RESUMO
Filter-aided sample preparation (FASP) is widely used in bottom-up proteomics for tryptic digestion. However, the sample recovery yield of this method is limited by the amount of the starting material. While â¼100 ng of digested protein is sufficient for thorough protein identification, proteomic information gets lost with a protein content <10 µg due to incomplete peptide recovery from the filter. We developed and optimized a flexible well-plate µFASP device and protocol that is suitable for an â¼1 µg protein sample. In 1 µg of HeLa digest, we identified 1295 ± 10 proteins with µFASP followed by analysis with liquid chromatography-mass spectrometry. In contrast, only 524 ± 5 proteins were identified with the standard FASP protocol, while 1395 ± 4 proteins were identified in 20 µg after standard FASP as a benchmark. Furthermore, we conducted a combined peptidomic and proteomic study of single pancreatic islets with well-plate µFASP. Here, we separated neuropeptides and digested the remaining on-filter proteins for bottom-up proteomic analysis. Our results indicate inter-islet heterogeneity for the expression of proteins involved in glucose catabolism, pancreatic hormone processing, and secreted peptide hormones. We consider our method to provide a useful tool for proteomic characterization of samples where the biological material is scarce. All proteomic data are available under DOI: 10.6019/PXD029039.
Assuntos
Ilhotas Pancreáticas , Proteômica , Cromatografia Líquida/métodos , Humanos , Ilhotas Pancreáticas/química , Espectrometria de Massas , Proteínas/análise , Proteômica/métodosRESUMO
Autoantibodies are currently the most robust biomarkers of type 1 diabetes. However, single autoantibody targeted detection is still limited in diabetes diagnosis with poor performance. Here, we develop a multiplexed Array-ELISA assay that can detect five diabetes-related autoantibodies including glutamic acid decarboxylase antibody (GADA), insulinoma antigen 2 antibody (IA-2A), islet cell antibody (ICA), zinc transporter 8 autoantibody (ZnT8-A) and insulin antibody (IAA) simultaneously. This assay achieved 100% accuracy in identifying the positive and negative control samples with good repeatability (CV<15%). We applied the Array-ELISA assay to 140 clinical serum samples of healthy subjects and diabetes patients and the assay showed improved diagnosis accuracy (sensitivity of 62.5%, specificity of 94.3%) compared with the single target immunoblotting test. These data suggest that the Array-ELISA assay can provide diagnostic and predictive ability in the clinical practice of type 1 diabetes.
Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Autoanticorpos , Biomarcadores , Diabetes Mellitus Tipo 1/diagnóstico , Ensaio de Imunoadsorção Enzimática , Glutamato Descarboxilase , Humanos , Ilhotas Pancreáticas/químicaRESUMO
BACKGROUND: Diabetes mellitus type 2 has been linked to pancreatic islet amyloid deposition in humans and nonhuman primates. The authors hypothesized that diabetic primates would have significant differences in pathology than non-diabetic groups. METHODS: This retrospective study used histopathology and immunohistochemistry to characterize and compare pancreatic islet amyloidosis in 58 diabetic and non-diabetic rhesus macaque (RM) and sooty mangabeys (SM). RESULTS: The pancreatic tissues from diabetic RM and SM showed higher histopathology scores for islet amyloid deposit distribution, severity, and calcification deposits compared to their respective non-diabetic cohorts. Further, these tissues from RM and SM with amyloid deposits showed immunoreactivity to insulin, glucagon, islet amyloid polypeptide, serum amyloid P, and glucagon-like peptide 1. CONCLUSIONS: Histopathology results showed that the defined amyloid characteristics are associated with clinical diabetes in both species. The immunohistochemistry results collectively suggest differences in pancreatic hormones and islet amyloid components among both species and diabetic status.
Assuntos
Amiloidose , Ilhotas Pancreáticas , Amiloide , Amiloidose/patologia , Amiloidose/veterinária , Animais , Cercocebus atys , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/patologia , Macaca mulatta , Estudos RetrospectivosRESUMO
The most common denominator of many of the neurodegenerative diseases is badly folded protein accumulation, which results in the formation of insoluble protein deposits located in different parts of the organism, causing cell death and tissue degeneration. Dendritic systems have turned out to be a promising new therapeutic approach for the treatment of these diseases due to their ability to modulate the folding of these proteins. With this perspective, and focused on typeâ 2 diabetes (T2D), characterized by the presence of deposits containing the amyloidogenic islet amyloid polypeptide (IAPP), we demonstrate how different topologies of cationic carbosilane dendrimers inhibit the formation of insoluble protein deposits in pancreatic islets isolated from transgenic Tg-hIAPP mice. Also, the results obtained by the modification of dendritic carbosilane wedges with the chemical chaperone 4-phenylbutyric acid (4-PBA) at the focal point confirmed their potential as anti-amyloid agents with a concentration efficiency in their therapeutic action five orders of magnitude lower than that observed for free 4-PBA. Computational studies, which determined the main interaction between IAPP and dendrimers at the atomic level, support the experimental work.
Assuntos
Amiloidose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/química , Fenilbutiratos/química , Silanos/química , Animais , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos TransgênicosRESUMO
AIM: The aim of the current study was to evaluate the therapeutic and regenerative effects of MSCs derived exosomes in the treatment of type 1 DM and to compare its effects with MSCs themselves. The experiment was done on forty albino rats grouped as follows, group (1): Ten healthy rats, group (2): Ten induced type 1 DM rats, group (3): Ten induced type 1 DM rats received exosomes intraperitoneally, and group (4): Ten induced type 1 DM rats received MSCs intraperitoneally. Serum glucose and plasma insulin levels were assessed weekly. QRT-PCR was done to assess regeneration of pancreatic beta cells by measuring insulin, Pdx1, Smad2, Smad3 and TGFß genes. Additionally, histopathological and immune-histochemical examinations were done to confirm pancreatic tissue regeneration. RESULTS: Regarding the assessed genes (insulin, Pdx1, Smad2, Smad3 and Tgfß) gene expression in MSCs treated group showed significant increase compared to diabetic group (p value < 0.001) and gene expression in exosomes treated group was increased significantly compared to diabetic and MSCs treated groups (p value < 0.001). Histopathological and immune-histochemical examination revealed regeneration of pancreatic islets in both treated groups. CONCLUSION: MSCs Derived exosomes showed superior therapeutic and regenerative results than MSCs themselves.
Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Exossomos/química , Feminino , Proteínas de Homeodomínio/metabolismo , Insulina/sangue , Insulina/metabolismo , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/metabolismo , Ratos , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo , Transativadores/metabolismoRESUMO
We recently discovered hybrid insulin peptides (HIPs) as a novel class of post-translationally modified peptides in murine-derived beta cell tumors, and we demonstrated that these molecules are autoantigens in type 1 diabetes (T1D). A HIP consists of an insulin fragment linked to another secretory granule peptide via a peptide bond. We verified that autoreactive CD4 T cells in both mouse and human autoimmune diabetes recognize these modified peptides. Here, we use mass spectrometric analyses to confirm the presence of HIPs in both mouse and human pancreatic islets. We also present criteria for the confident identification of these peptides. This work supports the hypothesis that HIPs are autoantigens in human T1D and provides a foundation for future efforts to interrogate this previously unknown component of the beta cell proteome.
Assuntos
Autoantígenos/análise , Insulina/química , Ilhotas Pancreáticas/química , Espectrometria de Massas/métodos , Animais , Autoantígenos/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Camundongos , Peptídeos/análise , Peptídeos/químicaRESUMO
Pancreatic islet zinc levels vary widely between species. Very low islet zinc levels in Guinea pigs were thought to be driven by evolution of the INS gene that resulted in the generation of an isoform lacking a histidine at amino acid 10 in the B chain of insulin that is unable to bind zinc. However, we recently showed that the SLC30A8 gene, that encodes the zinc transporter ZnT8, is a pseudogene in Guinea pigs, providing an alternate mechanism to potentially explain the low zinc levels. We show here that the SLC30A8 gene is also inactivated in sheep, cows, chinchillas and naked mole rats but in all four species a histidine is retained at amino acid 10 in the B chain of insulin. Zinc levels are known to be very low in sheep and cow islets. These data suggest that evolution of SLC30A8 rather than INS drives variation in pancreatic islet zinc content in multiple species.
Assuntos
Diabetes Mellitus/genética , Evolução Molecular , Ilhotas Pancreáticas/citologia , Transportador 8 de Zinco/metabolismo , Zinco/metabolismo , Animais , Diabetes Mellitus/metabolismo , Predisposição Genética para Doença , Glucose/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/química , Transportador 8 de Zinco/genéticaRESUMO
Islet transplantation has made major progress to treat patients with type 1 diabetes. Islet mass and quality are critically important to ensure successful transplantation. Currently, islet status is evaluated using insulin secretion, oxygen consumption rate, or adenosine triphosphate (ATP) measurement. These parameters are evaluated independently and do not effectively predict islet status post-transplant. Therefore, assessing human pancreatic islets by encompassing ATP, DNA, insulin, and protein content from a single tissue sample would serve as a better predictor for islet status. In this study, a single step procedure for extracting ATP, DNA, insulin, and protein content from human pancreatic islets was described and the biomolecule contents were quantified. Additionally, different mathematical calculations integrating total ATP, DNA, insulin, and protein content were randomly tested under various conditions to predict islet status. The results demonstrated that the ATP assay was efficient and the biomolecules were effectively quantified. Furthermore, the mathematical formula we developed could be optimized to predict islet status. In conclusion, our results indicate a proof-of-concept that a simple logarithmic formula can predict overall islet status for various conditions when total islet ATP, DNA, insulin, and protein content are simultaneously assessed from a single tissue sample.
Assuntos
Trifosfato de Adenosina/análise , DNA/análise , Insulina/análise , Ilhotas Pancreáticas/química , Algoritmos , Humanos , Transplante das Ilhotas Pancreáticas , Modelos Biológicos , Técnicas de Cultura de ÓrgãosRESUMO
ß-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human ß-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from ß-cells, thus representing a potential in vitro model of ß-cell dedifferentiation. Here, we report the microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated. Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the control of ß-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell-cell contacts are needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302 microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and inhibits the expression of multiple genes involved in the maintenance of ß-cell mature phenotype.
Assuntos
Perfilação da Expressão Gênica/métodos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , MicroRNAs/genética , Regulação para Cima , Adulto , Idoso , Idoso de 80 Anos ou mais , Desdiferenciação Celular , Diferenciação Celular , Células Cultivadas , Humanos , Células Secretoras de Insulina/química , Ilhotas Pancreáticas/química , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible remain incompletely defined. VSG increases circulating bile acid concentrations and bile acid signalling through TGR5 improves glucose homeostasis. Therefore, we investigated the role of TGR5 signalling in mediating the glucoregulatory benefits of VSG. DESIGN: VSG or sham surgery was performed in high-fat-fed male Tgr5+/+ (wild type) and Tgr5-/- (knockout) littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Body weight, food intake, energy expenditure, insulin signalling and circulating bile acid profiles were measured and oral glucose tolerance testing, islet immunohistochemistry and gut microbial profiling were performed. RESULTS: VSG decreased food intake and body weight, increased energy expenditure and circulating bile acid concentrations, improved fasting glycaemia, glucose tolerance and glucose-stimulated insulin secretion, enhanced nutrient-stimulated glucagon-like peptide 1 secretion and produced favourable shifts in gut microbial populations in both genotypes. However, the body weight-independent improvements in fasting glycaemia, glucose tolerance, hepatic insulin signalling, hepatic inflammation and islet morphology after VSG were attenuated in Tgr5-/- relative to Tgr5+/+ mice. Furthermore, VSG produced metabolically favourable alterations in circulating bile acid profiles that were blunted in Tgr5-/- relative to Tgr5+/+ mice. TGR5-dependent regulation of hepatic Cyp8b1 expression may have contributed to TGR5-mediated shifts in the circulating bile acid pool after VSG. CONCLUSIONS: These results suggest that TGR5 contributes to the glucoregulatory benefits of VSG surgery by promoting metabolically favourable shifts in the circulating bile acid pool.
Assuntos
Ácidos e Sais Biliares/sangue , Glicemia/metabolismo , Gastrectomia , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Jejum , Gastrectomia/métodos , Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Secreção de Insulina , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Esteroide 12-alfa-Hidroxilase/metabolismoRESUMO
BACKGROUND: ICA512 (or IA-2/PTPRN) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Previous studies implied its involvement in generation, cargo storage, traffic, exocytosis and recycling of insulin secretory granules, as well as in ß-cell proliferation. While several ICA512 domains have been characterized, the function and structure of a large portion of its N-terminal extracellular (or lumenal) region are unknown. Here, we report a biophysical, biochemical, and functional characterization of ICA512-RESP18HD, a domain comprising residues 35 to 131 and homologous to regulated endocrine-specific protein 18 (RESP18). METHODS: Pure recombinant ICA512-RESP18HD was characterized by CD and fluorescence. Its binding to insulin and proinsulin was characterized by ELISA, surface plasmon resonance, and fluorescence anisotropy. Thiol reactivity was measured kinetically. Targeting of ΔRESP18HD ICA512-GFP to the membrane of insulinoma cells was monitored by immunofluorescence. RESULTS: ICA512-RESP18HD possesses a strong tendency to aggregate and polymerize via intermolecular disulfide formation, particularly at pH>4.5. Its cysteine residues are highly susceptible to oxidation forming an intramolecular disulfide between cysteine 53 and 62 and intermolecular disulfides via cysteine 40 and cysteine 47. The regulated sorting of ICA512 to secretory granules in INS-1 cells was impaired by deletion of RESP18HD. ICA512-RESP18HD binds with high-affinity to insulin and proinsulin. CONCLUSIONS: RESP18HD is required for efficient sorting of ICA512 to secretory granules. GENERAL SIGNIFICANCE: RESP18HD is a key determinant for ICA512 granule targeting.
Assuntos
Insulina/metabolismo , Proteínas do Tecido Nervoso/química , Estrutura Terciária de Proteína/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/química , Sequência de Aminoácidos/genética , Biofísica , Proliferação de Células/genética , Humanos , Insulina/química , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Neuroendócrinas/química , Células Neuroendócrinas/metabolismo , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Secretórias/química , Vesículas Secretórias/metabolismoRESUMO
During progression to type 1 diabetes, insulin-producing ß-cells are lost through an autoimmune attack resulting in unrestrained glucagon expression and secretion, activation of glycogenolysis, and escalating hyperglycemia. We recently identified a protein, designated islet homeostasis protein (IHoP), which specifically co-localizes within glucagon-positive α-cells and is overexpressed in the islets of both post-onset non-obese diabetic (NOD) mice and type 1 diabetes patients. Here we report that in the αTC1.9 mouse α-cell line, IHoP was released in response to high-glucose challenge and was found to regulate secretion of glucagon. We also show that in NOD mice with diabetes, major histocompatibility complex class II was upregulated in islets. In addition hyperglycemia was modulated in NOD mice via suppression of IHoP utilizing small interfering RNA (IHoP-siRNA) constructs/approaches. Suppression of IHoP in the pre-diabetes setting maintained normoglycemia, glyconeolysis, and fostered ß-cell restoration in NOD mice 35 weeks post treatment. Furthermore, we performed adoptive transfer experiments using splenocytes from IHoP-siRNA-treated NOD/ShiLtJ mice, which thwarted the development of hyperglycemia and the extent of insulitis seen in recipient mice. Last, IHoP can be detected in the serum of human type 1 diabetes patients and could potentially serve as an early novel biomarker for type 1 diabetes in patients.
Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas/metabolismo , Animais , Linhagem Celular , Feminino , Glucagon/análise , Glucagon/metabolismo , Antígenos HLA-D/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/metabolismo , Ilhotas Pancreáticas/química , Masculino , Camundongos , Camundongos Endogâmicos NOD , Proteínas/análise , Proteínas/antagonistas & inibidores , Transativadores/metabolismoRESUMO
O-Linked glycosylation often involves the covalent attachment of sugar moieties to the hydroxyl group of serine or threonine on proteins/peptides. Despite growing interest in glycoproteins, little attention has been directed to glycosylated signaling peptides, largely due to lack of enabling analytical tools. Here we explore the occurrence of naturally O-linked glycosylation on the signaling peptides extracted from mouse and human pancreatic islets using mass spectrometry (MS). A novel targeted MS-based method is developed to increase the likelihood of capturing these modified signaling peptides and to provide improved sequence coverage and accurate glycosite localization, enabling the first large-scale discovery of O-glycosylation on signaling peptides. Several glycosylated signaling peptides with multiple glycoforms are identified, including the first report of glycosylated insulin-B chain and insulin-C peptide and BigLEN. This discovery may reveal potential novel functions as glycosylation could influence their conformation and biostability. Given the importance of insulin and its related peptide hormones and previous studies of glycosylated insulin analogues, this natural glycosylation may provide important insights into diabetes research and therapeutic treatments.
Assuntos
Insulina/química , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ilhotas Pancreáticas/química , Espectrometria de Massas/métodos , Animais , Glicosilação , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Técnicas de Cultura de TecidosRESUMO
Peroxynitrite-induced nitration of cellular proteins has been shown to associate with various human pathologies. The expression of pancreatic nitrotyrosine and its cellular source relative to insulitis were analysed in cases with increasing duration of type 1 diabetes and compared with non-diabetic autoantibody-negative and -positive cases. Pancreatic tail sections from non-diabetic autoantibody-negative cases (Group 1; n = 7), non-diabetic autoantibody-positive cases (Group 2; n = 6), recently diagnosed cases (Group 3; n = 6), 0.25-5 years of diabetes (Group 4; n = 8) and 7-12 years of diabetes (Group 5; n = 6) were immunostained sequentially for nitrotyrosine, insulin and leucocytes. Nitrotyrosine expression was observed in selective beta cells only. In group 1, the percentage of insulin-positive islets with nitrotyrosine ranged from 7.6 to 58.8%. In group 2, it was minimally expressed in 2 cases and was present in 4.7-19.3% of insulin-positive islets in 3 cases and in all islets in 1 case. In group 3, it was absent in 1 case and in the remaining 5 cases, the values were 17.4-85.7%. In group 4, nitrotyrosine was absent in 6 cases and positive in 1.8 and 22.2% of insulin-positive islets in 2 cases. In group 5, the values were 60% (1 case) and 100% (2 cases), being absent in 3 cases, consistent with insulin-negativity. This case analysis shows that nitrotyrosine immunostaining is independent of the presence and severity of insulitis. Variable nitrotyrosine expression is present in some non-diabetic cases. Its increased expression in beta cells of recent-onset and long-standing disease requires further studies to determine whether beta cell nitration plays a pathogenic role during T1D.
Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/química , Tirosina/análogos & derivados , Adolescente , Adulto , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/diagnóstico , Feminino , Humanos , Imuno-Histoquímica , Ilhotas Pancreáticas/metabolismo , Masculino , Tirosina/análise , Tirosina/biossíntese , Adulto JovemRESUMO
Organic anion-transporting polypeptides (OATPs) are membrane proteins that mediate cellular uptake of structurally diverse endogenous and exogenous compounds, including bile salts, thyroid and sex hormones, pharmacological agents, and toxins. Roles of OATPs in human liver are well established. Our recent report suggested the presence of the hepatic transporter OATP1B3 in human ß cells. The aim of this study was to better characterize cellular localization and interindividual variation in OATP1B3 expression in human adult islets as a function of age, sex, and pancreatic disease, and to assess the expression of other OATPs. High transcript levels of OATP1B3, OATP2B1, OATP1A2, but not OATP1B1 were observed in isolated human adult islets. While OATP1B3 protein expression was variable, the carrier co-localized more frequently with glucagon-positive α cells than insulin-positive ß cells in islets of normal pancreatic tissues from ten subjects using dual immunostaining. Moreover, OATP1B3 co-staining with endocrine cells was two- to three-fold higher in older (≥60 years) than younger (<60 years) subjects. In comparison, in a subset of three individuals, OATP2B1 was primarily found in ß cells, suggesting a distinct expression pattern for OATP1B3 and OATP2B1 in islets. Abundant OATP1B3 staining was also observed in islet as well as ductal cells of diseased tissues of patients with pancreatitis or pancreatic adenocarcinoma. Considering the abundance of key OATP carriers in ß and α cells, potential implications of OATP transport in islet cell function may be suggested. Future studies are needed to gain insights into their specific endocrine roles as well as pharmacological relevance.
Assuntos
Ilhotas Pancreáticas/metabolismo , Transportadores de Ânions Orgânicos/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Adulto , Humanos , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/citologia , Transportadores de Ânions Orgânicos/análise , Transportadores de Ânions Orgânicos/metabolismo , RNA Mensageiro/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/análise , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismoRESUMO
Pulse radiolabelling of cells with radioactive amino acids such is a common method for investigating the biosynthetic rates of proteins. In this way, the abundance of newly synthesized proteins can be determined by several proteomic techniques including 2D gel electrophoresis (2DE). This chapter describes a protocol for labelling pancreatic islets with 35S-methionine in the presence of low and high concentrations of glucose, followed by subcellular fractionation enrichment of secretory granule proteins and analysis of the granule protein contents by 2DE. This demonstrated that the biosynthetic rates of most of the granule proteins are co-ordinately regulated in the presence of stimulatory glucose concentrations.
Assuntos
Eletroforese em Gel Bidimensional/métodos , Insulina/análise , Ilhotas Pancreáticas/química , Vesículas Secretórias/química , Animais , Fracionamento Celular/métodos , Separação Celular/métodos , Glucose/farmacologia , Insulina/biossíntese , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Marcação por Isótopo/métodos , Metionina/análise , Ratos , Radioisótopos de Enxofre/análiseRESUMO
Pulse radiolabelling of cells with radioactive amino acids is a common method for studying the biosynthesis of proteins. The labelled proteins can then be immunoprecipitated and analysed by electrophoresis and imaging techniques. This chapter presents a protocol for the biosynthetic labelling and immunoprecipitation of pancreatic islet proteins which are known to be affected in psychiatric disorders such as schizophrenia.
Assuntos
Imunoprecipitação/métodos , Insulina/análise , Ilhotas Pancreáticas/química , Pró-Proteína Convertase 2/análise , Vesículas Secretórias/química , Especificidade de Anticorpos , Cromatografia em Agarose/métodos , Eletroforese/métodos , Glucose/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Imunoprecipitação/instrumentação , Imunoadsorventes , Insulina/biossíntese , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Marcação por Isótopo/métodos , Metionina/análise , Pró-Proteína Convertase 2/biossíntese , Vesículas Secretórias/enzimologia , Radioisótopos de Enxofre/análise , UreiaRESUMO
Efficient protein solubilization using detergents is required for in-depth proteome analysis, but successful LC-MS/MS analysis greatly depends on proper detergents removal. A commonly used sample processing method is the filter-aided sample preparation (FASP), which allows protein digestion and detergent removal on the same filtration device. Many optimizations of the FASP protocol have been published, but there is no information on the influence of the filtration unit typology on the detergents removal. The aim of this study was to compare the performance of conic and flat bottom filtration units in terms of number of proteins identified by LC-MS/MS. We have analyzed 1, 10 and 100 µg of total cell lysate prepared using lysis buffer with different SDS concentrations. We compared the FASP protocol using conic and flat bottom filtration units to ethanol precipitation method. Subsequently, we applied our most performant protocol to single murine pancreatic islet, and identified up to 2463 protein using FASP versus 1169 proteins using ethanol precipitation. We conclude that FASP performance depends strongly on the filter shape: flat bottom devices are better suited for low-protein samples, as they allow better SDS removal leading to the identification of greater number of proteins.
Assuntos
Detergentes/isolamento & purificação , Filtração/instrumentação , Ilhotas Pancreáticas/química , Proteoma/análise , Espectrometria de Massas em Tandem/instrumentação , Animais , Linhagem Celular , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Cromatografia Líquida/métodos , Desenho de Equipamento , Filtração/métodos , Humanos , Camundongos , Proteômica/métodos , Solubilidade , Espectrometria de Massas em Tandem/métodosRESUMO
Bottom-up proteomics database search algorithms used for peptide identification cannot comprehensively identify post-translational modifications (PTMs) in a single-pass because of high false discovery rates (FDRs). A new approach to database searching enables global PTM (G-PTM) identification by exclusively looking for curated PTMs, thereby avoiding the FDR penalty experienced during conventional variable modification searches. We identified over 2200 unique, high-confidence modified peptides comprising 26 different PTM types in a single-pass database search.
Assuntos
Algoritmos , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteômica/métodos , Software , Acetilação , Animais , Mineração de Dados/estatística & dados numéricos , Bases de Dados de Proteínas , Humanos , Hidroxilação , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/metabolismo , Células Jurkat , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Fosforilação , Proteínas/isolamento & purificação , Proteínas/metabolismoRESUMO
AIMS/HYPOTHESIS: Intronic single nucleotide polymorphisms (SNPs) in the CDKAL1 gene are associated with risk of developing type 2 diabetes. A strong correlation between risk alleles and lower levels of the non-coding RNA, CDKAL1-v1, has recently been reported in whole blood extracted from Japanese individuals. We sought to replicate this association in two independent cohorts: one using whole blood from white UK-resident individuals, and one using a collection of human pancreatic islets, a more relevant tissue type to study with respect to the aetiology of diabetes. METHODS: Levels of CDKAL1-v1 were measured by real-time PCR using RNA extracted from human whole blood (n = 70) and human pancreatic islets (n = 48). Expression with respect to genotype was then determined. RESULTS: In a simple linear regression model, expression of CDKAL1-v1 was associated with the lead type 2 diabetes-associated SNP, rs7756992, in whole blood and islets. However, these associations were abolished or substantially reduced in multiple regression models taking into account rs9366357 genotype: a moderately linked SNP explaining a much larger amount of the variation in CDKAL1-v1 levels, but not strongly associated with risk of type 2 diabetes. CONCLUSIONS/INTERPRETATION: Contrary to previous findings, we provide evidence against a role for dysregulated expression of CDKAL1-v1 in mediating the association between intronic SNPs in CDKAL1 and susceptibility to type 2 diabetes. The results of this study illustrate how caution should be exercised when inferring causality from an association between disease-risk genotype and non-coding RNA expression.