Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.006
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 631(8021): 556-562, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806060

RESUMO

Asymmetric catalysis enables the synthesis of optically active compounds, often requiring the differentiation between two substituents on prochiral substrates1. Despite decades of development of mainly noble metal catalysts, achieving differentiation between substituents with similar steric and electronic properties remains a notable challenge2,3. Here we introduce a class of Earth-abundant manganese catalysts for the asymmetric hydrogenation of dialkyl ketimines to give a range of chiral amine products. These catalysts distinguish between pairs of minimally differentiated alkyl groups bound to the ketimine, such as methyl and ethyl, and even subtler distinctions, such as ethyl and n-propyl. The degree of enantioselectivity can be adjusted by modifying the components of the chiral manganese catalyst. This reaction demonstrates a wide substrate scope and achieves a turnover number of up to 107,800. Our mechanistic studies indicate that exceptional stereoselectivity arises from the modular assembly of confined chiral catalysts and cooperative non-covalent interactions between the catalyst and the substrate.


Assuntos
Técnicas de Química Sintética , Hidrogenação , Iminas , Nitrilas , Estereoisomerismo , Aminas/química , Aminas/síntese química , Catálise , Iminas/química , Manganês/química , Nitrilas/química , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Especificidade por Substrato , Alquilação
2.
Nature ; 634(8035): 848-854, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39255850

RESUMO

Photoenzymes are light-powered biocatalysts that typically rely on the excitation of cofactors or unnatural amino acids for their catalytic activities1,2. A notable natural example is the fatty acid photodecarboxylase, which uses light energy to convert aliphatic carboxylic acids to achiral hydrocarbons3. Here we report a method for the design of a non-natural photodecarboxylase based on the excitation of enzyme-bound catalytic intermediates, rather than reliance on cofactor excitation4. Iminium ions5, transiently generated from enals within the active site of an engineered class I aldolase6, can absorb violet light and function as single-electron oxidants. Activation of chiral carboxylic acids, followed by decarboxylation, generates two radicals that undergo stereospecific cross-coupling, yielding products with two stereocentres. Using the appropriate enantiopure chiral substrate, the desired diastereoisomeric product is selectively obtained with complete enantiocontrol. This finding underscores the ability of the active site to transfer stereochemical information from the chiral radical precursor into the product, effectively addressing the long-standing problem of rapid racemization of chiral radicals. The resulting 'memory of chirality' scenario7 is a rarity in enantioselective radical chemistry.


Assuntos
Carboxiliases , Estereoisomerismo , Biocatálise/efeitos da radiação , Carboxiliases/química , Carboxiliases/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Descarboxilação , Elétrons , Radicais Livres/química , Radicais Livres/metabolismo , Iminas/química , Iminas/metabolismo , Luz , Oxidantes/química , Oxidantes/metabolismo , Engenharia de Proteínas , Especificidade por Substrato
3.
Cell ; 157(6): 1380-1392, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906154

RESUMO

Bromine is ubiquitously present in animals as ionic bromide (Br(-)) yet has no known essential function. Herein, we demonstrate that Br(-) is a required cofactor for peroxidasin-catalyzed formation of sulfilimine crosslinks, a posttranslational modification essential for tissue development and architecture found within the collagen IV scaffold of basement membranes (BMs). Bromide, converted to hypobromous acid, forms a bromosulfonium-ion intermediate that energetically selects for sulfilimine formation. Dietary Br deficiency is lethal in Drosophila, whereas Br replenishment restores viability, demonstrating its physiologic requirement. Importantly, Br-deficient flies phenocopy the developmental and BM defects observed in peroxidasin mutants and indicate a functional connection between Br(-), collagen IV, and peroxidasin. We establish that Br(-) is required for sulfilimine formation within collagen IV, an event critical for BM assembly and tissue development. Thus, bromine is an essential trace element for all animals, and its deficiency may be relevant to BM alterations observed in nutritional and smoking-related disease. PAPERFLICK:


Assuntos
Membrana Basal/metabolismo , Bromo/metabolismo , Drosophila/crescimento & desenvolvimento , Oligoelementos/metabolismo , Animais , Membrana Basal/ultraestrutura , Bromo/deficiência , Linhagem Celular , Colágeno/metabolismo , Drosophila/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Iminas/metabolismo , Larva/ultraestrutura , Camundongos , Peroxidase/genética , Peroxidase/metabolismo , Peroxidasina
4.
Nature ; 622(7983): 507-513, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730997

RESUMO

Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.


Assuntos
Antineoplásicos , Técnicas de Química Sintética , Iminas , Compostos de Espiro , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Iminas/síntese química , Iminas/química , Iminas/farmacologia , Neoplasias/tratamento farmacológico , Proteômica , Ribossomos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia
5.
Nature ; 604(7904): 86-91, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388195

RESUMO

Chiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals1, yet their preparation often relies on low-efficiency multi-step synthesis2. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported. This enzyme (EneIRED), identified within a metagenomic imine reductase (IRED) collection3 and originating from an unclassified Pseudomonas species, possesses an unusual active site architecture that facilitates amine-activated conjugate alkene reduction followed by reductive amination. This enzyme can couple a broad selection of α,ß-unsaturated carbonyls with amines for the efficient preparation of chiral amine diastereomers bearing up to three stereocentres. Mechanistic and structural studies have been carried out to delineate the order of individual steps catalysed by EneIRED, which have led to a proposal for the overall catalytic cycle. This work shows that the IRED family can serve as a platform for facilitating the discovery of further enzymatic activities for application in synthetic biology and organic synthesis.


Assuntos
Aminas , Oxirredutases , Aminação , Aminas/química , Biocatálise , Iminas/química , Oxirredutases/genética , Oxirredutases/metabolismo , Estereoisomerismo
6.
J Biol Chem ; 300(2): 105642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199566

RESUMO

Imine reductases (IREDs) and reductive aminases have been used in the synthesis of chiral amine products for drug manufacturing; however, little is known about their biological contexts. Here we employ structural studies and site-directed mutagenesis to interrogate the mechanism of the IRED RedE from the biosynthetic pathway to the indolocarbazole natural product reductasporine. Cocrystal structures with the substrate-mimic arcyriaflavin A reveal an extended active site cleft capable of binding two indolocarbazole molecules. Site-directed mutagenesis of a conserved aspartate in the primary binding site reveals a new role for this residue in anchoring the substrate above the NADPH cofactor. Variants targeting the secondary binding site greatly reduce catalytic efficiency, while accumulating oxidized side-products. As indolocarbazole biosynthetic intermediates are susceptible to spontaneous oxidation, we propose the secondary site acts to protect against autooxidation, and the primary site drives catalysis through precise substrate orientation and desolvation effects. The structure of RedE with its extended active site can be the starting point as a new scaffold for engineering IREDs and reductive aminases to intercept large substrates relevant to industrial applications.


Assuntos
Iminas , Oxirredutases , Sítios de Ligação , Catálise , Cristalografia por Raios X , Iminas/química , Iminas/metabolismo , Oxirredução , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína , Modelos Moleculares
7.
Chem Soc Rev ; 53(1): 227-262, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059509

RESUMO

Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.


Assuntos
NAD , Oxirredutases , Aminação , Oxirredutases/metabolismo , Aminas , Biocatálise , Iminas , Estereoisomerismo
8.
J Am Chem Soc ; 146(29): 20263-20269, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001849

RESUMO

α,ß-Diamino acids are important structural motifs and building blocks for numerous bioactive natural products, peptidomimetics, and pharmaceuticals, yet efficient asymmetric synthesis to access these stereoarrays remains a challenge. Herein, we report the development of a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is engineered to catalyze stereoselective Mannich-type reactions between free α-amino acids and enolizable cyclic imines. This biocatalyst enabled one-step asymmetric enzymatic synthesis of the unusual pyrrolidine-containing amino acid L-tambroline at gram-scale with high enantio- and diastereocontrol. Furthermore, this enzymatic platform is capable of utilizing a diverse range of α-amino acids as the Mannich donor and various cyclic imines as the acceptor. By coupling with different imine-generating enzymes, we established versatile biocatalytic cascades and demonstrated a general, concise, versatile, and atom-economic approach to access unprotected α,ß-diamino acids, including structurally complex α,α-disubstituted α,ß-diamino acids with contiguous stereocenters.


Assuntos
Aminoácidos , Iminas , Iminas/química , Iminas/metabolismo , Estereoisomerismo , Aminoácidos/química , Aminoácidos/síntese química , Aminoácidos/metabolismo , Biocatálise , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Estrutura Molecular
9.
J Am Chem Soc ; 146(40): 27267-27273, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39331495

RESUMO

α-Amino esters are precursors to noncanonical amino acids used in developing small-molecule therapeutics, biologics, and tools in chemical biology. α-C-H amination of abundant and inexpensive carboxylic acid esters through nitrene transfer presents a direct approach to α-amino esters. Methods for nitrene-mediated amination of the protic α-C-H bonds in carboxylic acid esters, however, are underdeveloped. This gap arises because hydrogen atom abstraction (HAA) of protic C-H bonds by electrophilic metal-nitrenoids is slow: metal-nitrenoids preferentially react with polarity-matched, hydridic C-H bonds, even when weaker protic C-H bonds are present. This study describes the discovery and evolution of highly stable protoglobin nitrene transferases that catalyze the enantioselective intermolecular amination of the α-C-H bonds in carboxylic acid esters. We developed a high-throughput assay to evaluate the activity and enantioselectivity of mutant enzymes together with their sequences using the Every Variant Sequencing (evSeq) method. The assay enabled the identification of enantiodivergent enzymes that function at ambient conditions in Escherichia coli whole cells and whose activities can be enhanced by directed evolution for the amination of a range of substrates.


Assuntos
Biocatálise , Ésteres , Ésteres/química , Ésteres/metabolismo , Aminação , Aminoácidos/química , Aminoácidos/metabolismo , Ácidos Carboxílicos/química , Estereoisomerismo , Estrutura Molecular , Iminas/química , Iminas/metabolismo
10.
Chembiochem ; 25(7): e202300743, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37986243

RESUMO

The installation of aldehydes into synthetic protein ligands is an efficient strategy to engage protein lysine residues in remarkably stable imine bonds and augment the compound affinity and selectivity for their biological targets. The high frequency of lysine residues in proteins and the reversibility of the covalent ligand-protein bond support the application of aldehyde-bearing ligands, holding promises for their future use as drugs. This review highlights the increasing exploitation of salicylaldehyde modules in various classes of protein binders, aimed at the reversible-covalent engagement of lysine residues.


Assuntos
Aldeídos , Lisina , Lisina/química , Aldeídos/química , Proteínas , Iminas , Ligantes
11.
BMC Microbiol ; 24(1): 180, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789974

RESUMO

BACKGROUND: Cobweb disease is a fungal disease that commonly affects the cultivation and production of edible mushrooms, leading to serious yield and economic losses. It is considered a major fungal disease in the realm of edible mushrooms. The symptoms of cobweb disease were found during the cultivation of Lyophyllum decastes. This study aimed to identify the causative pathogen of cobweb disease and evaluate effective fungicides, providing valuable insights for field control and management of L. decastes cobweb disease. RESULTS: The causal agent of cobweb disease was isolated from samples infected and identified as Cladobotryum mycophilum based on morphological and cultural characteristics, as well as multi-locus phylogeny analysis (ITS, RPB1, RPB2, and TEF1-α). Pathogenicity tests further confirmed C. mycophilum as the responsible pathogen for this condition. Among the selected fungicides, Prochloraz-manganese chloride complex, Trifloxystrobin, tebuconazole, and Difenoconazole exhibited significant inhibitory effects on the pathogen's mycelium, with EC50 values of 0.076 µg/mL, 0.173 µg/mL, and 0.364 µg/mL, respectively. These fungicides can serve as references for future field control of cobweb disease in L. decastes. CONCLUSION: This study is the first report of C. mycophilum as the causing agent of cobweb disease in L. decastes in China. Notably, Prochloraz-manganese chloride complex demonstrated the strongest inhibitory efficacy against C. mycophilum.


Assuntos
Fungicidas Industriais , Filogenia , China , Fungicidas Industriais/farmacologia , Agaricales/genética , Agaricales/efeitos dos fármacos , Agaricales/classificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Triazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrobilurinas , Acetatos , Dioxolanos , Iminas
12.
Photosynth Res ; 159(2-3): 241-251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37480468

RESUMO

In this study, the effects of cationic antiseptics such as chlorhexidine, picloxidine, miramistin, and octenidine at concentrations up to 150 µM on fluorescence spectra and its lifetimes, as well as on light-induced electron transfer in protein-pigment complexes of photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 have been studied. In doing so, octenidine turned out to be the most "effective" in terms of its influence on the spectral and functional characteristics of PSI complexes. It has been shown that the rate of energy migration from short-wavelength forms of light-harvesting chlorophyll to long-wavelength ones slows down upon addition of octenidine to the PSI suspension. After photo-separation of charges between the primary electron donor P700 and the terminal iron-sulfur center(s) FA/FB, the rate of forward electron transfer from (FA/FB)- to the external medium slows down while the rate of charge recombination between reduced FA/FB- and photooxidized P700+ increases. The paper considers the possible causes of the observed action of the antiseptic.


Assuntos
Anti-Infecciosos Locais , Iminas , Piridinas , Synechocystis , Complexo de Proteína do Fotossistema I , Elétrons , Cátions
13.
Chemistry ; 30(7): e202302485, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967030

RESUMO

Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.


Assuntos
Ácidos Borônicos , Iminas , Ácidos Borônicos/química , Iminas/química , Hidrazonas/química , Biologia
14.
Chem Res Toxicol ; 37(5): 698-710, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38619497

RESUMO

Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cianetos , Cianetos/metabolismo , Cianetos/química , Humanos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Iminas/química , Iminas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estrutura Molecular
15.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614230

RESUMO

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Assuntos
Antivirais , DNA , Rutênio , Humanos , DNA/metabolismo , DNA/química , Rutênio/química , Rutênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Ligantes , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Piridinas/química , Piridinas/farmacologia , Iminas/química , Iminas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo
16.
Biomacromolecules ; 25(4): 2348-2357, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499398

RESUMO

Covalent adaptable networks (CANs) are being developed as future replacements for thermosets as they can retain the high mechanical and chemical robustness inherent to thermosets but also integrate the possibility of reprocessing after material use. Here, covalent adaptable polyimine-based networks were designed with methoxy and allyloxy-substituted divanillin as a core component together with long flexible aliphatic fatty acid-based amines and a short rigid chain triamine, yielding CANs with a high renewable content. The designed series of CANs with reversible imine functionality allowed for fast stress relaxation and tailorability of the thermomechanical properties, as a result of the ratio between long flexible and short rigid amines, with tensile strength (σb) ranging 1.07-18.7 MPa and glass transition temperatures ranging 16-61 °C. The CANs were subsequently successfully reprocessed up to three times without determinantal structure alterations and retained mechanical performance. The CANs were also successfully chemically recycled under acidic conditions, where the starting divanillin monomer was recovered and utilized for the synthesis of a recycled CAN with similar thermal and mechanical properties. This promising class of thermosets bearing sustainable dynamic functionalities opens a window of opportunity for the progressive replacement of fossil-based thermosets.


Assuntos
Aminas , Ácidos Graxos , Vidro , Iminas , Temperatura
17.
Biomacromolecules ; 25(6): 3449-3463, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38739908

RESUMO

Using supramolecular self-assembled nanocomposite materials made from protein and polysaccharide components is becoming more popular because of their unique properties, such as biodegradability, hierarchical structures, and tunable multifunctionality. However, the fabrication of these materials in a reproducible way remains a challenge. This study presents a new evaporation-induced self-assembly method producing layered hydrogel membranes (LHMs) using tropocollagen grafted by partially deacetylated chitin nanocrystals (CO-g-ChNCs). ChNCs help stabilize tropocollagen's helical conformation and fibrillar structure by forming a hierarchical microstructure through chemical and physical interactions. The LHMs show improved mechanical properties, cytocompatibility, and the ability to control drug release using octenidine dihydrochloride (OCT) as a drug model. Because of the high synergetic performance between CO and ChNCs, the modulus, strength, and toughness increased significantly compared to native CO. The biocompatibility of LHM was tested using the normal human dermal fibroblast (NHDF) and the human osteosarcoma cell line (Saos-2). Cytocompatibility and cell adhesion improved with the introduction of ChNCs. The extracted ChNCs are used as a reinforcing nanofiller to enhance the performance properties of tropocollagen hydrogel membranes and provide new insights into the design of novel LHMs that could be used for various medical applications, such as control of drug release in the skin and bone tissue regeneration.


Assuntos
Materiais Biocompatíveis , Quitina , Preparações de Ação Retardada , Hidrogéis , Nanocompostos , Tropocolágeno , Hidrogéis/química , Nanocompostos/química , Tropocolágeno/química , Quitina/química , Nanopartículas/química , Conformação Proteica em alfa-Hélice , Liberação Controlada de Fármacos , Iminas/farmacocinética , Piridinas/farmacocinética , Materiais Biocompatíveis/química , Humanos , Fibroblastos , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Fenômenos Mecânicos , Membranas/química
18.
Faraday Discuss ; 252(0): 279-294, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842386

RESUMO

Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.


Assuntos
Biocatálise , Iminas , Iminas/química , Iminas/metabolismo , Engenharia de Proteínas , Thermoanaerobacter/enzimologia , Acroleína/química , Acroleína/análogos & derivados , Acroleína/metabolismo , Modelos Moleculares
19.
J Org Chem ; 89(16): 11446-11454, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39113180

RESUMO

An enzyme catalyzed strategy for the synthesis of a chiral hydrazine from 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 is presented. An imine reductase (IRED) from Streptosporangium roseum was identified to catalyze the reaction between 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 to produce trace amounts of (R)-3-cyclopentyl-3-hydrazineylpropanenitrile 4. We employed a 2-fold approach to optimize the catalytic performance of this enzyme. First, a transition state analogue (TSA) model was constructed to illuminate the enzyme-substrate interactions. Subsequently, the Enzyme_design and Funclib methods were utilized to predict mutants for experimental evaluation. Through three rounds of site-directed mutagenesis, site saturation mutagenesis, and combinatorial mutagenesis, we obtained mutant M6 with a yield of 98% and an enantiomeric excess (ee) of 99%. This study presents an effective method for constructing a hydrazine derivative via IRED-catalyzed reductive amination of ketone and hydrazine. Furthermore, it provides a general approach for constructing suitable enzymes, starting from nonreactive enzymes and gradually enhancing their catalytic activity through active site modifications.


Assuntos
Biocatálise , Nitrilas , Oxirredutases , Pirazóis , Pirimidinas , Nitrilas/química , Nitrilas/metabolismo , Pirimidinas/química , Pirimidinas/biossíntese , Pirimidinas/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Pirazóis/química , Pirazóis/metabolismo , Iminas/química , Iminas/metabolismo , Estrutura Molecular , Hidrazinas/química , Engenharia de Proteínas
20.
Bioorg Med Chem Lett ; 99: 129624, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272190

RESUMO

A structurally novel class of benzo- or pyrido-fused 1,3-dihydro-2H-imidazole-2-imines was designed and evaluated in an inositol phosphate accumulation assay for Gq signaling to measure agonistic activation of the orexin receptor type 2 (OX2R). These compounds were synthesized in 4-9 steps overall from readily available starting materials. Analogs that contain a stereogenic methyl or cyclopropyl substituent at the benzylic center, and a correctly configured alkyl ether, alkoxyalkyl ether, cyanoalkyl ether, or α-hydroxyacetamido substituted homobenzylic sidechain were identified as the most potent activators of OX2R coupled Gq signaling. Our results also indicate that agonistic activity was stereospecific at both the benzylic and homobenzylic stereogenic centra. We identified methoxyethoxy-substituted pyrido-fused dihydroimidazolimine analog 63c containing a stereogenic benzylic methyl group was the most potent agonist, registering a respectable EC50 of 339 nM and a maximal response (Emax) of 96 % in this assay. In vivo pharmacokinetic analysis indicated good brain exposure for several analogs. Our combined results provide important information towards a structurally novel class of orexin receptor agonists distinct from current chemotypes.


Assuntos
Imidazóis , Iminas , Receptores de Orexina/agonistas , Iminas/farmacologia , Imidazóis/farmacologia , Piridinas , Éteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA