias , RNA Viral
15.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494290

RESUMO

The diversity of venomous organisms and the toxins they produce have been increasingly investigated, but taxonomic bias remains important. Neogastropods, a group of marine predators representing almost 22% of the known gastropod diversity, evolved a wide range of feeding strategies, including the production of toxins to subdue their preys. However, whether the diversity of these compounds is at the origin of the hyperdiversification of the group and how genome evolution may correlate with both the compounds and species diversities remain understudied. Among the available gastropods genomes, only eight, with uneven quality assemblies, belong to neogastropods. Here, we generated chromosome-level assemblies of two species belonging to the Tonnoidea and Muricoidea superfamilies (Monoplex corrugatus and Stramonita haemastoma). The two obtained high-quality genomes had 3 and 2.2 Gb, respectively, and 92-89% of the total assembly conformed 35 pseudochromosomes in each species. Through the analysis of syntenic blocks, Hox gene cluster duplication, and synonymous substitutions distribution pattern, we inferred the occurrence of a whole genome duplication event in both genomes. As these species are known to release venom, toxins were annotated in both genomes, but few of them were found in homologous chromosomes. A comparison of the expression of ohnolog genes (using transcriptomes from osphradium and salivary glands in S. haemastoma), where both copies were differentially expressed, showed that most of them had similar expression profiles. The high quality of these genomes makes them valuable reference in their respective taxa, facilitating the identification of genome-level processes at the origin of their evolutionary success.


Assuntos
Evolução Molecular , Gastrópodes , Duplicação Gênica , Genoma , Venenos de Moluscos , Gastrópodes/classificação , Gastrópodes/genética , Genoma/genética , Animais , Cromossomos/genética , Genes Homeobox , Sintenia/genética , Transcriptoma/genética , Venenos de Moluscos/genética
16.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707440

RESUMO

Polyploidy is recurrent across the tree of life and known as an evolutionary driving force in plant diversification and crop domestication. How polyploid plants adapt to various habitats has been a fundamental question that remained largely unanswered. Brassica napus is a major crop cultivated worldwide, resulting from allopolyploidy between unknown accessions of diploid B. rapa and B. oleracea. Here, we used whole-genome resequencing data of accessions representing the majority of morphotypes and ecotypes from the species B. rapa, B. oleracea, and B. napus to investigate the role of polyploidy during domestication. To do so, we first reconstructed the phylogenetic history of B. napus, which supported the hypothesis that the emergence of B. napus derived from the hybridization of European turnip of B. rapa and wild B. oleracea. These analyses also showed that morphotypes of swede and Siberian kale (used as vegetable and fodder) were domesticated before rapeseed (oil crop). We next observed that frequent interploidy introgressions from sympatric diploids were prominent throughout the domestication history of B. napus. Introgressed genomic regions were shown to increase the overall genetic diversity and tend to be localized in regions of high recombination. We detected numerous candidate adaptive introgressed regions and found evidence that some of the genes in these regions contributed to phenotypic diversification and adaptation of different morphotypes. Overall, our results shed light on the origin and domestication of B. napus and demonstrate interploidy introgression as an important mechanism that fuels rapid diversification in polyploid species.


Assuntos
Brassica napus , Gastrópodes , Animais , Brassica napus/genética , Domesticação , Filogenia , Ração Animal , Poliploidia
17.
Proc Biol Sci ; 291(2027): 20240953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39013421

RESUMO

The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.


Assuntos
Cor , Gastrópodes , Comportamento Predatório , Animais , Gastrópodes/fisiologia , Pigmentação , Mimetismo Biológico
18.
Proc Biol Sci ; 291(2014): 20232583, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196361

RESUMO

Predator-induced changes in prey foraging can influence community dynamics by increasing the abundance of basal resources via a trait-mediated trophic cascade. The strength of these cascades may be altered by eco-evolutionary relationships between predators and prey, but the role of basal resources has received limited attention. We hypothesized that trait-mediated trophic cascade strength may be shaped by selection from trophic levels above and below prey. Field and laboratory experiments used snails (Nucella lapillus) from two regions in the Gulf of Maine (GoM) that vary in basal resource availability (e.g. mussels), seawater temperature, and contact history with the invasive green crab, Carcinus maenas. In field and laboratory experiments, Nucella from both regions foraged on mussels in the presence or absence of green crab risk cues. In the field, Nucella from the northern GoM, where mussels are scarce, were less responsive to risk cues and more responsive to seawater temperature than southern Nucella. In the lab, however, northern Nucella foraged and grew more than southern snails in the presence of risk, but foraging and growth were similar in the absence of risk. We suggest that adaptation to basal resource availability may shape geographical variation in the strength of trait-mediated trophic cascades.


Assuntos
Gastrópodes , Animais , Evolução Biológica , Sinais (Psicologia) , Geografia , Laboratórios
19.
Proc Biol Sci ; 291(2031): 20241303, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317324

RESUMO

Long-term baseline data that allow tracking how predator-prey interactions have responded to intensifying human impacts are often lacking. Here, we assess temporal changes in benthic community composition and interactions between drilling predatory gastropods and their molluscan prey using the Holocene fossil record of the shallow northern Adriatic Sea, which is characterized by a long history of human transformation. Molluscan assemblages differ between the Isonzo and Po prodelta, but both show consistent temporal trends in the abundance of dominant species. Samples of mollusc prey collected at high stratigraphic resolution indicate that drilling frequencies have drastically declined in the Po prodelta since the mid-twentieth century, while a weaker trend in the more condensed sediments of the Isonzo prodelta is not statistically significant. The decrease in drilling predation intensity and the community turnover are linked to the loss of predatory gastropods and the increased relative abundance of less-preferred prey during the most recent decades. Our results align with data showing the substantial depletion of marine resources at higher trophic levels in the region and indicate that the strong simplification of the food web initiated in the late nineteenth century accelerated further since the mid-twentieth century.


Assuntos
Cadeia Alimentar , Fósseis , Comportamento Predatório , Animais , Gastrópodes/fisiologia , Humanos , Moluscos/fisiologia , Mar Mediterrâneo
20.
Mol Phylogenet Evol ; 199: 108139, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986757

RESUMO

Littorinoidea is one of the most diverse radiations and the most successful group that evolutionary transitions from marine to terrestrial within Littorinimorpha. With such an unmatched diversity, few phylogenetic investigations have attempted to understand their evolutionary relationships, and existing research has primarily focused on typical intertidal species. To address this gap, we conducted the first phylogenomic analysis of the Littorinoidea, leveraging 35 transcriptomes to investigate their internal relationships. Our analyses revealed significant revisions necessary within the Littorinoidea: 1) Pomatias appears distantly related to Littorinidae, suggesting a potential ancestral origin outside of Littorinoidea, challenging traditional classification. The homology of penial innervation within Littorinoidea warrants reevaluation. 2) Lacuna's placement indicates a close relationship with Naticidae, prompting consideration for its removal from Littorinidae. 3) Based on the current phylogenetic research, Peasiella may belong to a distinct family separate from Littorinidae. 4) Our findings support revising the placement of Pteropods within the Littorinimorpha, which is situated phylogenetically between the families Littorinoidea and Naticoidea. Additionally, we highlight the impact of site heterogeneity and evolutionary rate variation on phylogenetic inference. Our study provides a robust phylogenomic framework for the Littorinoidea, emphasizing the importance of including microgastropoda taxa in molecular phylogenetic reconstructions of gastropod subgroups.


Assuntos
Gastrópodes , Filogenia , Animais , Gastrópodes/genética , Gastrópodes/classificação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA