Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell Mol Life Sci ; 78(6): 2749-2769, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388854

RESUMO

Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.


Assuntos
Evolução Biológica , Isópteros/metabolismo , Animais , Celulose/metabolismo , Fósseis , Microbioma Gastrointestinal , Isópteros/classificação , Isópteros/genética , Filogenia , Simbiose
2.
ScientificWorldJournal ; 2022: 9475722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153630

RESUMO

The genus Termes Linneus, 1758 consisting of a total of 24 valid named species known from the Old World, is a very heterogeneous group of termites and seems to involve many taxonomic obscurities and confusions. In the island of Sumatra, the sixth-largest island located in the Southeast Asian tropics, four species of Termes have been found, namely, T. comis, T. laticornis, T. rostratus, and T. propinquus. Termes propinquus is also known from Brunei, Indonesia (Kalimantan and Sumatra), Malaysia, and Thailand. However, previous authors have mentioned that T. propinquus has been poorly discriminated from the other congeners, especially T. rostratus. Therefore, the present study aimed at clarifying the discrimination of Termes propinquus from the morphologically similar congeners from Sumatra. A total of 14 nests were collected using a standardized sampling protocol and visual colony searching in Sumatra and its adjacent island. As a result of a careful morphological examination of the soldier caste, T. propinquus was discriminated from the three other congeners by a combination of the following characteristics: distinctly long frontal projection, larger head capsule, and 2nd antennal segment distinctly longer than the 3rd. The redescription of the soldier caste of T. propinquus and a key to Termes species known from Sundaland are provided. The nests of T. propinquus were attached to the bases of living trees, clinging to stumps or the bases of the dead tree, or were epigeal.


Assuntos
Ecossistema , Isópteros/classificação , Animais , Indonésia , Ilhas , Isópteros/anatomia & histologia , Somatotipos
3.
BMC Evol Biol ; 19(1): 131, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226928

RESUMO

BACKGROUND: A decade ago, the mixed reproductive strategy Asexual Queen Succession (AQS) was first described in termites. In AQS species, the workers, soldiers and dispersing reproductives are produced through sexual reproduction, while non-dispersing (neotenic) queens arise through automictic thelytokous parthenogenesis, replace the founding queen and mate with the founding king. As yet, AQS has been documented in six species from three lineages of lower (Rhinotermitidae) and higher (Termitinae: Termes group and Syntermitinae) termites. Independent evolution of the capacity of thelytoky as a preadaptation to AQS is supported by different mechanisms of automixis in each of the three clades. These pioneering discoveries prompt the question on the extent of thelytoky and AQS in the diversified family of higher termites. RESULTS: Here, we investigated the capacity of thelytoky and occurrence of AQS in three species from the phylogenetic proximity of the neotropical AQS species Cavitermes tuberosus (Termitinae: Termes group): Palmitermes impostor, Spinitermes trispinosus, and Inquilinitermes inquilinus. We show that queens of all three species are able to lay unfertilized eggs, which undergo thelytokous parthenogenesis (via gamete duplication as in C. tuberosus) and develop through the transitional stage of aspirants into replacement neotenic queens. CONCLUSIONS: The breeding system in P. impostor is very reminiscent of that described in C. tuberosus and can be characterized as AQS. In the remaining two species, our limited data do not allow classifying the breeding system as AQS; yet, also in these species the thelytokous production of neotenic females appears to be a systematic element of reproductive strategies. It appears likely that the capacity of thelytokous parthenogenesis evolved once in the Termes group, and may ultimately be found more widely, well beyond these Neotropical species.


Assuntos
Isópteros/classificação , Isópteros/fisiologia , Animais , Feminino , Isópteros/genética , Masculino , Repetições de Microssatélites , Partenogênese , Filogenia , Reprodução Assexuada
4.
Proc Biol Sci ; 286(1895): 20182076, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963947

RESUMO

Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus + termites = Tutricablattae; Lamproblattidae + Tutricablattae = Kittrickea; and Blattoidea + Corydioidea = Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blattodean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.


Assuntos
Baratas/classificação , Isópteros/classificação , Filogenia , Animais , Evolução Biológica , Baratas/genética , Isópteros/genética
5.
Evol Dev ; 20(1): 3-16, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168309

RESUMO

In a termite colony, reproduction is typically monopolized by a small number of sexuals that are supported by reproductively altruistic soldiers and workers. We expect caste differentiation to be associated with clear-cut differences in gene expression, and for these differences to reflect caste function and development. Here, we use RNA-Sequencing to compare the gene expression profiles of sexual nymphs and two non-reproductive helper castes (i.e., workers and soldiers) of the Eastern subterranean termite Reticulitermes flavipes. We found that of n = 93 genes that are strictly expressed as a function of caste, a majority (78%) show a soldier-specific pattern. This conspicuous soldier-bias in genome-wide expression suggests that this defensively specialized caste is functionally well-differentiated from both the reproductive and the other non-reproductive caste of this species, despite a shared developmental program with workers. Gene ontology analysis supports the notion of functional specialization by soldiers, as soldier-biased gene sets are enriched for novel biological processes. Whether this pattern reflects ancient or more recent bouts of selection for caste novelty at the gene-regulatory level is not known, but because soldiers are sterile and thus have no direct fitness, any selection for novelty must have been mediated indirectly, through reproducing relatives.


Assuntos
Proteínas de Insetos/genética , Isópteros/genética , Isópteros/fisiologia , Transcriptoma , Animais , Biologia Computacional , Regulação da Expressão Gênica , Isópteros/classificação , Estágios do Ciclo de Vida , Fenótipo , Reprodução , Análise de Sequência de DNA
6.
J Exp Zool B Mol Dev Evol ; 330(5): 279-287, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29989317

RESUMO

Despite multiple studies and advances, sociality still puzzles evolutionary biologists in numerous ways, which might be partly addressed with the advent of sociogenomics. In insects, the majority of sociogenomic studies deal with Hymenoptera, one of the two groups that evolved eusociality with termites. But, to fully grasp the evolution of sociality, studies must obviously not restrict to eusocial lineages. Multiple kinds of social system transitions have been recorded and they all bring complementary insights. For instance, cockroaches, the closest relatives to termites, display a wide range of social interactions and evolved convergently subsocial behaviors (i.e., brood care). In this context, we emphasize the need for natural history, taxonomic, and phylogenetic studies. Natural history studies provide the foundations on which building hypotheses, whereas taxonomy provides the taxa to sample to test these hypotheses, and phylogenetics brings the historical framework necessary to test evolutionary scenarios of sociality evolution.


Assuntos
Baratas/classificação , Isópteros/classificação , Filogenia , Comportamento Social , Animais , Evolução Biológica , Baratas/fisiologia , Comportamento Alimentar , Isópteros/fisiologia
7.
Bull Entomol Res ; 108(4): 523-531, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29070094

RESUMO

European dry-wood termites belong to the genus Kalotermes (Kalotermitidae), one of the two termite genera in Europe. Until the recent description of two new species, Kalotermes italicus in Italy and Kalotermes phoenicae in the eastern Mediterranean area, Kalotermes flavicollis was the only taxon known in this region. The presence of additional entities, suggested by morphological and physiological variation observed in K. flavicollis, was supported by molecular studies revealing four distinct genetic lineages: lineage A, K. flavicollis sensu strictu, from the Aegean area to Italy; lineage B, in Tuscany; lineage SC, in Sardinia and Corsica; lineage SF, in southern France. Lineages A and B may form mixed colonies, suggesting hybridization. To draw a more detailed picture of Kalotermes evolution and biogeography in Europe, we analyzed samples from previously unsampled areas, such as Spain and southern Italy, by means of the highly informative cox1/trnL/cox2 mitochondrial DNA marker. Overall, phylogenetic analyses confirmed previously identified lineages and taxa, but widened the distribution of the lineage SC to the mainland and of the lineage SF to Spain and Portugal. Results further provided evidence for the synonymy between lineage B and K. italicus. Species delimitation analysis suggested that the three K. flavicollis lineages, as well as K. italicus, can be separate taxa. Data also suggest a possible interspecific hybridization between K. italicus and both K. flavicollis lineages A and SC.


Assuntos
Isópteros/genética , Animais , DNA/genética , França , Variação Genética/genética , Isópteros/classificação , Itália , Filogenia , Filogeografia , Análise de Sequência de DNA
8.
BMC Evol Biol ; 17(1): 230, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169320

RESUMO

BACKGROUND: The Neotropical Region is known for its biodiversity and ranks third in number of known termite species. However, biogeographic and phylogeographic information of termites of this region is limited compared to other world geographic regions. Nasutitermes corniger is widely distributed in the region and is of considerable economic importance. The goal of this study was to describe the phylogeography of N. corniger in the Neotropical Region, to better understand its evolutionary processes. RESULTS: The sampled populations of N. corniger showed high genetic variation. Results indicated strong geographic structure among N. corniger populations, with most haplotypes not broadly shared among separated locations. Phylogeographic analyses showed a dispersal route for N. corniger from Central America into South America via the Isthmus of Panama, with subsequent dispersal through the highlands east of the Andes and into eastern regions of the continent. The majority of haplotypes were limited in distribution to proximal regions, corresponding to particular biomes (Atlantic Forest, Amazonia, Chaco, Cerrado and Caatinga). CONCLUSIONS: Nasutitermes corniger is suggested to be a good model for biogeographic and phylogeographic studies in the Neotropical Region. This study clarified the phylogeographic history of N. corniger and can contribute to the understanding of biogeographic dispersion processes in the Neotropical Region.


Assuntos
Isópteros/classificação , Filogeografia , Clima Tropical , Animais , Teorema de Bayes , Biodiversidade , América Central , Genes Mitocondriais , Variação Genética , Haplótipos/genética , Panamá , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , América do Sul
9.
Genetica ; 145(6): 491-502, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940104

RESUMO

Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years. The aim was (1) to define the boundaries of colonies sampled within the same four areas over two sampling periods, (2) to determine whether the colonies identified during the first sampling period persisted to the second sampling period, and (3) to compare the results obtained when colonies were delineated using a standard population genetic approach versus a Bayesian clustering method that combined both spatial and genetic information. Herein, colony delineations were inferred from genetic differences at nine microsatellite loci and one mitochondrial locus. Four of the 18 identified colonies did not show significant differences in their genotype distributions between the two sampling periods. While allelic richness was low, making it hard to reliably distinguish colony family type, most colonies appeared to retain the same breeding structure over time. These large and expansive colonies showed an important ability to fuse (39% were mixed-family colonies), contained hundreds of reproductives and displayed evidence of isolation-by-distance, suggesting budding dispersal. These traits, which favor colony persistence over time, present a challenge for pest control efforts, which apply treatment locally. The other colonies showed significant differences, but we cannot exclude the possibility that their genotype distributions simply changed over time.


Assuntos
Isópteros/crescimento & desenvolvimento , Animais , Teorema de Bayes , Cruzamento , Ecossistema , Variação Genética , Genética Populacional , Isópteros/classificação , Isópteros/genética , Paris
10.
Mol Biol Evol ; 32(2): 406-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25389205

RESUMO

Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.


Assuntos
Genoma Mitocondrial/genética , Isópteros/genética , Animais , Evolução Biológica , Isópteros/classificação , Filogenia
11.
Evol Dev ; 18(2): 78-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26766508

RESUMO

The origins of evolutionary novelties are often deeply puzzling. They are generally associated with new functions that were absent in ancestors. The new functional configuration should arise via intermediate stages without any loss of function or impediment to the whole organism during the transitions. Therefore, understanding of the functional configurations of transitional states can shed light on how novel forms arise. Here we infer the evolutionary origin of a highly specialized termite defensive organ "nasus" where different functions overlap in different structural configurations at intermediate evolutionary stages to ensure that each phase is functional. Soldiers of a nasutitermitine termite use reconfigured mandibular muscles to squirt a viscous secretion from a nozzle-like head projection (the nasus). This contrasts sharply with the primitive defensive strategy where mandibles are used to bite. MicroCT observations of soldiers of Nasutitermes takasagoensis and of species with the ancestral state (Hodotermopsis sjostedti, Embiratermes neotenicus) revealed three different yet fully functional configurations in the transition from ancestral to novel state: (i) elevated hydrostatic pressure induced by contraction of mandibular muscles when biting gently oozes secretion from a gland; (ii) direct pressure on an enlarged gland arises from expansion of the mandibular muscles when biting; (iii) squirting in a piston-like manner by an inflated gland enveloped by highly modified mandibular muscles. Even a structure as exotic as the nasus therefore appears to have evolved with no loss of function at any stage. Such a functional approach, holds much promise for understanding the evolutionary origin of seemingly preposterous novel forms.


Assuntos
Evolução Biológica , Isópteros/anatomia & histologia , Isópteros/genética , Animais , Feminino , Cabeça/anatomia & histologia , Isópteros/classificação , Masculino
12.
Mol Phylogenet Evol ; 94(Pt B): 778-790, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541239

RESUMO

Termites of the genus Reticulitermes are ecologically and economically important wood-feeding social insects that are widespread in the Holarctic region. Despite their importance, no study has yet attempted to reconstruct a global time-scaled phylogeny of Reticulitermes termites. In this study, we sequenced mitochondrial (2096bp) and nuclear (829bp) loci from 61 Reticulitermes specimens, collected across the genus' entire range, and one specimen of Coptotermes formosanus, which served as an outgroup. Bayesian and Maximum likelihood analyses conducted on the mitochondrial and nuclear sequences support the existence of four main lineages that span four global geographical regions: North America (NA lineage), western Europe (WE lineage), a region including eastern Europe and western Asia (EA+WA lineage), and eastern Asia (EA lineage). The mitochondrial data allowed us to clarify the phylogenetic relationships among these lineages. They were also used to infer a chronogram that was time scaled based on age estimates for termite fossils (including the oldest Reticulitermes fossils, which date back to the late Eocene-early Oligocene). Our results support the hypothesis that the extant Reticulitermes lineage first differentiated in North America. The first divergence event in the ancestral lineage of Reticulitermes occurred in the early Miocene and separated the Nearctic lineages (i.e., the NA lineages) from the Palearctic lineages (i.e., WE, EE+WA, and EA lineages). Our analyses revealed that the main lineages of Reticulitermes diversified because of vicariance and migration events, which were probably induced by major paleogeographic and paleoclimatic changes that occurred during the Cenozoic era. This is the first global and comprehensive phylogenetic study of Reticulitermes termites, and it provides a crucial foundation for studying the evolution of phenotypic and life-history traits in Reticulitermes. For instance, the phylogeny we obtained suggested that 'asexual queen succession', a unique reproductive system, independently evolved at least three times during the diversification of the genus.


Assuntos
Isópteros/classificação , Animais , Evolução Biológica , Núcleo Celular , DNA Mitocondrial , Genes de Insetos , Especiação Genética , Isópteros/genética , Filogenia , Filogeografia
13.
Microb Ecol ; 71(1): 207-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518432

RESUMO

Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from gut deposits and also that environment affects which gut bacteria dominate comb communities at a given point in time.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbioma Gastrointestinal , Isópteros/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Meio Ambiente , Fungos/classificação , Fungos/genética , Isópteros/classificação , Filogenia , Termitomyces/crescimento & desenvolvimento , Termitomyces/fisiologia
14.
Bull Entomol Res ; 106(4): 488-93, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27161036

RESUMO

The southern harvester termite, Microhodotermes viator, is ecologically important due to its nutrient cycling activities and trophic interactions. Additionally, M. viator appears to have very long-lived colonies, which amplifies their effect on the environment. In order to estimate the longevity of a colony it is necessary to understand colony genetic structure. However, intra- and intercolonial genetic structure and levels of relatedness have not yet been examined in this species, likely due to a lack of microsatellite markers that effectively hybridize in this species. Here we describe the identification and characterization of seven microsatellite loci for M. viator, using an enriched approach and a preliminary test of their suitability for studies of fine-scale population genetic structure. Seven polymorphic loci were identified, none of which deviated from Hardy-Weinberg equilibrium. The loci had an average of 5.8 alleles per locus (range: 2-14) and an overall mean heterozygosity of 0.51 ± 0.3. Across all loci, population level pairwise F ST values showed significant genetic differentiation. The loci described and preliminary genetic data presented here provide an invaluable tool for future studies of population structure and longevity in M. viator colonies.


Assuntos
Isópteros/genética , Repetições de Microssatélites , Animais , Classificação/métodos , Frequência do Gene , Genótipo , Isópteros/classificação , Polimorfismo Genético , África do Sul
15.
Mol Genet Genomics ; 290(4): 1499-509, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25711308

RESUMO

Transposable elements (TEs) are discrete DNA sequences which are able to replicate and jump into different genomic locations. Miniature inverted-repeats TEs (MITEs) are non-autonomous DNA elements whose origin is still poorly understood. Recently, some MITEs were found to contain core repeats that can be arranged in tandem arrays; in some instances, these arrays have even given rise to satellite DNAs in the (peri)centromeric region of the host chromosomes. I report the discovery and analysis of three new MITEs found in the genome of several termite species (hence the name terMITEs) in two different families. For two of the MITEs (terMITE1-Tc1/mariner superfamily; terMITE2-piggyBac superfamily), evidence of past mobility was retrieved. Moreover, these two MITEs contained core repeats, 16 bp and 114 bp long respectively, exhibiting copy number variation. In terMITE2, the tandem duplication appeared associated with element degeneration, in line with a recently proposed evolutionary model on MITEs and the origin of tandem arrays. Concerning their genomic distribution, terMITE1 and terMITE3 appeared more frequently inserted close to coding regions while terMITE2 was mostly associated with TEs. Although MITEs are commonly distributed in coding regions, terMITE2 distribution is in line with that of other insects' piggyBac-related elements and of other small TEs found in termite genomes. This has been explained through insertional preference rather than through selective processes. Data presented here add to the knowledge on the poorly exploited polyneopteran genomes and will provide an interesting framework in which to study TEs' evolution and host's life history traits.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma de Inseto/genética , Sequências Repetidas Invertidas/genética , Isópteros/genética , Animais , Sequência de Bases , Variação Genética , Proteínas de Insetos/genética , Isópteros/classificação , Dados de Sequência Molecular , Mutagênese Insercional , Filogenia
16.
Mol Ecol ; 24(20): 5284-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26348261

RESUMO

The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically 'lower termites' are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood-feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus-level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host-specific distribution of the bacterial lineages in termite guts are best explained by diet-related differences in the availability of microhabitats and functional niches.


Assuntos
Bactérias/classificação , Dieta , Trato Gastrointestinal/microbiologia , Isópteros/microbiologia , Microbiota , Animais , Análise por Conglomerados , República Democrática do Congo , Guiana Francesa , Isópteros/classificação , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , África do Sul , Simbiose , Madeira
17.
Mol Phylogenet Evol ; 82 Pt A: 234-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300453

RESUMO

The termite genus Coptotermes (Rhinotermitidae) is found in Asia, Africa, Central/South America and Australia, with greatest diversity in Asia. Some Coptotermes species are amongst the world's most damaging invasive termites, but the genus is also significant for containing the most sophisticated mound-building termites outside the family Termitidae. These mound-building Coptotermes occur only in Australia. Despite its economic and evolutionary significance, the biogeographic history of the genus has not been well investigated, nor has the evolution of the Australian mound-building species. We present here the first phylogeny of the Australian Coptotermes to include representatives from all described species. We combined our new data with previously generated data to estimate the first phylogeny to include representatives from all continents where the genus is found. We also present the first estimation of divergence dates during the evolution of the genus. We found the Australian Coptotermes to be monophyletic and most closely related to the Asian Coptotermes, with considerable genetic diversity in some Australian taxa possibly representing undescribed species. The Australian mound-building species did not form a monophyletic clade. Our ancestral state reconstruction analysis indicated that the ancestral Australian Coptotermes was likely to have been a tree nester, and that mound-building behaviour has arisen multiple times. The Australian Coptotermes were found to have diversified ∼13million years ago, which plausibly matches with the narrowing of the Arafura Sea allowing Asian taxa to cross into Australia. The first diverging Coptotermes group was found to be African, casting doubt on the previously raised hypothesis that the genus has an Asian origin.


Assuntos
Evolução Biológica , Isópteros/classificação , Filogenia , Animais , Austrália , Teorema de Bayes , Clima Desértico , Variação Genética , Isópteros/genética , Funções Verossimilhança , Floresta Úmida , Análise de Sequência de DNA
18.
Mol Phylogenet Evol ; 84: 284-303, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25194324

RESUMO

Termites (Isoptera) offer an alternative model for the development of eusociality which is not dependent on a high degree of relatedness as found between sisters in hymenopterans (bees, wasps, ants). Recent phylogenetic studies have established that termites belong within the cockroaches as sister to the subsocial Cryptocercidae. Cryptocercidae shares several important traits with termites, thus we need to understand the phylogenetic position of Cryptocercidae+Isoptera to determine how these traits evolved. However, placement of Cryptocercidae+Isoptera is still uncertain. We used both molecular (12S, 16S, COII, 18S, 28S, H3) and morphological characters to reconstruct the phylogeny of Dictyoptera. We included all previously suggested sister groups of Cryptocercidae+Isoptera as well as taxa which might represent additional major cockroach lineages. We used Bayes factors to test different sister groups for Cryptocercidae+Isoptera and assessed character support for the consensus tree based on morphological characters and COII amino acid data. We used the molecular data and fossil calibration to estimate divergence times. We found the most likely sister groups of Cryptocercidae+Isoptera to be Tryonicidae, Anaplecta or Tryonicidae+Anaplecta. Anaplecta has never previously been suggested as sister group or even close to Cryptocercidae+Isoptera, but was formerly placed in Blaberoidea as sister to the remaining taxa. Topological tests firmly supported our new placement of Anaplecta. We discuss the morphological characters (e.g. retractable genitalic hook) that have contributed to the previous placement of Anaplecta in Blaberoidea as well as the factors that might have contributed to a parallel development of genitalic features in Anaplecta and Blaberoidea. Cryptocercidae+Isoptera is placed in a clade with Tryonicidae, Anaplecta and possibly Lamproblattidae. Based on this, we suggest that wood-feeding, and the resultant need to conserve nitrogen, may have been an important factor in the development of termite eusociality. Nocticolidae was placed as sister group to Latindia+Paralatindia (both Corydiidae), this clade was in turn placed as sister group to the remaining Corydiidae. The Nocticolidae+Corydiidae clade is supported by both morphological and COII amino acid changes. Our divergence time estimates placed the split between Mantodea and Blattodea at 273mya (middle Permian) and the splits between the major blattodean lineages no later than 200mya (end of Triassic).


Assuntos
Evolução Biológica , Baratas/classificação , Filogenia , Animais , Teorema de Bayes , Baratas/anatomia & histologia , Feminino , Fósseis , Isópteros/classificação , Funções Verossimilhança , Masculino , Modelos Genéticos , Análise de Sequência de DNA
19.
Biol Lett ; 11(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26445983

RESUMO

Termites play fundamental roles in tropical ecosystems, and mound-building species in particular are crucial in enhancing species diversity, from plants to mammals. However, it is still unclear which factors govern the occurrence and assembly of termite communities. A phylogenetic community approach and null models of species assembly were used to examine structuring processes associated with termite community assembly in a pristine savannah. Overall, we did not find evidence for a strong influence of interspecific competition or environmental filtering in structuring these communities. However, the presence of a single species, the mound-building termite Macrotermes bellicosus, left a strong signal on structuring and led to clustered communities of more closely related species. Hence, this species changes the assembly rules for a whole community. Our results show the fundamental importance of a single insect species for community processes, suggesting that more attention to insect species is warranted when developing conservation strategies.


Assuntos
Ecossistema , Isópteros/classificação , Animais , Benin , Pradaria , Isópteros/genética , Filogenia
20.
Gen Comp Endocrinol ; 224: 69-83, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26095226

RESUMO

Mastotermes darwiniensis is the most basal living member of the Isoptera (termites), yet it exhibits an extremely advanced level of eusocial organization. Given the interest in, and the high levels of differential developmental and behavioral control needed for, eusociality, it is surprising that essentially nothing is known about the native peptides of M. darwiniensis, which undoubtedly represent the largest and most diverse class of hormones present in this species. The recent public deposition of a 100,000(+)-sequence transcriptome for M. darwiniensis provides a means for peptide discovery in this termite. Here, this resource was mined for putative peptide-encoding transcripts via the BLAST algorithm tblastn and known arthropod neuropeptide precursor queries; mature peptide structures were predicted from the deduced pre/preprohormones using a well-vetted bioinformatics workflow. Thirty-four M. darwiniensis peptide-encoding transcripts were identified, with 163 distinct mature peptides predicted from these sequences. These peptides included members of the adipokinetic hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, allatotropin, bursicon ß, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide, insulin-like peptide, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, RYamide, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide families. This peptidome is the largest thus far predicted for any member of the Isoptera, and provides a foundation for initiating studies of peptidergic signaling in this and other termites, including ones directed at understanding the roles peptide hormones play in the developmental and behavioral control required for eusociality.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Isópteros/metabolismo , Neuropeptídeos/análise , Proteoma/análise , Transcriptoma , Sequência de Aminoácidos , Animais , Isópteros/classificação , Isópteros/genética , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA