Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772420

RESUMO

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Assuntos
Isópteros , Partenogênese , Animais , Isópteros/fisiologia , Isópteros/genética , Feminino , Reprodução , Comportamento Social
2.
Proc Biol Sci ; 291(2023): 20232439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772424

RESUMO

Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.


Assuntos
Genoma de Inseto , Isópteros , Seleção Genética , Animais , Isópteros/genética , Filogenia , Evolução Molecular , Baratas/genética , Comportamento Social
3.
J Evol Biol ; 37(7): 758-769, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38630634

RESUMO

Domains as functional protein units and their rearrangements along the phylogeny can shed light on the functional changes of proteomes associated with the evolution of complex traits like eusociality. This complex trait is associated with sterile soldiers and workers, and long-lived, highly fecund reproductives. Unlike in Hymenoptera (ants, bees, and wasps), the evolution of eusociality within Blattodea, where termites evolved from within cockroaches, was accompanied by a reduction in proteome size, raising the question of whether functional novelty was achieved with existing rather than novel proteins. To address this, we investigated the role of domain rearrangements during the evolution of termite eusociality. Analysing domain rearrangements in the proteomes of three solitary cockroaches and five eusocial termites, we inferred more than 5,000 rearrangements over the phylogeny of Blattodea. The 90 novel domain arrangements that emerged at the origin of termites were enriched for several functions related to longevity, such as protein homeostasis, DNA repair, mitochondrial activity, and nutrient sensing. Many domain rearrangements were related to changes in developmental pathways, important for the emergence of novel castes. Along with the elaboration of social complexity, including permanently sterile workers and larger, foraging colonies, we found 110 further domain arrangements with functions related to protein glycosylation and ion transport. We found an enrichment of caste-biased expression and splicing within rearranged genes, highlighting their importance for the evolution of castes. Furthermore, we found increased levels of DNA methylation among rearranged compared to non-rearranged genes suggesting fundamental differences in their regulation. Our findings indicate the importance of domain rearrangements in the generation of functional novelty necessary for termite eusociality to evolve.


Assuntos
Evolução Biológica , Isópteros , Animais , Isópteros/genética , Isópteros/fisiologia , Comportamento Social , Filogenia , Proteoma/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Domínios Proteicos , Blattellidae/genética
4.
Heredity (Edinb) ; 132(5): 257-266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509263

RESUMO

Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.


Assuntos
Fluxo Gênico , Hibridização Genética , Isópteros , Repetições de Microssatélites , Animais , Isópteros/genética , Isópteros/fisiologia , Feminino , Masculino , Repetições de Microssatélites/genética , Taiwan , Espécies Introduzidas , DNA Mitocondrial/genética
5.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491951

RESUMO

The mitogenome sequence data have been widely used in inferring the phylogeny of insects. In this study, we determined the complete mitogenome for Macrotermes sp. (Termitidae, Macrotermitinae) using next-generation sequencing. Macrotermes sp. possesses a typical insect mitogenome, displaying an identical gene order and gene content to other existing termite mitogenomes. We present the first prediction of the secondary structure of ribosomal RNA genes in termites. The rRNA secondary structures of Macrotermes sp. exhibit similarities to closely related insects and also feature distinctive characteristics in their helical structures. Together with 321 published mitogenomes of termites as ingroups and 8 cockroach mitogenomes as outgroups, we compiled the most comprehensive mitogenome sequence matrix for Termitoidae to date. Phylogenetic analyses were conducted using datasets employing different data coding strategies and various inference methods. Robust relationships were recovered at the family or subfamily level, demonstrating the utility of comprehensive mitogenome sampling in resolving termite phylogenies. The results supported the monophyly of Termitoidae, and consistent relationships within this group were observed across different analyses. Mastotermitidae was consistently recovered as the sister group to all other termite families. The families Hodotermitidae, Stolotermitidae, and Archotermopsidae formed the second diverging clade, followed by the Kalotermitidae. The Neoisoptera was consistently supported with strong node support, with Stylotermitidae being sister to the remaining families. Rhinotermitidae was found to be non-monophyletic, and Serritermitidae nested within the basal clades of Rhinotermitidae and was sister to Psammotermitinae. Overall, our phylogenetic results are largely consistent with earlier mitogenome studies.


Assuntos
Baratas , Genoma Mitocondrial , Isópteros , Humanos , Animais , Filogenia , Isópteros/genética , Baratas/genética , Insetos/genética
6.
PLoS One ; 19(3): e0299900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427681

RESUMO

Eusocial insects such as termites, ants, bees, and wasps exhibit a reproductive division of labor. The developmental regulation of reproductive organ (ovaries and testes) is crucial for distinguishing between reproductive and sterile castes. The development of reproductive organ in insects is regulated by sex-determination pathways. The sex determination gene Doublesex (Dsx), encoding transcription factors, plays an important role in this pathway. Therefore, clarifying the function of Dsx in the developmental regulation of sexual traits is important to understand the social evolution of eusocial insects. However, no studies have reported the function of Dsx in hemimetabolous eusocial group termites. In this study, we searched for binding sites and candidate target genes of Dsx in species with available genome information as the first step in clarifying the function of Dsx in termites. First, we focused on the Reticulitermes speratus genome and identified 101 candidate target genes of Dsx. Using a similar method, we obtained 112, 39, and 76 candidate Dsx target genes in Reticulitermes lucifugus, Coptotermes formosanus, and Macrotermes natalensis, respectively. Second, we compared the candidate Dsx target genes between species and identified 37 common genes between R. speratus and R. lucifugus. These included several genes probably involved in spermatogenesis and longevity. However, only a few common target genes were identified between R. speratus and the other two species. Finally, Dsx dsRNA injection resulted in the differential expression of several target genes, including piwi-like protein and B-box type zinc finger protein ncl-1 in R. speratus. These results provide valuable resource data for future functional analyses of Dsx in termites.


Assuntos
Formigas , Isópteros , Masculino , Animais , Isópteros/genética , Isópteros/metabolismo , Processos de Determinação Sexual/genética
7.
Arthropod Struct Dev ; 78: 101326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176178

RESUMO

In lower termites, which exhibit a high degree of compound eye degradation or absence, antennae play a pivotal role in information acquisition. This comprehensive study investigates the olfactory system of Reticulitermes aculabialis, spanning five developmental stages and three castes. Initially, we characterize the structures and distribution of antennal sensilla across different developmental stages. Results demonstrate variations in sensilla types and distributions among stages, aligning with caste-specific division of labor and suggesting their involvement in environmental sensitivity detection, signal differentiation, and nestmate recognition. Subsequently, we explore the impact of antennal excision on olfactory gene expression in various caste categories through transcriptomics, homology analysis, and expression profiling. Findings reveal that olfactory genes expression is influenced by antennal excision, with outcomes varying according to caste and the extent of excision. Finally, utilizing fluorescence in situ hybridization, we precisely localize the expression sites of olfactory genes within the antennae. This research reveals the intricate and adaptable nature of the termite olfactory system, highlighting its significance in adapting to diverse ecological roles and demands of social living.


Assuntos
Isópteros , Animais , Isópteros/genética , Hibridização in Situ Fluorescente , Olfato , Sensilas , Perfilação da Expressão Gênica
8.
PeerJ ; 12: e16843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436016

RESUMO

The soldier caste is one of the most distinguished castes inside the termite colony. The mechanism of soldier caste differentiation has mainly been studied at the transcriptional level, but the function of microRNAs (miRNAs) in soldier caste differentiation is seldom studied. In this study, the workers of Coptotermes formosanus Shiraki were treated with methoprene, a juvenile hormone analog which can induce workers to transform into soldiers. The miRNomes of the methoprene-treated workers and the controls were sequenced. Then, the differentially expressed miRNAs (DEmiRs) were corrected with the differentially expressed genes DEGs to construct the DEmiR-DEG regulatory network. Afterwards, the DEmiR-regulated DEGs were subjected to GO enrichment and KEGG enrichment analysis. A total of 1,324 miRNAs were identified, among which 116 miRNAs were screened as DEmiRs between the methoprene-treated group and the control group. A total of 4,433 DEmiR-DEG pairs were obtained. No GO term was recognized as significant in the cellular component, molecular function, or biological process categories. The KEGG enrichment analysis of the DEmiR-regulated DEGs showed that the ribosome biogenesis in eukaryotes and circadian rhythm-fly pathways were enriched. This study demonstrates that DEmiRs and DEGs form a complex network regulating soldier caste differentiation in termites.


Assuntos
Isópteros , MicroRNAs , Animais , Isópteros/genética , Metoprene , Ritmo Circadiano , Grupos Controle , MicroRNAs/genética
9.
Int J Biol Macromol ; 262(Pt 1): 129639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331075

RESUMO

Olfaction is critical for survival because it allows animals to look for food and detect pheromonal cues. Neuropeptides modulate olfaction and behaviors in insects. While how the neuroregulation of olfactory recognition affects foraging behavior in termites is still unclear. Here, we analyzed the change after silencing the olfactory co-receptor gene (Orco) and the neuropeptide Y gene (NPY), and then investigated the impact of olfactory recognition on foraging behavior in Odontotermes formosanus under different predation pressures. The knockdown of Orco resulted in the reduced Orco protein expression in antennae and the decreased EAG response to trail pheromones. In addition, NPY silencing led to the damaged ability of olfactory response through downregulating Orco expression. Both dsOrco- and dsNPY-injected worker termites showed significantly reduced walking activity and foraging success. Additionally, we found that 0.1 pg/cm trail pheromone and nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on foraging behavior in worker termites with the normal ability of olfactory recognition. Our orthogonal experiments further verified that Orco/NPY genes are essential in manipulating termite olfactory recognition during foraging under different predation pressures, suggesting that the neuroregulation of olfactory recognition plays a crucial role in regulating termite foraging behavior.


Assuntos
Isópteros , Receptores Odorantes , Animais , Olfato , Isópteros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Feromônios
10.
Nat Commun ; 15(1): 6724, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112457

RESUMO

The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.


Assuntos
Genômica , Isópteros , Filogenia , Isópteros/genética , Isópteros/classificação , Animais , Genômica/métodos , Genoma de Inseto
11.
Curr Opin Insect Sci ; 63: 101183, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38428818

RESUMO

In social insects, interactions among colony members trigger caste differentiation with morphological modifications. During caste differentiation in termites, body parts and caste-specific morphologies are modified during postembryonic development under endocrine controls such as juvenile hormone (JH) and ecdysone. In addition to endocrine factors, developmental toolkit genes such as Hox- and appendage-patterning genes also contribute to the caste-specific body part modifications. These toolkits are thought to provide spatial information for specific morphogenesis. During social evolution, the complex crosstalks between physiological and developmental mechanisms should be established, leading to the sophisticated caste systems. This article reviews recent studies on these mechanisms underlying the termite caste differentiation and addresses implications for the evolution of caste systems in termites.


Assuntos
Isópteros , Hormônios Juvenis , Animais , Isópteros/genética , Isópteros/fisiologia , Isópteros/crescimento & desenvolvimento , Hormônios Juvenis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ecdisona/metabolismo
12.
Pest Manag Sci ; 80(7): 3258-3268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38358092

RESUMO

BACKGROUND: Detoxifying enzymes are likely involved in lignin feeding and immune defense mechanisms within termites, rendering them potential targets for biological control. However, investigations into the dual functionality of termite detoxification enzymes in vivo have not been documented. RESULTS: In this study, the complete cDNA of the catalase gene (Cfcat) derived from Coptotermes formosanus Shiraki was amplified. CFCAT comprises an open reading frame spanning 1527 bp, encoding a 508-amino acid sequence. The highest expression was observed in the epidermal tissues (including the fat body and hemolymph) followed by the foregut/salivary gland. Furthermore, we confirmed the catalase activity of the recombinant Cfcat protein. Using RNA interference (RNAi) technology, the importance of Cfcat in the lignin-feeding of C. formosanus was demonstrated, and the role of Cfcat in innate immunity was investigated. Survival assays showed that Cfcat RNAi significantly increased the susceptibility of C. formosanus to Metarhizium anisopliae. Irrespective of the infection status, Cfcat inhibition had a significant impact on multiple factors of humoral and intestinal immunity in C. formosanus. Notably, Cfcat RNAi exhibited a more pronounced immunosuppressive effect on humoral immunity than on intestinal immunity. CONCLUSION: Cfcat plays an important role in the regulation of innate immunity and lignin feeding in C. formosanus. Cfcat RNAi can weaken the immune response of termites against M. anisopliae, which may aid the biocontrol efficiency of M. anisopliae against C. formosanus. This study provides a theoretical basis and technical reference for the development of a novel biocontrol strategy targeting detoxifying enzymes of termites. © 2024 Society of Chemical Industry.


Assuntos
Catalase , Proteínas de Insetos , Isópteros , Lignina , Animais , Isópteros/imunologia , Isópteros/microbiologia , Isópteros/genética , Lignina/metabolismo , Catalase/genética , Catalase/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Metarhizium/fisiologia , Metarhizium/genética , Controle de Insetos , Imunidade Inata , Interferência de RNA , Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA