Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Sci Food Agric ; 100(8): 3394-3400, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32147823

RESUMO

BACKGROUND: Sweet potato often suffers mechanical damage during harvest, handling, and transportation. Infections, water loss, and quality changes of sweet potato caused by mechanical damage pose great financial losses. Wound healing is an effective method to alleviate such problems. In this study, the effects of postharvest treatment with benzothiazole (BTH) on wound healing of sweet potato was investigated. RESULTS: Postharvest BTH treatment of sweet potatoes promoted lignin accumulation in wounded tissues, and 100 mg L-1 BTH exhibited better effects than 50 mg L-1 or 150 mg L-1 BTH. The biosynthesis of lignin in wounded tissues significantly decreased the weight loss of sweet potatoes. An increase in respiration intensity after BTH treatment was observed. The total phenolic and flavonoid contents and the activity of phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase were increased in BTH-treated sweet potatoes. This suggests that BTH increases phenylpropanoid metabolism. CONCLUSION: Postharvest 100 mg L-1 BTH treatment could promote wound healing in mechanically damaged sweet potatoes. The activation of the phenylpropanoid metabolism might be the mechanism of action of BTH in wound healing. © 2020 Society of Chemical Industry.


Assuntos
Benzotiazóis/farmacologia , Ipomoea batatas/metabolismo , Fenilpropionatos/metabolismo , Tubérculos/efeitos dos fármacos , Catecol Oxidase/metabolismo , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/crescimento & desenvolvimento , Lignina/metabolismo , Peroxidase/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo
2.
J Sci Food Agric ; 98(12): 4597-4605, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29508397

RESUMO

BACKGROUND: The potential of 1-methylcyclopropene (1-MCP) to maintain postharvest storage of sweet potato was studied. In two separate experiments, the orange-fleshed sweet potato cv. Covington was treated with 1-MCP (1.0 µL L-1 , 24 h) and roots stored at 15 °C. During storage, samples were evaluated for the respiration rate, sprout growth, weight loss, incidence of decay and changes in dry matter. The roots were further assayed for the temporal changes in individual non-structural carbohydrates and phenolic compounds in the skin and flesh tissues of the proximal (stem end), middle and distal (root end) regions. RESULTS: 1-MCP treatment reduced root weight loss and decay but respiration rate and non-structural carbohydrates were not affected. No sprouting was recorded irrespective of the treatment. 1-MCP transiently suppressed the accumulation of individual phenolic compounds, especially in the middle and distal segments. This accentuated the proximal dominance of phenolic compounds. Isochlorogenic acid A and chlorogenic acid were the dominant phenolics in the skin and flesh tissues, respectively. CONCLUSION: 1-MCP treatment may have an anti-decay effect and reduce weight loss. Therefore, storage trials that involve the use of continuous ethylene supplementation to inhibit sprout growth may be combined with 1-MCP to alleviate ethylene-induced weight loss and decay in sweet potato. © 2018 Society of Chemical Industry.


Assuntos
Ciclopropanos/farmacologia , Ipomoea batatas/efeitos dos fármacos , Resistência à Doença , Armazenamento de Alimentos , Ipomoea batatas/química , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/imunologia , Fenóis/análise , Extratos Vegetais/análise , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/imunologia
3.
BMC Complement Altern Med ; 16: 152, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27234523

RESUMO

BACKGROUND: Sweet potato (Ipomoea batatas L.) is one of the most important consumed crops in many parts of the world because of its economic importance and content of health-promoting phytochemicals. METHODS: With the sweet potato (Ipomoea batatas L.) as our model, we investigated the exogenous effects of three plant-growth regulators methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA) on major phytochemicals in relation to phenylalanine ammonia lyase (PAL) activity. Specifically, we investigated the total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), and total ß-carotene content (TCC). Individual phenolic and flavonoid compounds were identified using ultra-high performance liquid chromatography (UHPLC). Antioxidant activities of treated plants were evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and a ß-carotene bleaching assay. Anticancer activity of extracts was evaluated against breast cancer cell lines (MCF-7 and MDA-MB-231) using MTT assay. RESULTS: TPC, TFC, TAC, and TCC and antioxidant activities were substantially increased in MeJA-, SA-, and ABA-treated plants. Among the secondary metabolites identified in this study, MeJA application significantly induced production of quercetin, kaempferol, myricetin, gallic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. Luteolin synthesis was significantly induced by SA application. Compared with control plants, MeJA-treated sweet potato exhibited the highest PAL activity, followed by SA and ABA treatment. The high DPPH activity was observed in MeJA followed by SA and ABA, with half-maximal inhibitory concentration (IC50) values of 2.40, 3.0, and 3.40 mg/mL compared with α-tocopherol (1.1 mg/mL). Additionally, MeJA-treated sweet potato showed the highest ß-carotene bleaching activity, with an IC50 value of 2.90 mg/mL, followed by SA (3.30 mg/mL), ABA (3.70 mg/mL), and control plants (4.5 mg/mL). Extracts of sweet potato root treated with MeJA exhibited potent anticancer activity with IC50 of 0.66 and 0.62 mg/mL against MDA-MB-231 and MCF-7 cell lines respectively, compared to that of extracts of sweet potato treated with SA (MDA-MB-231 = 0.78 mg/mL; MCF-7 = 0.90 mg/mL) and ABA (MDA-MB-231 = 0.94 mg/mL; MCF-7 = 1.40 mg/mL). The results of correlation analysis showed that anthocyanins and flavooids are corresponding compounds in sweet potato root extracts for anticancer activity against breast cancer cell lines. CONCLUSIONS: MeJA has great potential to enhance the production of important health-promoting phytochemicals in sweet potato.


Assuntos
Ipomoea batatas/química , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Antocianinas/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Antioxidantes/metabolismo , Ciclopentanos/farmacologia , Flavonóis/metabolismo , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/metabolismo , Oxilipinas/farmacologia , Fenóis/metabolismo , Ácido Salicílico/farmacologia , beta Caroteno/metabolismo
4.
Cryo Letters ; 36(5): 344-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26574682

RESUMO

BACKGROUND: Sweet potato is a staple food worldwide, but a problematic species in terms of long term storage, as it is not suitable for germplasm conservation. OBJECTIVE: This study aimed to develop cryopreservation protocols for sweet potato shoot tips based on a droplet-vitrification procedure. METHODS: As a standard procedure, sweet potato shoot tips were precultured in a liquid MS medium supplemented with 10% sucrose (S-10%) and 17.5% sucrose (S-17.5%) for 31 and 17 h, respectively. They were then osmoprotected with C4-35% (17.5% glycerol + 17.5% sucrose) for 50 min and cryoprotected with PVS3 (50% glycerol + 50% sucrose) for 60 min. A set of experiments was designed to investigate critical factors, i.e. stepwise sucrose preculture, osmoprotection, cryoprotection with PVS2- and PVS3-based vitrification solutions, and their combinational effect, as well as temperature alteration through placement in a cooling/rewarming container. RESULTS: Sucrose preculture was determined to be necessary for the adaptation of sweet potato shoot tips to cryoprotection with PVS3, and the highest post-thaw (LN) regeneration rate was observed in a preculture with S-10% for 31 h → S-17.5% for 17 h (19.0%). The effect of one-step or two-step osmoprotection was not significant on survival or regeneration of either the cryoprotected-control (LNC) or LN shoot tips. Responses of sweet potato shoot tips to osmoprotection and cryoprotection were linked to the level of sucrose preculture. The use of alumimium foil strips (droplet-vitrification) resulted in significantly higher LN survival (89.8%) and regeneration (19.0%), compared to those using cryovials (vitrification, 67.2% and 0%, respectively). LN regeneration increased by 67.5% when cryopreserved shoot tips were transferred to a new postculture medium. CONCLUSIONS: This study demonstrates that the combination of stepwise sucrose preculture with a higher final concentration (up to 17.5%), cryoprotection with PVS3 and cooling with foil strip is crucial to the regeneration of LN sweet potato shoot tips.


Assuntos
Criopreservação/métodos , Ipomoea batatas/fisiologia , Técnicas de Cultura de Células , Crioprotetores/farmacologia , Meios de Cultura/farmacologia , Glicerol/farmacologia , Ipomoea batatas/efeitos dos fármacos , Pressão Osmótica , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Sacarose/farmacologia
5.
J Environ Biol ; 36(6): 1337-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26688970

RESUMO

Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.


Assuntos
Gasolina/toxicidade , Germinação/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Poluentes do Solo/toxicidade , Relação Dose-Resposta a Droga , Gasolina/análise , Sementes/efeitos dos fármacos , Poluentes do Solo/química
6.
BMC Plant Biol ; 14: 112, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24774834

RESUMO

BACKGROUND: Plants respond differently to mechanical wounding and herbivore attack, using distinct pathways for defense. The versatile sweet potato sporamin possesses multiple biological functions in response to stress. However, the regulation of sporamin gene expression that is activated upon mechanical damage or herbivore attack has not been well studied. RESULTS: Biochemical analysis revealed that different patterns of Reactive oxygen species (ROS) and antioxidant mechanism exist between mechanical wounding (MW) and herbivore attack (HA) in the sweet potato leaf. Using LC-ESI-MS (Liquid chromatography electrospray ionization mass spectrometry analysis), only the endogenous JA (jasmonic acid) level was found to increase dramatically after MW in a time-dependent manner, whereas both endogenous JA and SA (salicylic acid) increase in parallel after HA. Through yeast one-hybrid screening, two transcription factors IbNAC1 (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC)) and IbWRKY1 were isolated, which interact with the sporamin promoter fragment of SWRE (sporamin wounding-responsive element) regulatory sequences. Exogenous application of MeJA (methyl jasmonate), SA and DIECA (diethyldithiocarbamic acid, JAs biosynthesis inhibitor) on sweet potato leaves was employed, and the results revealed that IbNAC1 mediated the expression of sporamin through a JA-dependent signaling pathway upon MW, whereas both IbNAC1 and IbWRKY1 coordinately regulated sporamin expression through JA- and SA-dependent pathways upon HA. Transcriptome analysis identified MYC2/4 and JAZ2/TIFY10A (jasmonate ZIM/tify-domain), the repressor and activator of JA and SA signaling among others, as the genes that play an intermediate role in the JA and SA pathways, and these results were further validated by qRT-PCR (quantitative real-time polymerase chain reaction). CONCLUSION: This work has improved our understanding of the differential regulatory mechanism of sporamin expression. Our study illustrates that sweet potato sporamin expression is differentially induced upon abiotic MW and biotic HA that involves IbNAC1 and IbWRKY1 and is dependent on the JA and SA signaling pathways. Thus, we established a model to address the plant-wounding response upon physical and biotic damage.


Assuntos
Regulação da Expressão Gênica de Plantas , Herbivoria/genética , Ipomoea batatas/genética , Ipomoea batatas/fisiologia , Proteínas de Plantas/genética , Spodoptera/fisiologia , Animais , Antioxidantes/metabolismo , Sequência de Bases , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Herbivoria/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Análise de Sequência de DNA , Oxigênio Singlete/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Spodoptera/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Técnicas do Sistema de Duplo-Híbrido
7.
Mol Biol Rep ; 41(10): 6957-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25030835

RESUMO

Metallothioneins (MTs) are cysteine-rich, low molecular weight, metal-binding proteins that are widely distributed in living organisms. Plants produce metal-chelating proteins such as MTs to overcome the toxic effects of heavy metals. We cloned three MT genes from sweetpotato leaves [Ipomoea batatas (L.) Lam.]. The three IbMT genes were classified according to their cysteine residue alignment into type 1 (IbMT1), type 2 (IbMT2), and type 3 (IbMT3). IbMT1 was the most abundantly transcribed MT. It was predominantly expressed in leaves, roots, and callus. IbMT2 transcript was detected only in stems and fibrous roots, whereas IbMT3 was strongly expressed in leaves and stems. The IbMT expression profiles were investigated in plants exposed to heavy metals and abiotic stresses. The levels of IbMT1 expression were strongly elevated in response to Cd and Fe, and moderately higher in response to Cu. The IbMT3 expression pattern in response to heavy metals was similar to that of IbMT1. Exposure to abiotic stresses such as methyl viologen (MV; paraquat), NaCl, polyethylene glycol (PEG), and H2O2 up-regulated IbMT expression; IbMT1 responded strongly to MV and NaCl, whereas IbMT3 was induced by low temperature and PEG. Transgenic Escherichia coli overexpressing IbMT1 protein exhibited results suggest that IbMT could be a useful tool for engineering plants with enhanced tolerance to environmental stresses and heavy metals.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/genética , Metalotioneína/genética , Metais Pesados/toxicidade , Estresse Fisiológico/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Células Cultivadas , Escherichia coli/genética , Escherichia coli/metabolismo , Ipomoea batatas/classificação , Metalotioneína/química , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência
8.
J Exp Bot ; 64(1): 129-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22945944

RESUMO

The role of an expansin gene (IbEXP1) in the formation of the storage root (SR) was investigated by expression pattern analysis and characterization of IbEXP1-antisense sweetpotato (Ipomoea batatas cv. Yulmi) plants in an attempt to elucidate the molecular mechanism underlying SR development in sweetpotato. The transcript level of IbEXP1 was high in the fibrous root (FR) and petiole at the FR stage, but decreased significantly at the young storage root (YSR) stage. IbEXP1-antisense plants cultured in vitro produced FRs which were both thicker and shorter than those of wild-type (WT) plants. Elongation growth of the epidermal cells was significantly reduced, and metaxylem and cambium cell proliferation was markedly enhanced in the FRs of IbEXP1-antisense plants, resulting in an earlier thickening growth in these plants relative to WT plants. There was a marked reduction in the lignification of the central stele of the FRs of the IbEXP1-antisense plants, suggesting that the FRs of the mutant plants possessed a higher potential than those of WT plants to develop into SRs. IbEXP1-antisense plants cultured in soil produced a larger number of SRs and, consequently, total SR weight per IbEXP1-antisense plant was greater than that per WT plant. These results demonstrate that SR development was accelerated in IbEXP1-antisense plants and suggest that IbEXP1 plays a negative role in the formation of SR by suppressing the proliferation of metaxylem and cambium cells to inhibit the initial thickening growth of SRs. IbEXP1 is the first sweetpotato gene whose role in SR development has been directly identified in soil-grown transgenic sweetpotato plants.


Assuntos
Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Ipomoea batatas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Lignina/metabolismo , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
New Phytol ; 196(2): 427-440, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22931461

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms.


Assuntos
Peróxido de Hidrogênio/metabolismo , Ipomoea batatas/metabolismo , Lignina/metabolismo , MicroRNAs/metabolismo , Estresse Mecânico , Acetatos/farmacologia , Agrobacterium/efeitos dos fármacos , Agrobacterium/metabolismo , Antioxidantes/metabolismo , Sequência de Bases , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , GMP Cíclico/metabolismo , Ciclopentanos/farmacologia , Etilenos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/enzimologia , Ipomoea batatas/genética , MicroRNAs/química , MicroRNAs/genética , Dados de Sequência Molecular , Niacinamida/farmacologia , Óxido Nítrico/metabolismo , Ácido Okadáico/farmacologia , Oxilipinas/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Propanóis/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estaurosporina/farmacologia
10.
Plant Cell Rep ; 31(6): 987-97, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22212462

RESUMO

Black rot of sweet potato caused by pathogenic fungus Ceratocystis fimbriata severely deteriorates both growth of plants and post-harvest storage. Antimicrobial peptides from various organisms have broad range activities of killing bacteria, mycobacteria, and fungi. Plant thionin peptide exhibited anti-fungal activity against C. fimbriata. A gene for barley α-hordothionin (αHT) was placed downstream of a strong constitutive promoter of E12Ω or the promoter of a sweet potato gene for ß-amylase of storage roots, and introduced into sweet potato commercial cultivar Kokei No. 14. Transgenic E12Ω:αHT plants showed high-level expression of αHT mRNA in both leaves and storage roots. Transgenic ß-Amy:αHT plants showed sucrose-inducible expression of αHT mRNA in leaves, in addition to expression in storage roots. Leaves of E12Ω:αHT plants exhibited reduced yellowing upon infection by C. fimbriata compared to leaves of non-transgenic Kokei No. 14, although the level of resistance was weaker than resistance cultivar Tamayutaka. Storage roots of both E12Ω:αHT and ß-Amy:αHT plants exhibited reduced lesion areas around the site inoculated with C. fimbriata spores compared to Kokei No. 14, and some of the transgenic lines showed resistance level similar to Tamayutaka. Growth of plants and production of storage roots of these transgenic plants were not significantly different from non-transgenic plants. These results highlight the usefulness of transgenic sweet potato expressing antimicrobial peptide to reduce damages of sweet potato from the black rot disease and to reduce the use of agricultural chemicals.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Ascomicetos/fisiologia , Resistência à Doença/genética , Ipomoea batatas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Resistência à Doença/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Vetores Genéticos/genética , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/microbiologia , Testes de Sensibilidade Microbiana , Doenças das Plantas/imunologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Transformação Genética/efeitos dos fármacos , beta-Amilase/genética
11.
J Exp Bot ; 61(5): 1337-49, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20150515

RESUMO

A sweetpotato (Ipomoea batatas cv. 'Jinhongmi') MADS-box protein cDNA (SRD1) has been isolated from an early stage storage root cDNA library. The role of the SRD1 gene in the formation of the storage root in sweetpotato was investigated by an expression pattern analysis and characterization of SRD1-overexpressing (ox) transgenic sweetpotato plants. Transcripts of SRD1 were detected only in root tissues, with the fibrous root having low levels of the transcript and the young storage root showing relatively higher transcript levels. SRD1 mRNA was mainly found in the actively dividing cells, including the vascular and cambium cells of the young storage root. The transcript level of SRD1 in the fibrous roots increased in response to 1000 muM indole-3-acetic acid (IAA) applied exogenously. During the early stage of storage root development, the endogenous IAA content and SRD1 transcript level increased concomitantly, suggesting an involvement of SRD1 during the early stage of the auxin-dependent development of the storage root. SRD1-ox sweetpotato plants cultured in vitro produced thicker and shorter fibrous roots than wild-type plants. The metaxylem and cambium cells of the fibrous roots of SRD1-ox plants showed markedly enhanced proliferation, resulting in the fibrous roots of these plants showing an earlier thickening growth than those of wild-type plants. Taken together, these results demonstrate that SRD1 plays a role in the formation of storage roots by activating the proliferation of cambium and metaxylem cells to induce the initial thickening growth of storage roots in an auxin-dependent manner.


Assuntos
Ácidos Indolacéticos/farmacologia , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Hibridização In Situ , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/genética , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Plant Physiol Biochem ; 154: 277-286, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32580091

RESUMO

Little information is available on the interaction of CuO nanoparticles (nCuO) with tuberous roots. In this study, Beauregard-14 (B-14, low lignin) and Covington (COV, high lignin) sweetpotato varieties were cultivated until maturity in soil amended with nCuO, bulk copper oxide (bCuO) and CuCl2 at 25-125 mg/kg. The Cu treatments had no significant influence on chlorophyll content. Gas exchange parameters were not affected in B-14. In COV, however, at 125 mg/kg treatments, bCuO reduced the intercellular CO2 (11%), while CuCl2 increased it by 7%, compared with control (p ≤ 0.035). At 25 mg/kg nCuO increased the length of COV roots (20.7 ± 2.0 cm vs. 14.6 ± 0.8 cm, p ≤ 0.05). In periderm of B-14, nCuO, at 125 mg/kg, increased Mg by 232%, while the equivalent concentration of CuCl2 reduced P by 410%, compared with control (p ≤ 0.05). The data suggest the potential application of nCuO as nanofertilizer for sweetpotato storage root production.


Assuntos
Cobre/farmacologia , Ipomoea batatas/efeitos dos fármacos , Nanopartículas Metálicas , Raízes de Plantas/efeitos dos fármacos , Óxidos , Solo
13.
Plant Physiol Biochem ; 151: 743-750, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32361224

RESUMO

Split application could improve nitrogen (N) uptake and increase sweetpotato yields under reduced N supply; however, little is known about how it affects the process of starch production in storage roots. An experiment was conducted to determine the effects of three N management strategies [conventional basal N management; 80% of the conventional N rate applied as a basal fertilizer; 80% of the conventional N rate equally split at transplanting and 35 days after transplanting] on starch accumulation, enzyme activity and genes expression in the conversion of sucrose to starch and the relationships among them. The results showed that, compared with conventional basal N management, split application decreased sucrose accumulation by 11.78%, but increased starch accumulation by 11.12% through improving the starch accumulation rate under reduced N supply. The ratio of sucrose synthetase to sucrose phosphate synthase, the enzymatic activity of ADP-glucose pyrophosphorylase (AGPP), starch synthase, and the expression of their corresponding genes were promoted by split application under reduced N supply and were positively correlated with starch accumulation rate. AGPP is the rate-limiting enzyme in starch synthesis in storage roots under different N management strategies. These results indicate that starch accumulation was enhanced by split application through regulating the activity and gene expression of key enzymes involved in the conversion of sucrose to starch under reduced N supply.


Assuntos
Ipomoea batatas , Nitrogênio , Amido , Sacarose , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/enzimologia , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Nitrogênio/farmacologia , Amido/biossíntese , Sacarose/metabolismo
14.
Protoplasma ; 257(1): 197-211, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31407117

RESUMO

Drought tolerance in higher plants can result in enhanced productivity, especially in case of carbohydrate storage root crop. Sweet potato has been reported as a drought-tolerant crop, while it is very sensitive to water shortage in the root initiation of cutting propagation and tuber initiation stages. In the present study, we aimed to alleviate the drought-tolerant abilities in sweet potato cv. Tainung 57 (drought-sensitive cultivar) using foliar glycine betaine (GlyBet) application as compared with drought-tolerant cultivar (cv. Japanese Yellow). Leaf osmotic potential in GlyBet applied plants under mild- (25.5% soil water content; SWC) and severe-water deficit (15.5% SWC) stresses was maintained through the accumulation of total soluble sugars as a major osmotic adjustment, thus stabilizing the photosynthetic pigments, chlorophyll fluorescence, net photosynthetic rate, and retaining the overall growth performances, i.e., shoot height, number, and length of leaves. In the harvesting process, storage root weight in water deficit stressed sweet potato cv. Tainung 57 (11.75 g plant-1) with 50 mM GlyBet application was retained in a similar pattern to cv. Japanese Yellow (12.25 g plant-1). In the present investigation, exogenous foliar GlyBet application strongly alleviated water deficit stress via sugar enrichment to control cellular osmotic potential, retain high photosynthetic abilities and maintain the yield of storage root yield. In summary, the regulation on total soluble sugar enrichment in water deficit-stressed sweet potato using GlyBet foliar application may play an important role in maintaining the controlled osmotic potential of leaves, thereby retaining the photosynthetic abilities, overall growth characters and increasing the yield of storage roots.


Assuntos
Adaptação Fisiológica , Betaína/farmacologia , Secas , Ipomoea batatas/fisiologia , Folhas de Planta/fisiologia , Açúcares/metabolismo , Água , Adaptação Fisiológica/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Ipomoea batatas/anatomia & histologia , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/crescimento & desenvolvimento , Osmose , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Prolina/metabolismo , Solubilidade
15.
J Plant Physiol ; 253: 153265, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32947245

RESUMO

This study investigated the alleviation effects of spraying phytohormones on the physiological characteristics and yield of sweet potato under drought stress during the early vine development and storage root bulking stage, respectively. The endogenous hormone contents, photosynthetic fluorescence indexes, photosynthetic products transfer allocation (based on 13C labeling method), and yield of sweet potato were studied by spraying water, 6-benzylaminopurine (6-BA), abscisic acid (ABA), and combined with the two exogenous hormones under artificial dry shed and dry pond. Results indicated that the yield was increased by spraying 6-BA or ABA separately in comparison with the control treatment under drought stress, and the alleviation effects of spraying 6-BA at the early stage were better than at the storage root bulking stage, while spraying ABA at the storage root bulking stage was better than at the early stage. The sweet potato yield increased when sprayed with 6-BA, especially at the early vine development stage, and sweet potato yield was further enhanced by the addition of ABA. When sprayed together, exogenous 6-BA and ABA increased plant shoot and storage root biomass, as well as leaf area and yield, at both stages. The combination of exogenous 6-BA and ABA also increased shoot 13C accumulation at the early vine development stage and storage root 13C accumulation at the storage root bulking stage, in comparison with 6-BA or ABA alone under drought stress. Spraying exogenous hormones under drought stress increased the endogenous hormone contents, enhanced carbon metabolism enzyme activities, improved the photosynthetic fluorescence characteristics of leaves, and regulated the source-sink balance, all of which alleviated the yield reduction caused by drought stress. Application of the combination of 6-AB and ABA yielded better results than that of the 6-BA or ABA alone.


Assuntos
Ácido Abscísico/farmacologia , Compostos de Benzil/farmacologia , Ipomoea batatas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Purinas/farmacologia , Biomassa , Secas , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Estresse Fisiológico , Água
16.
Carbohydr Polym ; 245: 116574, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718651

RESUMO

The antifungal effects of oligochitosan (OCS) against Ceratocystis fimbriata that causes black rot disease in sweet potato and its apoptosis mechanism were evaluated. OCS restrained the mycelial growth and spores germination of C. fimbriata, and decreased the ergosterol content of cell membrane. Transmission electron microscopy observation and flow cytometry analysis revealed that OCS induced morphology changes with smaller size and increased granularity of C. fimbriata, which was the typical feature of apoptosis. To clarify the apoptosis mechanism induced by OCS, a series of apoptosis-related parameters were analyzed. Results showed that OCS induced reactive oxygen species accumulation, Ca2+ homeostasis dysregulation, mitochondrial dysfunction and metacaspase activation, coupled with hallmarks of apoptosis including phosphatidylserine externalization, DNA fragmentation, and nuclear condensation. In summary, OCS triggered apoptosis through a metacaspase-dependent mitochondrial pathway in C. fimbriata. These findings have important implications for the application of OCS to control pathogens in food and agriculture.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ceratocystis/enzimologia , Quitina/análogos & derivados , Proteínas Fúngicas/metabolismo , Mitocôndrias/enzimologia , Ceratocystis/efeitos dos fármacos , Quitina/farmacologia , Quitosana , Fragmentação do DNA/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/microbiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Oligossacarídeos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
17.
Physiol Plant ; 135(4): 390-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19226312

RESUMO

Previously, the swpa4 peroxidase gene has been shown to be inducible by a variety of abiotic stresses and pathogenic infections in sweet potato (Ipomoea batatas). To elucidate its regulatory mechanism at the transcriptional level under various stress conditions, we isolated and characterized the promoter region (2374 bp) of swpa4 (referred to as SWPA4). We performed a transient expression assay in tobacco protoplasts with deletions from the 5'-end of SWPA4 promoter fused to the beta-glucuronidase (GUS) reporter gene. The -1408 and -374 bp deletions relative to the transcription start site (+1) showed 8 and 4.5 times higher GUS expression than the cauliflower mosaic virus 35S promoter, respectively. In addition, transgenic tobacco plants expressing GUS under the control of -2374, -1408 or -374 bp region of SWPA4 promoter were generated and studied in various tissues under abiotic stresses and pathogen infection. Gel mobility shift assays revealed that nuclear proteins from sweet potato cultured cells specifically interacted with 60-bp fragment (-178/-118) in -374 bp promoter region. In silico analysis indicated that four kinds of cis-acting regulatory sequences, reactive oxygen species-related element activator protein 1 (AP1), CCAAT/enhancer-binding protein alpha element, ethylene-responsive element (ERE) and heat-shock element, are present in the -60 bp region (-178/-118), suggesting that the -60 bp region might be associated with stress inducibility of the SWPA4 promoter.


Assuntos
Ipomoea batatas/genética , Peroxidases/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Células Cultivadas , Passeio de Cromossomo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/metabolismo , Ipomoea batatas/microbiologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/fisiologia , RNA de Plantas/genética , Estresse Fisiológico , Nicotiana/genética
18.
PLoS One ; 14(8): e0221351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437204

RESUMO

In recent years, the sweet potato cultivar Jishu 25 has exhibited good characteristics for starch processing in northern China. The storage root dry matter yields of this cultivar can exceed one ton per mu (1/15 of a hectare) at nitrogen (N) rates of 60-90 kg ha-1 based on soil nutrient content. However, the effect of N fertilizer on the physicochemical properties of starches isolated from this cultivar has not been reported. In order to evaluate these effects, three different N rates, 0 (control, N0), 75 (N1), and 150 kg ha-1 (N2), were selected for a field experiment in 2017. The results showed that N1 exhibited the highest storage root yield and starch yield. Compared to the control group, N fertilizer significantly increased the total starch content while no significant difference was found in these between the N1 and N2 groups. The amylose (AM) content was highest in the N2 group and lowest in the N0 group. In addition, N fertilizer exhibited no significant effects on the values of [D(v, 0.9)], D [4, 3] and D [3, 2]. Compared to the control group, N1 demonstrated significantly higher setback viscosity (SV), while N2 showed significantly higher peak viscosity (PV), cold paste viscosity (CPV) and SV. However, there were no significant differences in the hot paste viscosity (HPV), peak time and pasting temperature between the N1 and N2 groups. For the thermal properties of starch, there were no significant differences in peak temperature (Tp), conclusion temperature (Tc) or gelatinization enthalpy (ΔH) between the N1 and N2 groups. Overall, for the starch samples of cultivar Jishu 25, N fertilizer exerts significant effects on the starch content, AM content and viscosity properties but little effect on the particle size distribution and ΔH. 75 kg N ha-1 can easily lead to substantial planting benefits from the high storage root yield, dry matter yield and total starch content of this cultivar.


Assuntos
Fertilizantes , Ipomoea batatas/efeitos dos fármacos , Nitrogênio/farmacologia , Raízes de Plantas/efeitos dos fármacos , Amido/química , China , Análise de Alimentos/métodos , Humanos , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Amido/biossíntese , Amido/isolamento & purificação , Temperatura , Viscosidade
19.
Plant Physiol Biochem ; 144: 436-444, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31639559

RESUMO

Oxidative stress caused by reactive oxygen species (ROS) under various environmental stresses significantly reduces plant productivity. Tocopherols (collectively known as vitamin E) are a group of lipophilic antioxidants that protect cellular components against oxidative stress. Previously, we isolated five tocopherol biosynthesis genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including tocopherol cyclase (IbTC). In this study, we generated transgenic sweetpotato plants overexpressing IbTC under the control of cauliflower mosaic virus (CaMV) 35S promoter (referred to as TC plants) via Agrobacterium-mediated transformation to understand the function of IbTC in sweetpotato. Three transgenic lines (TC2, TC9, and TC11) with high transcript levels of IbTC were selected for further characterization. High performance liquid chromatography (HPLC) analysis revealed that α-tocopherol was the most predominant form of tocopherol in sweetpotato tissues. The content of α-tocopherol was 1.6-3.3-fold higher in TC leaves than in non-transgenic (NT) leaves. No significant difference was observed in the tocopherol content of storage roots between TC and NT plants. Additionally, compared with NT plants, TC plants showed enhanced tolerance to multiple environmental stresses, including salt, drought, and oxidative stresses, and showed consistently higher levels of photosystem II activity and chlorophyll content, indicating abiotic stress tolerance. These results suggest IbTC as a strong candidate gene for the development of sweetpotato cultivars with increased α-tocopherol levels and enhanced abiotic stress tolerance.


Assuntos
Transferases Intramoleculares/metabolismo , Ipomoea batatas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , alfa-Tocoferol/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Estresse Fisiológico
20.
Sci Total Environ ; 657: 938-944, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677959

RESUMO

We studied the effect of different doses (0.5%, 2% and 5% (w/w)) of ammonium thiosulfate on mercury (Hg) speciation fractionation following its addition to the soil, as well as its accumulation by oilseed rape (Brassica napus L.), corn (Zea mays L.), and sweet potato (Ipomoea batatas L.), and compared them to a non-treated control in a historically polluted soil. The oilseed rape, corn, and sweet potato were planted consecutively in the same soils on days 30, 191, and 276, respectively after the addition of thiosulfate to the soil. The key results showed that bioavailable Hg contents in the rhizosphere soils ranged from 0.18 to 2.54 µg kg-1, 0.28 to 2.77 µg kg-1, and 0.24 to 2.22 µg kg-1, respectively, for the 0.5%, 2% and 5% thiosulfate treatments, which were close to the control soil (0.25 to 1.98 µg kg-1). The Hg L3-edge X-ray absorption near edge structure (XANES) results showed a tendency of the Hg speciation to transform from the Hg(SR)2 (initial soil, 56%; day-191 soil, 43%; day-276 soil, 46%, and day-356 soil, 16%) to nano particulated HgS (initial soil, 26%; day-191 soil, 42%; day-276 soil, 42%, and day-356 soil, 73%) with time in the soil treated with a 5% dose of thiosulfate. The Hg contents in the tissues of the crops, except for oilseed rape, were slightly affected by the addition of thiosulfate to the soil at all dosages, compared to the control. The addition of thiosulfate did not induce the movement of bioavailable Hg to the lower layer of the soil profile. We conclude a promotion of Hg immobilization by thiosulfate in the soil for over one year, offering a promising method for in-situ Hg remediation at Hg mining regions in China.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Mercúrio/química , Poluentes do Solo/química , Tiossulfatos/química , Disponibilidade Biológica , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , China , Produtos Agrícolas/química , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/metabolismo , Mercúrio/análise , Mercúrio/farmacocinética , Mineração , Rizosfera , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Espectroscopia por Absorção de Raios X , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA