Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.141
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 162(4): 337-347, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38880796

RESUMO

Förster resonance energy transfer (FRET) serves as a tool for measuring protein-protein interactions using various sensor molecules. The tension sensor module relies on FRET technology. In our study, this module was inserted within the actinin molecule to measure the surface tension of the cells. Given that the decay curve of FRET efficiency correlates with surface tension increase, precise and accurate efficiency measurement becomes crucial. Among the methods of FRET measurements, FRET efficiency remains the most accurate if sample fixation is successful. However, when cells were fixed with 4% paraformaldehyde (PFA), the actinin-FRET sensor diffused across the cytoplasm; this prompted us to explore fixation method enhancements. Glyoxal fixative has been reported to improve cytoskeletal morphologies compared to PFA. However, it was not known whether glyoxal fits FRET measurements. Glyoxal necessitates an acetic acid solution for fixation; however, acidic conditions could compromise fluorescence stability. We observed that the pH working range of glyoxal fixative aligns closely with MES (methyl-ethylene sulfonic acid) Good's buffer. Initially, we switched the acidic solution for MES buffer and optimized the fixation procedure for in vitro and in vivo FRET imaging. By comparing FRET measurements on hydrogels with known stiffness to tumor nodules in mouse lung, we estimated in vivo stiffness. The estimated stiffness of cancerous tissue was harder than the reported stiffness of smooth muscle. This discovery shed lights on how cancer cells perceive environmental stiffness during metastasis.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Glioxal , Glioxal/química , Animais , Camundongos , Citoesqueleto/metabolismo , Citoesqueleto/química , Humanos , Fixadores/química
2.
Br J Nutr ; 131(11): 1902-1914, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38383991

RESUMO

Dicarbonyl compounds are highly reactive precursors of advanced glycation end products (AGE), produced endogenously, present in certain foods and formed during food processing. AGE contribute to the development of adverse metabolic outcomes, but health effects of dietary dicarbonyls are largely unexplored. We investigated associations between three dietary dicarbonyl compounds, methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3-DG), and body weight changes in European adults. Dicarbonyl intakes were estimated using food composition database from 263 095 European Prospective Investigation into Cancer and Nutrition-Physical Activity, Nutrition, Alcohol, Cessation of Smoking, Eating Out of Home in Relation to Anthropometry participants with two body weight assessments (median follow-up time = 5·4 years). Associations between dicarbonyls and 5-year body-weight changes were estimated using mixed linear regression models. Stratified analyses by sex, age and baseline BMI were performed. Risk of becoming overweight/obese was assessed using multivariable-adjusted logistic regression. MGO intake was associated with 5-year body-weight gain of 0·089 kg (per 1-sd increase, 95 % CI 0·072, 0·107). 3-DG was inversely associated with body-weight change (-0·076 kg, -0·094, -0·058). No significant association was observed for GO (0·018 kg, -0·002, 0·037). In stratified analyses, GO was associated with body-weight gain among women and older participants (above median of 52·4 years). MGO was associated with higher body-weight gain among older participants. 3-DG was inversely associated with body-weight gain among younger and normal-weight participants. MGO was associated with a higher risk of becoming overweight/obese, while inverse associations were observed for 3-DG. No associations were observed for GO with overweight/obesity. Dietary dicarbonyls are inconsistently associated with body weight change among European adults. Further research is needed to clarify the role of these food components in overweight and obesity, their underlying mechanisms and potential public health implications.


Assuntos
Dieta , Glioxal , Aldeído Pirúvico , Aumento de Peso , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Europa (Continente) , Desoxiglucose/análogos & derivados , Estudos Prospectivos , Obesidade/etiologia , Índice de Massa Corporal , Sobrepeso , Peso Corporal , Idoso , Estudos de Coortes , Produtos Finais de Glicação Avançada
3.
Org Biomol Chem ; 22(34): 6981-6987, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39118527

RESUMO

Glyoxal (GL) is a reactive α-dicarbonyl compound generated from glycated proteins in the Maillard reaction. It has attracted particular attention over the past few years because of its possible clinical significance in chronic and age-related diseases. In this work, a reaction-based red emission fluorescent probe GL1 has been synthesized successfully by grafting an alkyl group onto an amino group to regulate its selectivity for GL. Under physiological conditions, the fluorescence intensity of GL1 at 640 nm obviously increased with the increase of GL concentration, and it exhibited high selectivity for GL over other reactive carbonyl compounds, as well as a lower detection limit (0.021 µM) and a larger Stokes shift (112 nm). At the same time, GL1 can selectively accumulate in mitochondria and can be used to detect exogenous and endogenous GL in living cells with low cytotoxicity.


Assuntos
Corantes Fluorescentes , Glioxal , Fenilenodiaminas , Glioxal/química , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Carbocianinas/química , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Imagem Óptica , Mitocôndrias/metabolismo
4.
Environ Sci Technol ; 58(2): 1236-1243, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38169373

RESUMO

Aqueous-phase reactions of α-dicarbonyls with amines or ammonium have been identified as important sources of secondary brown carbon (BrC). However, the kinetics of BrC formation and the effects of pH are still not very clear. In this study, the kinetics of BrC formation by aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or alkylamines in bulk solution at different pH values are investigated. Our results reveal pH-parameterized BrC production rate constants, kBrCII (m-1 [M]-2 s-1), based on the light absorption between 300 and 500 nm: log10(kBrCII) = (1.0 ± 0.1) × pH - (7.4 ± 1.0) for reactions with glyoxal and log10(kBrCII) = (1.0 ± 0.1) × pH - (6.3 ± 0.9) for reactions with methylglyoxal. The linear slopes closing to 1.0 indicate that BrC formation is governed by the nitrogen nucleophilic addition pathway. Consequently, the absorptivities of the produced BrC increase exponentially with the increase of pH. BrC from reactions with methylglyoxal at higher pH (≥6.5) exhibits optical properties comparable to BrC from biomass burning or coal combustion, categorized as the "weakly" absorbing BrC, while BrC from reactions with methylglyoxal at lower pH (<6.0) or reactions with glyoxal (pH 5.0-7.0) falls into the "very weakly" absorbing BrC. The pH-dependent BrC feature significantly affects the solar absorption ability of the produced BrC and thus the atmospheric photochemical processes, e.g., BrC produced at pH 7.0 absorbs 14-16 times more solar power compared to that at pH 5.0, which in turn could lead to a decrease of 1 order of magnitude in the photolysis rate constants of O3 and NO2.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Aldeído Pirúvico/química , Fotoquímica , Carbono , Aerossóis/análise , Aminas , Glioxal , Água/química , Concentração de Íons de Hidrogênio
5.
Mikrochim Acta ; 191(2): 120, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300346

RESUMO

A highly sensitive and selective fluorescence method has been conducted for the detection of Hg2+ based on aminophenylboronic acid-modified carboxyl magnetic beads (CMB@APBA) and CRISPR/Cas12a system mediated by glyoxal caged nucleic acid (gcDNA). As a bi-functional DNA linker, gcDNA offers advantages of simultaneous recognition by boronic acid and complementary DNA/RNA. Under acidic condition, gcDNA can be immobilized on CMB@APBA through the formation of borate ester bond. The formed boric acid-esterified gcDNA can further bind with complementary CRISPR RNA through A-T base pairing to activate Cas12a with kcat/Km ratio of 3.4 × 107 s-1 M-1, allowing for amplified signal. Hg2+ can specifically combine with CMB@APBA, resulting in the release of gcDNA from CMB@APBA and the following inhibition on the activation of CRISPR/Cas12a system around magnetic bead. Under optimal conditions, the method exhibits a linear range from 20 to 250 nM, with a detection limit of 2.72 nM. The proposed method can detect Hg2+ in milk and tea beverages, providing a great significance for on-site monitoring of Hg2+ contamination in food.


Assuntos
Mercúrio , Ácidos Nucleicos , Sistemas CRISPR-Cas , RNA , Glioxal
6.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611866

RESUMO

α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.


Assuntos
Mel , Fenilenodiaminas , Óxido de Magnésio , Glioxal , Aldeído Pirúvico
7.
Angew Chem Int Ed Engl ; 63(16): e202318893, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38376389

RESUMO

α-Ketoaldehydes play versatile roles in the ubiquitous natural processes of protein glycation. However, leveraging the reactivity of α-ketoaldehydes for biomedical applications has been challenging. Previously, the reactivity of α-ketoaldehydes with guanidine has been harnessed to design probes for labeling Arg residues on proteins in an aqueous medium. Herein, a highly effective, broadly applicable, and operationally simple protocol for stapling native peptides by crosslinking two amino groups through diverse imidazolium linkers with various α-ketoaldehyde reagents is described. The use of hexafluoroisopropanol as a solvent facilitates rapid and clean reactions under mild conditions and enables unique selectivity for Lys over Arg. The naturally occurring GOLD/MOLD linkers have been expanded to encompass a wide range of modified glyoxal-lysine dimer (OLD) linkers. In a proof-of-concept trial, these modular stapling reactions enabled a convenient two-round strategy to streamline the structure-activity relationship (SAR) study of the wasp venom peptide anoplin, leading to enhanced biological activities.


Assuntos
Glioxal , Lisina , Glioxal/química , Lisina/química , Aminas , Aldeídos , Peptídeos , Reagentes de Ligações Cruzadas/química
8.
Biochemistry ; 62(6): 1181-1190, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36820886

RESUMO

Advanced glycation end-products (AGEs) are irreversible protein modifications that are strongly associated with aging and disease. Recently, the Parkinsonism-associated protein DJ-1 has been reported to exhibit deglycase activity that erases early glycation intermediates and stable AGEs from proteins. In this work, we use mass spectrometry and western blot to demonstrate that DJ-1 is not a deglycase and cannot remove AGEs from protein or peptide substrates. Instead, our studies revealed that DJ-1 antagonizes glycation through glyoxalase activity that detoxifies the potent glycating agent methylglyoxal (MGO) to lactate. We further show that attenuated glycation in the presence of DJ-1 can be attributed solely to its ability to decrease the available concentration of MGO. Our studies also provide evidence that DJ-1 is allosterically activated by glutathione. Together, this work reveals that although DJ-1 is not a genuine deglycase, it still harbors the ability to prevent AGE formation and can be used as a valuable tool to investigate metabolic stress.


Assuntos
Glioxal , Transtornos Parkinsonianos , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Glioxal/química , Glioxal/metabolismo , Óxido de Magnésio , Reação de Maillard , Transtornos Parkinsonianos/metabolismo , Proteína Desglicase DJ-1 , Aldeído Pirúvico/metabolismo
9.
Cell Physiol Biochem ; 57(2): 82-104, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988041

RESUMO

BACKGROUND/AIMS: Trazodone is a selective serotonin reuptake inhibitor; however, other mechanisms of the drug's anti-depressive properties have also been postulated. Hence, the aim of the study was to perform a systematic review and assess antiglycoxidative properties of trazodone in in vitro models. METHODS: Trazodone's scavenging and chelating properties were measured with spectrophotometric method. The impact of the drug on carbonyl/oxidative stress was marked in the bovine serum albumin (BSA) model where sugars (glucose, fructose, galactose, ribose) and aldehydes (glyoxal and methylglyoxal) were used as glycation agents. Aminoguanidine and N-acetylcysteine (NAC) were applied as reference glycation/free radical inhibitors. Glycation biomarkers (kynurenine, N-formylkynurenine, dityrosine as well as advanced glycation end products contents) were assessed spectrofluorometrically. Concentrations of oxidation parameters (total thiols (TTs), protein carbonyls (PCs) and also advanced oxidation protein products (AOPPs) levels) were determined spectrophotometrically. RESULTS: We demonstrated that trazodone poorly scavenged radicals (hydroxyl radical, nitric oxide, hydrogen peroxide and 2,2-diphenyl-1-picrylhydrazyl radical) and showed low ferrous ion chelating, unlike aminoguanidine and NAC. Sugars/aldehydes caused enhancement of glycation parameters, as well as a decrease of TTs and an increase of PCs and AOPPs levels compared to BSA incubated alone. Trazodone did not reduce oxidation parameters to the baseline (BSA) and significantly exacerbated glycation markers in comparison with both BSA and BSA+glycators. The content of glycation products was markedly lower in aminoguanidine and NAC than in trazodone. The molecular docking of trazodone to BSA revealed its very low affinity, which may indicate non-specific binding of trazodone, facilitating the attachment of glycation factors. CONCLUSION: According to our findings, it may be concluded that trazodone poorly counteracts oxidation and intensifies glycation in vitro. A possible mechanism for antiglycoxidative effect of trazodone in vivo may be the enhancement of the body's adaptive response, as indicated by the results of our systematic review.


Assuntos
Antioxidantes , Trazodona , Antioxidantes/metabolismo , Trazodona/farmacologia , Glicosilação , Produtos da Oxidação Avançada de Proteínas/metabolismo , Simulação de Acoplamento Molecular , Produtos Finais de Glicação Avançada/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Glioxal/química , Glucose
10.
Biochem Biophys Res Commun ; 679: 122-128, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37688845

RESUMO

Glycation is a non-enzymatic reaction wherein sugars or dicarbonyls such as methylglyoxal (MGO) and glyoxal (GO) react with proteins, leading to protein inactivation. The hydrolysing enzyme human deglycase-1 (hDJ-1) is reported to decrease glycative stress by deglycating the modified proteins, specifically at cysteine, lysine, and arginine sites. This specificity of hDJ-1 is thought to be regulated by its active site cysteine residue (Cys106). Structural analysis of hDJ-1 by molecular docking and simulation studies, however, indicates a possible role of glutamate (Glu18) in determining its substrate specificity. To elucidate this, Glu18 present at the catalytic site of hDJ-1 was modified to aspartate (Asp18) by SDM, and the resultant mutant was termed mutant DJ-1 (mDJ-1). Both hDJ-1 and mDJ-1 were heterologously expressed in Escherichia coli BL21 (DE3) strain and purified to homogeneity. The hDJ-1 showed kcat values of 1.45 × 103 s-1, 3.6 × 102 s-1, and 3.1 × 102 s-1, and Km values 0.181 mM, 18.18 mM, and 12.5 mM for N-acetylcysteine (NacCys), N-acetyllysine (NacLys), and N-acetylarginine (NacArg), respectively. The mDJ-1 showed altered kcat values (8 × 102 s-1, 3.8 × 102 s-1, 4.9 × 102 s-1) and Km values of 0.14 mM, 6.25 mM, 5.88 mM for NacCys, NacLys and NacArg, respectively. A single amino acid change (Glu18 to Asp18) improved the substrate specificity of mDJ-1 toward NacLys and NacArg. Understanding hDJ-1's structure and enhanced functionality will facilitate further exploration of its therapeutic potential for the treatment of glycation-induced diabetic complications.


Assuntos
Glioxal , Aldeído Pirúvico , Humanos , Simulação de Acoplamento Molecular , Especificidade por Substrato , Glioxal/metabolismo , Aldeído Pirúvico/metabolismo , Acetilcisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética
11.
RNA ; 27(6): 725-733, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846273

RESUMO

The mammalian cell nucleus contains different types of membrane-less nuclear bodies (NBs) consisting of proteins and RNAs. Microscopic imaging has been widely applied to study the organization and structure of NBs. However, current fixation methods are not optimized for such imaging: When a fixation method is chosen to maximize the quality of the RNA fluorescence in situ hybridization (FISH), it often limits the labeling efficiency of proteins or affects the ultrastructure of NBs. Here, we report that addition of glyoxal (GO) into the classical paraformaldehyde (PFA) fixation step not only improves FISH signals for RNAs in NBs via augmented permeability of the fixed nucleus and enhanced accessibility of probes, but also largely preserves protein fluorescent signals during fixation and immunostaining. We also show that GO/PFA fixation enables the covisualization of different types of nuclear bodies with minimal impact on their ultrastructures under super-resolution microscopy.


Assuntos
Estruturas do Núcleo Celular/ultraestrutura , Fixadores/química , Formaldeído/química , Glioxal/química , Hibridização in Situ Fluorescente/métodos , Polímeros/química , Células HEK293 , Células HeLa , Humanos
12.
Cardiovasc Diabetol ; 22(1): 173, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438755

RESUMO

BACKGROUND: Hyperglycaemia is frequent in acute ischemic stroke and denotes a bad prognosis, even in the absence of pre-existing diabetes. However, in clinical trials treatment of elevated glucose levels with insulin did not improve stroke outcome, suggesting that collateral effects rather than hyperglycaemia itself aggravate ischemic brain damage. As reactive glucose metabolites, glyoxal and methylglyoxal are candidates for mediating the deleterious effects of hyperglycaemia in acute stroke. METHODS: In 135 patients with acute stroke, we used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to measure glyoxal, methylglyoxal and several of their glycated amino acid derivatives in serum. Results were verified in a second cohort of 61 stroke patients. The association of serum concentrations with standard stroke outcome scales (NIHSS, mRS) was tested. RESULTS: Glucose, glyoxal, methylglyoxal, and the glyoxal-derived glycated amino acid Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (G-H1) were positively correlated with a bad stroke outcome at 3 months as measured by mRS90, at least in one of the two cohorts. However, the glycated amino acids Nε-carboxyethyllysine (CEL) and in one cohort pyrraline showed an inverse correlation with stroke outcome probably reflecting lower food intake in severe stroke. Patients with a poor outcome had higher serum concentrations of glyoxal and methylglyoxal. CONCLUSIONS: The glucose-derived α-dicarbonyl glyoxal and glycated amino acids arising from a reaction with glyoxal are associated with a poor outcome in ischemic stroke. Thus, lowering α-dicarbonyls or counteracting their action could be a therapeutic strategy for hyperglycaemic stroke.


Assuntos
Antifibrinolíticos , Hiperglicemia , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico , Glioxal , Aldeído Pirúvico , Estudos de Coortes , Hiperglicemia/diagnóstico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Acidente Vascular Cerebral/diagnóstico , Aminoácidos , Glucose , Glicopirrolato
13.
Anal Biochem ; 679: 115288, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619902

RESUMO

Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment. Biological detection probes, such as aptamers and synthetic receptors can be used as diagnostic layers to detect bacteria. In this work, an electrochemical aptasensor was developed for the ultrasensitive detection of A. baumannii by electrochemical impedance spectroscopy (EIS). The aptamer was immobilized on the surface of a CSPE modified with the nanocomposite Fe3O4@SiO2@Glyoxal (Gly) for selective and label-free detection of A. baumannii. The charge transfers resistance (Rct) between redox couple [Fe(CN)63-/4-] and the surface of aptasensor in the Nyquist plot of EIS study was used as electroanalytical signal for detection and determination of A. baumannii. The obtained results showed that the constructed aptasensor could specifically detect A. baumannii in the concentration range from 1.0 × 103-1.0 × 108 Colony-forming unit (CFU)/mL and with a detection limit of 150 CFU/mL (S/N = 3). In addition to its sensitivity, the biosensor exhibits high selectivity over some other pathogens. Therefore, a simple, inexpensive, rapid, label-free, selective, and sensitive electrochemical aptasensor was developed to detect A. baumannii.


Assuntos
Acinetobacter baumannii , Dióxido de Silício , Bactérias , Espectroscopia Dielétrica , Glioxal , Oligonucleotídeos
14.
Chem Res Toxicol ; 36(11): 1768-1777, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37888804

RESUMO

Methylglyoxal (MGO) and glyoxal (GO) are toxic α-dicarbonyl compounds that undergo reactions with amine containing molecules such as proteins and amino acids and result in the formation of advanced glycation end products (AGEs). This study aimed at investigating the reactivity of arginine (Arg) or dimethylarginine (SDMA or ADMA) with MGO or GO. The solutions of arginine and MGO or GO were prepared in PBS buffer (pH 7.4) and incubated at 37 °C. Direct electrospray ionization-high-resolution mass spectrometry (ESI-HRMS) analysis of the reaction mixture of Arg and MGO revealed the formation of Arg-MGO (1:1) and Arg-2MGO (1:2) products and their corresponding dehydrated products. Further liquid chromatography (LC)-MS analyses revealed the presence of isomeric products in each 1:1 and 1:2 product. The [M + H]+ of each isomeric product was subjected to MS/MS experiments for structural elucidation. The MS/MS spectra of some of the products showed a distinct structure indicative fragment ions, while others showed similar data. The types of products formed by the arginines with GO were also found to be similar to that of MGO. The importance of the guanidine group in the formation of the AGEs was reflected in similar incubation experiments with ADMA and SDMA. The structures of the products were proposed based on the comparison of the retention times and HRMS and MS/MS data interpretation, and some of them were confirmed by drawing analogy to the data reported in the literature.


Assuntos
Glioxal , Aldeído Pirúvico , Glioxal/química , Aldeído Pirúvico/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Óxido de Magnésio , Produtos Finais de Glicação Avançada/análise , Arginina/química
15.
Biotechnol Bioeng ; 120(6): 1657-1666, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810698

RESUMO

Diabetic foot ulcers are a major complication of diabetes that occurs following minor trauma. Diabetes-induced hyperglycemia is a leading factor inducing ulcer formation and manifests notably through the accumulation of advanced glycation end-products (AGEs) such as N-carboxymethyl-lysin. AGEs have a negative impact on angiogenesis, innervation, and reepithelialization causing minor wounds to evolve into chronic ulcers which increases the risks of lower limb amputation. However, the impact of AGEs on wound healing is difficult to model (both in vitro on cells, and in vivo in animals) because it involves a long-term toxic effect. We have developed a tissue-engineered wound healing model made of human keratinocytes, fibroblasts, and endothelial cells cultured in a collagen sponge biomaterial. To mimic the deleterious effects induced by glycation on skin wound healing, the model was treated with 300 µM of glyoxal for 15 days to promote AGEs formation. Glyoxal treatment induced carboxymethyl-lysin accumulation and delayed wound closure in the skin mimicking diabetic ulcers. Moreover, this effect was reversed by the addition of aminoguanidine, an inhibitor of AGEs formation. This in vitro diabetic wound healing model could be a great tool for the screening of new molecules to improve the treatment of diabetic ulcers by preventing glycation.


Assuntos
Diabetes Mellitus , Pé Diabético , Animais , Humanos , Reação de Maillard , Células Endoteliais , Cicatrização , Produtos Finais de Glicação Avançada/farmacologia , Glioxal/farmacologia
16.
Mol Biol Rep ; 50(3): 2511-2520, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609749

RESUMO

BACKGROUND: Advanced glycation end-products (AGEs) are proteins or lipids that have been glycated nonenzymatically by reducing sugars and their derivatives such as methylglyoxal. AGEs are known to cause inflammation, oxidative stress, and diseases in the human body. The toxic effects of AGEs and their structures on the origin of the protein being modified have not been well studied. METHODS AND RESULTS: Five different types of AGEs: AGE1 (glucose-derived), AGE2 (glyceraldehyde-derived), AGE3 (glycolaldehyde-derived), AGE4 (methylglyoxal-derived), and AGE5 (glyoxal-derived); were used to examine the effect of AGEs on HepG2 cells. AGE2 through 5 increase the production of reactive oxygen species (ROS) in liver cells, an initiating factor for apoptosis. At the mRNA and protein levels, AGE5 treatment showed the greatest increase in expression of apoptosis-related factors such as Bax, p53, and Caspase 3. Quantitative analysis revealed that Nε-carboxymethyl-lysine (CML) and glyoxal-lysine dimer (GOLD) were the important types of AGE5. The ROS generation and the expression of apoptotic factors both increased when cells were treated with CML and GOLD. CONCLUSION: These findings suggest that AGE5 treatment activates the apoptosis-related gene expression in hapatocytes, with CML and GOLD as potential major AGE compounds.


Assuntos
Glioxal , Lisina , Humanos , Glioxal/farmacologia , Glioxal/química , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Aldeído Pirúvico/farmacologia , Espécies Reativas de Oxigênio , Proteínas , Apoptose , Hepatócitos/metabolismo , Expressão Gênica
17.
J Dairy Sci ; 106(10): 6731-6740, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210347

RESUMO

Brown fermented milk (BFM) is favored by consumers in the dairy market for its unique burnt flavor and brown color. However, Maillard reaction products (MRP) from high-temperature baking are also noteworthy. In this study, tea polyphenols (TP) were initially developed as potential inhibitors of MRP formation in BFM. The results showed that the flavor profile of BFM did not change after adding 0.08% (wt/wt) of TP, and its inhibition rates on 5-hydroxymethyl-2-furaldehyde (5-HMF), glyoxal (GO), methylglyoxal (MGO), Nε-carboxymethyl lysine (CML), and Nε-carboxyethyl lysine (CEL) were 60.8%, 27.12%, 23.44%, 57.7%, and 31.28%, respectively. After 21 d of storage, the levels of 5-HMF, GO, MGO, CML, and CEL in BFM with TP were 46.3%, 9.7%, 20.6%, 5.2%, and 24.7% lower than the control group, respectively. Moreover, a smaller change occurred in their color and the browning index was lower than that of the control group. The significance of this study was to develop TP as additives to inhibit the production of MRP in brown fermented yogurt without changing color and flavors, thereby making dairy products safer for consumers.


Assuntos
Reação de Maillard , Leite , Animais , Leite/química , Lisina/análise , Polifenóis/análise , Óxido de Magnésio , Aldeído Pirúvico/análise , Glioxal/análise , Produtos Finais de Glicação Avançada/análise , Chá
18.
Int J Toxicol ; 42(3_suppl): 47S-48S, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748203

RESUMO

The Expert Panel for Cosmetic Ingredient Safety reviewed information that has become available since their year 2000 assessment, along with updated information regarding product types, and frequency and concentrations of use, and reaffirmed their original conclusion that Glyoxal is safe for use in products intended to be applied to the nail at concentrations ≤1.25% and that the available data are insufficient to support the safety for other uses.


Assuntos
Cosméticos , Glioxal , Glioxal/toxicidade , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade
19.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445648

RESUMO

The kinetics of elimination of various dicarbonyl-modified low-density lipoproteins from the bloodstream of Macaca mulatta monkeys were investigated. The low-density lipoproteins (LDL) in the monkey blood plasma were isolated by density gradient ultracentrifugation and labeled in vitro with the fluorescent dye FITC; thereupon, they were modified with different natural low molecular-weight dicarbonyls: malondialdehyde (MDA), glyoxal, or methylglyoxal. The control native FITC-labeled LDL and dicarbonyl-modified FITC-labeled LDL were injected into the monkey's ulnar vein; thereafter, blood samples were taken at fixed time intervals during 24 h. The plasma level of FITC-labeled LDL was determined with spectrofluorimetry. The study established that glyoxal- and monkeysglyoxal-labeled LDL circulated in monkey virtually at the same time as native (non-modified) LDL. In contrast, MDA-modified LDL disappeared from the blood extremely rapidly. Administration of the PCSK9 inhibitor involocumab (which increases LDL utilization) to patients with coronary heart disease (CHD) was found to significantly reduce levels of MDA-modified LDL.


Assuntos
Lipoproteínas LDL , Pró-Proteína Convertase 9 , Animais , Humanos , Haplorrinos , Cinética , Fluoresceína-5-Isotiocianato , Glioxal , Malondialdeído
20.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139025

RESUMO

"Heptil" (unsymmetrical dimethylhydrazine-UDMH) is extensively employed worldwide as a propellant for rocket engines. However, UDMH constantly loses its properties as a result of its continuous and uncontrolled absorption of moisture, which cannot be rectified. This situation threatens its long-term usability. UDMH is an exceedingly toxic compound (Hazard Class 1), which complicates its transportation and disposal. Incineration is currently the only method used for its disposal, but this process generates oxidation by-products that are even more toxic than the original UDMH. A more benign approach involves its immediate reaction with a formalin solution to form 1,1-dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be burned, yielding substantial amounts of nitrogen oxides. This review seeks to shift the focus of MDH from incineration towards its application in the synthesis of relatively non-toxic and readily available analogs of various pharmaceutical substances. We aim to bring the attention of the international chemical community to the distinctive properties of MDH, as well as other hydrazones (such as glyoxal, acrolein, crotonal, and meta-crolyl), wherein each structural fragment can initiate unique transformations that have potential applications in molecular design, pharmaceutical research, and medicinal chemistry.


Assuntos
Acroleína , Glioxal , Dimetilidrazinas/química , Formaldeído , Técnicas de Química Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA