Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.641
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 118(6): 1991-2002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549549

RESUMO

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Proteínas de Plantas , Raízes de Plantas , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Ácidos Indolacéticos/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
2.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815230

RESUMO

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Assuntos
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Estresse Fisiológico/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Genomics ; 25(1): 572, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844832

RESUMO

KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.


Assuntos
Diploide , Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas
4.
BMC Genomics ; 25(1): 58, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218763

RESUMO

BACKGROUND: Cytochrome P450 monooxygenases (CYP450s) play a crucial role in various biochemical reactions involved in the synthesis of antioxidants, pigments, structural polymers, and defense-related compounds in plants. As sweet potato (Ipomoea batatas L.) holds significant economic importance, a comprehensive analysis of CYP450 genes in this plant species can offer valuable insights into the evolutionary relationships and functional characteristics of these genes. RESULTS: In this study, we successfully identified and categorized 95 CYP450 genes from the sweet potato genome into 5 families and 31 subfamilies. The predicted subcellular localization results indicate that CYP450s are distributed in the cell membrane system. The promoter region of the IbCYP450 genes contains various cis-acting elements related to plant hormones and stress responses. In addition, ten conserved motifs (Motif1-Motif10) have been identified in the IbCYP450 family proteins, with 5 genes lacking introns and only one exon. We observed extensive duplication events within the CYP450 gene family, which may account for its expansion. The gene duplication analysis results showed the presence of 15 pairs of genes with tandem repeats. Interaction network analysis reveals that IbCYP450 families can interact with multiple target genes and there are protein-protein interactions within the family. Transcription factor interaction analysis suggests that IbCYP450 families interact with multiple transcription factors. Furthermore, gene expression analysis revealed tissue-specific expression patterns of CYP450 genes in sweet potatoes, as well as their response to abiotic stress and plant hormones. Notably, quantitative real-time polymerase chain reaction (qRT‒PCR) analysis indicated the involvement of CYP450 genes in the defense response against nonbiological stresses in sweet potatoes. CONCLUSIONS: These findings provide a foundation for further investigations aiming to elucidate the biological functions of CYP450 genes in sweet potatoes.


Assuntos
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
5.
Plant Mol Biol ; 114(3): 54, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714535

RESUMO

Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and ß-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Proteínas de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , beta-Amilase , Arabidopsis/genética , Arabidopsis/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
6.
BMC Plant Biol ; 24(1): 193, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493089

RESUMO

Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.


Assuntos
Ipomoea batatas , Estresse Fisiológico , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética , Ipomoea batatas/metabolismo , RNA-Seq , Cloreto de Sódio/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
7.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377782

RESUMO

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Plant Physiol ; 191(1): 747-771, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315103

RESUMO

Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.


Assuntos
Arabidopsis , Ipomoea batatas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio/farmacologia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo
9.
Phytopathology ; 114(6): 1411-1420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38264989

RESUMO

Ceratocystis fimbriata is a destructive fungal pathogen of sweetpotato (Ipomoea batatas) that leads to losses at all stages of sweetpotato production. Accurate detection of C. fimbriata would allow for more efficient deployment of management tactics in sweetpotato production. To develop a diagnostic assay, a hybrid genome assembly of C. fimbriata isolate AS236 was generated. The resulting 31.7-MB assembly was near-chromosome level, with 18 contigs, 6,481 predicted genes, and a BUSCO completion score of 98.4% when compared with the fungus-specific lineage database. Additional Illumina DNA reads from C. manginecans, C. platani, and a second C. fimbriata isolate (C1421) were then mapped to the assembled genome using BOWTIE2 and counted using HTSeq, which identified 148 genes present only within C. fimbriata as molecular diagnostic candidates; 6 single-copy and 35 highly multi-copy (>40 BLAST hits), as determined through a self-BLAST-P alignment. Primers for PCR were designed in the 200-bp flanking region of the first exon for each candidate, and the candidates were validated against a diverse DNA panel containing Ceratocystis species, sweetpotato pathogens, and plants. After validation, two diagnostic candidates amplified only C. fimbriata DNA and were considered to be highly specific to the species. These genetic markers will serve as valuable diagnostic tools with multiple applications including the detection of C. fimbriata in seed, soil, and wash water in sweetpotato production.


Assuntos
Ascomicetos , Genoma Fúngico , Ipomoea batatas , Doenças das Plantas , Ipomoea batatas/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Genoma Fúngico/genética , Análise de Sequência de DNA , DNA Fúngico/genética
10.
Curr Microbiol ; 81(5): 130, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589729

RESUMO

During the course of the isolation of actinobacteria from sweet potato field soils collected from Phra Nakhon Si Ayutthaya province of Thailand, strain TS4A08T was isolated and subjected to a polyphasic taxonomic approach. The 16S rRNA gene sequence analysis of strain TS4A08T revealed that it is closely related to the type strains of Saccharopolyspora aridisoli, and Saccharopolyspora endophytica with 98.7%, and 98.6% similarity, respectively. However, phylogenetic analyses using 16S rRNA gene and genome sequences indicated that strain TS4A08T clustered with Saccharopolyspora flava AS4.1520T (98.2% similarity), well-supported by bootstrap values, and formed distinct line from the two closest strains. The average nucleotide identity (ANI) values and digital DNA-DNA hybridization (dDDH) values between the genome sequences of strain TS4A08T and the closest type strains of S. aridisoli, S. endophytica, and S. flava, were 86.1-93.2% and 33.1-49.6%, respectively, which were less than the threshold for the species delineation. The genome size and the DNA G + C content of strain TS4A08T were 6.6 Mbp and 70.5%, respectively. The strain grew well at 25-37 °C, pH range of 7-9, and NaCl concentration of 0-5% (w/v). Whole-cell hydrolysates contained meso-diaminopimelic acid. The major fatty acids were iso-C16:0, anteiso-C17:0, and iso-C15:0. Strain TS4A08T exhibited phosphatidylcholine in its polar lipid profile, with MK-9(H4) being the predominant isoprenologue. The strain exhibits typical chemotaxonomic properties of the genus Saccharopolyspora, including arabinose, galactose, and ribose as whole-cell sugars. Strain TS4A08T represents a novel species within the genus Saccharopolyspora, for which the name Saccharopolyspora ipomoeae sp. nov. is proposed. The type strain is TS4A08T (= TBRC 17271T = NBRC 115967T).


Assuntos
Actinobacteria , Ipomoea batatas , Saccharopolyspora , Saccharopolyspora/genética , Actinobacteria/genética , Ipomoea batatas/genética , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Tailândia , Ácidos Graxos/química , Fosfolipídeos/química
11.
J Plant Res ; 137(4): 669-683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758249

RESUMO

Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.


Assuntos
Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase , Ipomoea batatas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/fisiologia , Ipomoea batatas/genética , Ipomoea batatas/fisiologia , Ipomoea batatas/enzimologia , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Estresse Salino/genética , Ácido Abscísico/metabolismo , Malondialdeído/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Germinação/efeitos dos fármacos
12.
Food Microbiol ; 122: 104557, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839221

RESUMO

To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.


Assuntos
Ascomicetos , Ipomoea batatas , Doenças das Plantas , Rizosfera , Streptomyces , Ipomoea batatas/microbiologia , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Ascomicetos/genética , Microbiologia do Solo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Multiômica
13.
Plant Dis ; 108(6): 1577-1581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38127639

RESUMO

The reproduction and ability to cause root-galling of a California isolate of the peach root-knot nematode Meloidogyne floridensis was evaluated on seven sweetpotato (Ipomea batatas) cultivars and compared with an M. incognita race 3 and an M. incognita Mi-gene resistance-breaking isolate. The susceptible tomato (Solanum lycopersicum) cultivar Daniela and the Mi-gene-carrying resistant cultivar Celebrity were included as controls. Repeated trials were done in pots in a nematode-quarantine greenhouse at the University of California, Riverside. The three Meloidogyne isolates reproduced equally well on susceptible tomato. On Mi-gene resistant tomato, the reproduction and root-galling by M. floridensis was intermediate between the avirulent M. incognita race 3 and the resistance-breaking M. incognita isolate. The sweetpotato cultivars 'Beauregard' and 'Diane' were excellent hosts for all three Meloidogyne isolates. Cultivars Bellevue, Burgundy, and Covington were resistant to these isolates. The cultivars Bonita and Murasaki-29 were hosts for the M. floridensis and the resistance-breaking M. incognita isolate, which allowed an increase in nematode levels, but they were poor hosts, resulting in a decrease in nematode levels for the M. incognita race 3 isolate. The study showed that M. floridensis can reproduce on tomato and some sweetpotato cultivars that are considered resistant to M. incognita.


Assuntos
Resistência à Doença , Ipomoea batatas , Doenças das Plantas , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiologia , Tylenchoidea/genética , Ipomoea batatas/parasitologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , California , Resistência à Doença/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/imunologia
14.
Plant Dis ; 108(7): 2000-2005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38213118

RESUMO

The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) adversely impacts the quality and quantity of sweetpotato storage roots. Management of R. reniformis in sweetpotato remains a challenge because host plant resistance is not available, fumigants are detrimental to the environment and health, and crop rotation is not effective. We screened a core set of 24 sweetpotato plant introductions (PIs) against R. reniformis. Four PIs were resistant, and 10 were moderately resistant to R. reniformis, suggesting these PIs can serve as sources of resistance for sweetpotato resistance breeding programs. PI 595869, PI 153907, and PI 599386 suppressed 83 to 89% egg production relative to the susceptible control 'Beauregard', and these PIs were employed in subsequent experiments to determine if their efficacy against R. reniformis can be further increased by applying nonfumigant nematicides oxamyl, fluopyram, and fluensulfone. A 34 to 93% suppression of nematode reproduction was achieved by the application of nonfumigant nematicides, with oxamyl providing the best suppression followed by fluopyram and fluensulfone. Although sweetpotato cultivars resistant to R. reniformis are currently not available and there is a need for the development of safer yet highly effective nonfumigant nematicides, results from the current study suggest that complementing host plant resistance with nonfumigant nematicides can serve as an important tool for effective and sustainable nematode management.


Assuntos
Antinematódeos , Ipomoea batatas , Doenças das Plantas , Ipomoea batatas/parasitologia , Animais , Antinematódeos/farmacologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Resistência à Doença , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Interações Hospedeiro-Parasita/efeitos dos fármacos
15.
Plant Dis ; 108(7): 2162-2169, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38499976

RESUMO

Meloidogyne enterolobii is an emerging global threat and is damaging to sweetpotato (Ipomoea batatas) production in the southeast United States. Nematicide application is one of the few management strategies currently available against this nematode, and field testing is urgently needed. The objective of this study was to assess common nematicides for management of M. enterolobii and nontarget effects on free-living nematodes in sweetpotato field production. Treatments were (i) untreated control, (ii) fumigation using 1,3-dichloropropene, or at-transplant drench of fluorinated nematicides (iii) fluazaindolizine, (iv) fluopyram, or (v, vi) fluensulfone at 2 or 4 kg a.i./ha. In 2022, a field trial was conducted under severe M. enterolobii pressure and was repeated in 2023 in the same location without treatment rerandomization. Fumigation using 1,3-dichloropropene (1,3-D) was the only consistently effective nematicide at improving marketable yield relative to control and also consistently reduced most storage root galling measurements and midseason Meloidogyne soil abundances. Fluensulfone at 4 kg a.i./ha consistently improved total yield but not marketable yield, whereas fluensulfone at 2 kg a.i./ha, fluazaindolizine, and fluopyram did not improve yield. Each fluorinated nematicide treatment reduced at least one nematode symptom or nematode soil abundances relative to control, but none provided consistent benefits across years. Even with 1,3-D fumigation, yield was poor, and none of the nematicide treatments provided a significant return on investment relative to forgoing nematicide application. There were minimal effects on free-living nematodes. In summary, 1,3-D is an effective nematicide for M. enterolobii management, but additional management will be needed under severe M. enterolobii pressure.


Assuntos
Compostos Alílicos , Antinematódeos , Fumigação , Hidrocarbonetos Clorados , Ipomoea batatas , Doenças das Plantas , Tylenchoidea , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/farmacologia , Compostos Alílicos/farmacologia , Ipomoea batatas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Hidrocarbonetos Clorados/farmacologia , Sulfonas/farmacologia , Piridinas/farmacologia , Benzamidas , Tiazóis
16.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474246

RESUMO

The DA1-like gene family plays a crucial role in regulating seed and organ size in plants. The DA1 gene family has been identified in several species but has not yet been reported in sweet potatoes. In this study, nine, eleven, and seven DA1s were identified in cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid wild relatives, I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively. The DA1 genes were classified into three subgroups based on their phylogenetic relationships with Arabidopsis thaliana and Oryza sativa (rice). Their protein physiological properties, chromosomal localization, phylogenetic relationships, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The qRT-PCR results showed that the expression levels of four genes, IbDA1-1, IbDA1-3, IbDA1-6, and IbDA1-7, were higher in the sweet potato leaves than in the roots, fiber roots, and stems. In our study, we provide a comprehensive comparison and further the knowledge of DA1-like genes in sweet potatoes, and provide a theoretical basis for functional studies.


Assuntos
Ipomoea batatas , Ipomoea batatas/genética , Filogenia , Diploide , Genoma de Planta , Genes de Plantas , Regulação da Expressão Gênica de Plantas
17.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396773

RESUMO

Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.


Assuntos
Antocianinas , Ipomoea batatas , Antocianinas/metabolismo , Cloreto de Sódio/farmacologia , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Cloreto de Sódio na Dieta/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
18.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892254

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Known as COVID-19, it has affected billions of people worldwide, claiming millions of lives and posing a continuing threat to humanity. This is considered one of the most extensive pandemics ever recorded in human history, causing significant losses to both life and economies globally. However, the available evidence is currently insufficient to establish the effectiveness and safety of antiviral drugs or vaccines. The entry of the virus into host cells involves binding to angiotensin-converting enzyme 2 (ACE2), a cell surface receptor, via its spike protein. Meanwhile, transmembrane protease serine 2 (TMPRSS2), a host surface protease, cleaves and activates the virus's S protein, thus promoting viral infection. Plant protease inhibitors play a crucial role in protecting plants against insects and/or microorganisms. The major storage proteins in sweet potato roots include sweet potato trypsin inhibitor (SWTI), which accounts for approximately 60% of the total water-soluble protein and has been found to possess a variety of health-promoting properties, including antioxidant, anti-inflammatory, ACE-inhibitory, and anticancer functions. Our study found that SWTI caused a significant reduction in the expression of the ACE2 and TMPRSS2 proteins, without any adverse effects on cells. Therefore, our findings suggest that the ACE2 and TMPRSS2 axis can be targeted via SWTI to potentially inhibit SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Ipomoea batatas , SARS-CoV-2 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Animais , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Ipomoea batatas/virologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , COVID-19/metabolismo , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/metabolismo , Internalização do Vírus/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Regulação para Baixo/efeitos dos fármacos , Camundongos
19.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338351

RESUMO

Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-ß-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 µg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-ß-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.


Assuntos
Ipomoea batatas , Norisoprenoides , Solanum tuberosum , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Benzaldeídos , Ipomoea batatas/química , Carotenoides , Odorantes/análise , Terpenos , Aldeídos/análise , Açúcares , Ácidos Graxos , Fenilalanina , Amido
20.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792175

RESUMO

Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.


Assuntos
Embalagem de Alimentos , Ipomoea batatas , Óleos Voláteis , Permeabilidade , Ipomoea batatas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Embalagem de Alimentos/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Vapor , Resistência à Tração , Antocianinas/química , Antocianinas/farmacologia , Cor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA