Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
Annu Rev Immunol ; 38: 365-395, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31986070

RESUMO

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.


Assuntos
Suscetibilidade a Doenças , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Imunomodulação , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo
2.
Nat Immunol ; 25(3): 448-461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351322

RESUMO

Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.


Assuntos
Células Dendríticas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Camundongos , Diferenciação Celular
3.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454157

RESUMO

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Coelhos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , Macrófagos , Nanovacinas , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
4.
Cell ; 184(12): 3109-3124.e22, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004145

RESUMO

Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.


Assuntos
Membrana Celular/metabolismo , Polissacarídeos/metabolismo , RNA/metabolismo , Animais , Anticorpos/metabolismo , Sequência de Bases , Vias Biossintéticas , Linhagem Celular , Sobrevivência Celular , Humanos , Espectrometria de Massas , Ácido N-Acetilneuramínico/metabolismo , Poliadenilação , Polissacarídeos/química , RNA/química , RNA/genética , RNA não Traduzido/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Coloração e Rotulagem
5.
Annu Rev Immunol ; 30: 357-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224769

RESUMO

Sialic acid-binding Ig-like lectins, or Siglecs, vary in their specificity for sialic acid-containing ligands and are mainly expressed by cells of the immune system. Many Siglecs are inhibitory receptors expressed in innate immune cells that regulate inflammation mediated by damage-associated and pathogen-associated molecular patterns (DAMPs and PAMPs). This family also includes molecules involved in adhesion and phagocytosis and receptors that can associate with the ITAM-containing DAP12 adaptor. Siglecs contribute to the inhibition of immune cells both by binding to cis ligands (expressed in the same cells) and by responding to pathogen-derived sialoglycoconjugates. They can help maintain tolerance in B lymphocytes, modulate the activation of conventional and plasmacytoid dendritic cells, and contribute to the regulation of T cell function both directly and indirectly. Siglecs modulate immune responses, influencing almost every cell in the immune system, and are of relevance both in health and disease.


Assuntos
Sistema Imunitário/imunologia , Lectinas/metabolismo , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunidade Inata , Lectinas/classificação , Ativação Linfocitária/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Linfócitos T/imunologia , Linfócitos T/metabolismo
6.
Nat Immunol ; 20(2): 163-172, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643263

RESUMO

Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologs of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Pulmão/patologia , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Animais , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Bleomicina/imunologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Receptor 1 de Quimiocina CX3C/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/citologia , Pulmão/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Análise de Sequência de RNA/métodos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Análise de Célula Única/métodos , Regulação para Cima
7.
Nat Immunol ; 17(11): 1273-1281, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27595232

RESUMO

Siglec-9 is a sialic-acid-binding lectin expressed predominantly on myeloid cells. Aberrant glycosylation occurs in essentially all types of cancers and results in increased sialylation. Thus, when the mucin MUC1 is expressed on cancer cells, it is decorated by multiple short, sialylated O-linked glycans (MUC1-ST). Here we found that this cancer-specific MUC1 glycoform, through engagement of Siglec-9, 'educated' myeloid cells to release factors associated with determination of the tumor microenvironment and disease progression. Moreover, MUC1-ST induced macrophages to display a tumor-associated macrophage (TAM)-like phenotype, with increased expression of the checkpoint ligand PD-L1. Binding of MUC1-ST to Siglec-9 did not activate the phosphatases SHP-1 or SHP-2 but, unexpectedly, induced calcium flux that led to activation of the kinases MEK-ERK. This work defines a critical role for aberrantly glycosylated MUC1 and identifies an activating pathway that follows engagement of Siglec-9.


Assuntos
Antígenos CD/metabolismo , Mucina-1/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral/imunologia , Antígenos CD/genética , Biomarcadores , Diferenciação Celular , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Glicosilação , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células Mieloides/citologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Ligação Proteica , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética
8.
Nat Immunol ; 17(10): 1167-75, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548433

RESUMO

CD8α(+) dendritic cells (DCs) are specialized at cross-presenting extracellular antigens on major histocompatibility complex (MHC) class I molecules to initiate cytotoxic T lymphocyte (CTL) responses; however, details of the mechanisms that regulate cross-presentation remain unknown. We found lower expression of the lectin family member Siglec-G in CD8α(+) DCs, and Siglec-G deficient (Siglecg(-/-)) mice generated more antigen-specific CTLs to inhibit intracellular bacterial infection and tumor growth. MHC class I-peptide complexes were more abundant on Siglecg(-/-) CD8α(+) DCs than on Siglecg(+/+) CD8α(+) DCs. Mechanistically, phagosome-expressed Siglec-G recruited the phosphatase SHP-1, which dephosphorylated the NADPH oxidase component p47(phox) and inhibited the activation of NOX2 on phagosomes. This resulted in excessive hydrolysis of exogenous antigens, which led to diminished formation of MHC class I-peptide complexes for cross-presentation. Therefore, Siglec-G inhibited DC cross-presentation by impairing such complex formation, and our results add insight into the regulation of cross-presentation in adaptive immunity.


Assuntos
Apresentação Cruzada , Células Dendríticas/imunologia , Lectinas/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Neoplasias Experimentais/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos/metabolismo , Antígenos CD8/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Lectinas/genética , Ativação Linfocitária , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Fragmentos de Peptídeos/metabolismo , Fagocitose/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Transdução de Sinais , Carga Tumoral/genética
9.
Cell ; 152(3): 467-78, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374343

RESUMO

RIG-I is a critical RNA virus sensor that serves to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling remains to be fully understood. We report here that RNA viruses, but not DNA viruses or bacteria, specifically upregulate lectin family member Siglecg expression in macrophages by RIG-I- or NF-κB-dependent mechanisms. Siglec-G-induced recruitment of SHP2 and the E3 ubiquitin ligase c-Cbl to RIG-I leads to RIG-I degradation via K48-linked ubiquitination at Lys813 by c-Cbl. By increasing type I interferon production, targeted inactivation of Siglecg protects mice against lethal RNA virus infection. Taken together, our data reveal a negative feedback loop of RIG-I signaling and identify a Siglec-G-mediated immune evasion pathway exploited by RNA viruses with implication in antiviral applications. These findings also provide insights into the functions and crosstalk of Siglec-G, a known adaptive response regulator, in innate immunity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Inata , Lectinas/metabolismo , Infecções por Vírus de RNA/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , Células Dendríticas/imunologia , Bactérias Gram-Negativas/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Lectinas/genética , Lisina/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Vírus de RNA/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Ubiquitinação
10.
Semin Immunol ; 69: 101799, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413923

RESUMO

Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of vertebrate glycan-binding cell-surface proteins. The majority mediate cellular inhibitory activity once engaged by specific ligands or ligand-mimicking molecules. As a result, Siglec engagement is now of interest as a strategy to therapeutically dampen unwanted cellular responses. When considering allergic inflammation, human eosinophils and mast cells express overlapping but distinct patterns of Siglecs. For example, Siglec-6 is selectively and prominently expressed on mast cells while Siglec-8 is highly specific for both eosinophils and mast cells. This review will focus on a subset of Siglecs and their various endogenous or synthetic sialoside ligands that regulate eosinophil and mast cell function and survival. It will also summarize how certain Siglecs have become the focus of novel therapies for allergic and other eosinophil- and mast cell-related diseases.


Assuntos
Eosinófilos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Mastócitos , Antígenos CD/química , Ligantes
11.
Proc Natl Acad Sci U S A ; 120(47): e2312374120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963244

RESUMO

CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Complexo Ferro-Dextran , Imunoterapia Adotiva , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
12.
Proc Natl Acad Sci U S A ; 120(11): e2215376120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897988

RESUMO

The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Ligantes , Macrófagos/metabolismo , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
13.
Nat Immunol ; 14(7): 741-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23685786

RESUMO

Functionally diverse T cell populations interact to maintain homeostasis of the immune system. We found that human and mouse antigen-activated T cells with high expression of the lymphocyte surface marker CD52 suppressed other T cells. CD52(hi)CD4(+) T cells were distinct from CD4(+)CD25(+)Foxp3(+) regulatory T cells. Their suppression was mediated by soluble CD52 released by phospholipase C. Soluble CD52 bound to the inhibitory receptor Siglec-10 and impaired phosphorylation of the T cell receptor-associated kinases Lck and Zap70 and T cell activation. Humans with type 1 diabetes had a lower frequency and diminished function of CD52(hi)CD4(+) T cells responsive to the autoantigen GAD65. In diabetes-prone mice of the nonobese diabetic (NOD) strain, transfer of lymphocyte populations depleted of CD52(hi) cells resulted in a substantially accelerated onset of diabetes. Our studies identify a ligand-receptor mechanism of T cell regulation that may protect humans and mice from autoimmune disease.


Assuntos
Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Glicoproteínas/imunologia , Ativação Linfocitária/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Antígenos CD/genética , Antígenos de Neoplasias/genética , Autoantígenos/imunologia , Antígeno CD52 , Feminino , Citometria de Fluxo , Glicoproteínas/genética , Homeostase/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação/imunologia , RNA Mensageiro/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína-Tirosina Quinase ZAP-70/imunologia
14.
EMBO Rep ; 24(8): e56420, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37424400

RESUMO

Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in adults in the Western world. B cell receptor (BCR) signaling is known to be crucial for the pathogenesis and maintenance of CLL cells which develop from mature CD5+ B cells. BCR signaling is regulated by the inhibitory co-receptor Siglec-G and Siglec-G-deficient mice have an enlarged CD5+ B1a cell population. Here, we determine how Siglec-G expression influences the severity of CLL. Our results show that Siglec-G deficiency leads to earlier onset and more severe course of the CLL-like disease in the murine Eµ-TCL1 model. In contrast, mice overexpressing Siglec-G on the B cell surface are almost completely protected from developing CLL-like disease. Furthermore, we observe a downmodulation of the human ortholog Siglec-10 from the surface of human CLL cells. These results demonstrate a critical role for Siglec-G in disease progression in mice, and suggest that a similar mechanism for Siglec-10 in human CLL may exist.


Assuntos
Leucemia Linfocítica Crônica de Células B , Camundongos , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Camundongos Transgênicos , Proteínas Proto-Oncogênicas , Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética
15.
Proc Natl Acad Sci U S A ; 119(41): e2117743119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191232

RESUMO

Sulfated glycans have been found to be associated with various diseases and therefore have significant potential in molecular pathology as biomarkers. Although lectins are useful reagents for detecting glycans, there is a paucity of sulfate-recognizing lectins, and those that exist, such as from Maackia amurensis, display mixed specificities. Recombinant lectin engineering offers an emerging tool for creating novel glycan recognition by altering and/or enhancing endogenous specificities. The present study demonstrated the use of computational approaches in the engineering of a mutated form of E-selectin that displayed highly specific recognition of 6'-sulfo-sialyl Lewis X (6'-sulfo-sLex), with negligible binding to its endogenous nonsulfated ligand, sLex. This new specificity mimics that of the unrelated protein Siglec-8, for which 6'-sulfo-sLex is its preferred ligand. Molecular dynamics simulations and energy calculations predicted that two point mutations (E92A/E107A) would be required to stabilize binding to the sulfated oligosaccharide with E-selectin. In addition to eliminating putative repulsions between the negatively charged side chains and the sulfate moiety, the mutations also abolished favorable interactions with the endogenous ligand. Glycan microarray screening of the recombinantly expressed proteins confirmed the predicted specificity change but also identified the introduction of unexpected affinity for the unfucosylated form of 6'-sulfo-sLex (6'-sulfo-sLacNAc). Three key requirements were demonstrated in this case for engineering specificity for sulfated oligosaccharide: 1) removal of unfavorable interactions with the 6'-sulfate, 2) introduction of favorable interactions for the sulfate, and 3) removal of favorable interactions with the endogenous ligand.


Assuntos
Selectina E , Oligossacarídeos , Selectina E/genética , Ligantes , Oligossacarídeos/química , Polissacarídeos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Antígeno Sialil Lewis X , Sulfatos/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(25): e2201129119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696562

RESUMO

Sialic acids (Sias) on the B cell membrane are involved in cell migration, in the control of the complement system and, as sialic acid-binding immunoglobulin-like lectin (Siglec) ligands, in the regulation of cellular signaling. We studied the role of sialoglycans on B cells in a mouse model with B cell-specific deletion of cytidine monophosphate sialic acid synthase (CMAS), the enzyme essential for the synthesis of sialoglycans. Surprisingly, these mice showed a severe B cell deficiency in secondary lymphoid organs. Additional depletion of the complement factor C3 rescued the phenotype only marginally, demonstrating a complement-independent mechanism. The B cell survival receptor BAFF receptor was not up-regulated, and levels of activated caspase 3 and processed caspase 8 were high in B cells of Cmas-deficient mice, indicating ongoing apoptosis. Overexpressed Bcl-2 could not rescue this phenotype, pointing to extrinsic apoptosis. These results show that sialoglycans on the B cell surface are crucial for B cell survival by counteracting several death-inducing pathways.


Assuntos
Apoptose , Linfócitos B , Polissacarídeos , Ácidos Siálicos , Animais , Receptor do Fator Ativador de Células B/metabolismo , Linfócitos B/fisiologia , Sobrevivência Celular , Deleção de Genes , Camundongos , N-Acilneuraminato Citidililtransferase/genética , Polissacarídeos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo
17.
J Hepatol ; 80(5): 792-804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331327

RESUMO

BACKGROUND & AIMS: Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS: Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS: Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS: Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS: Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/metabolismo , Células Matadoras Naturais/patologia , Imunoterapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ligantes , Prognóstico
18.
Cancer Immunol Immunother ; 73(2): 31, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279998

RESUMO

The small, heavily glycosylated protein CD24 is primarily expressed by many immune cells and is highly expressed mostly in cancer cells. As one of the most crucial biomarkers of cancers, CD24 is frequently highly expressed in solid tumors, while tumor-associated macrophages express Siglec-10 at high levels, Siglec-10 and CD24 can interact on innate immune cells to lessen inflammatory responses to a variety of disorders. Inhibiting inflammation brought on by SHP-1 and/or SHP-2 phosphatases as well as cell phagocytosis by macrophages, the binding of CD24 to Siglec-10 can prevent toll-like receptor-mediated inflammation. Targeted immunotherapy with immune checkpoint inhibitors (ICI) has lately gained popularity as one of the best ways to treat different tumors. CD24 is a prominent innate immune checkpoint that may be a useful target for cancer immunotherapy. In recent years, numerous CD24/Siglec-10-related research studies have made tremendous progress. This study discusses the characteristics and workings of CD24/Siglec-10-targeted immunotherapy and offers a summary of current advances in CD24/Siglec-10-related immunotherapy research for cancer. We then suggested potential directions for CD24-targeted immunotherapy, basing our speculation mostly on the results of recent preclinical and clinical trials.


Assuntos
Macrófagos , Neoplasias , Humanos , Transdução de Sinais , Inflamação , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Imunoterapia/métodos , Antígeno CD24/metabolismo
19.
Small ; 20(12): e2307147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941517

RESUMO

Cancer immunotherapy has attracted considerable attention due to its advantages of persistence, targeting, and ability to kill tumor cells. However, the efficacy of tumor immunotherapy in practical applications is limited by tumor heterogeneity and complex tumor immunosuppressive microenvironments in which abundant of M2 macrophages and immune checkpoints (ICs) are present. Herein, two type-I aggregation-induced emission (AIE)-active photosensitizers with various reactive oxygen species (ROS)-generating efficiencies are designed and synthesized. Engineered extracellular vesicles (EVs) that express ICs Siglec-10 are first obtained from 4T1 tumor cells. The engineered EVs are then fused with the AIE photosensitizer-loaded lipidic nanosystem to form SEx@Fc-NPs. The ROS generated by the inner type-I AIE photosensitizer of the SEx@Fc-NPs through photodynamic therapy (PDT) can convert M2 macrophages into M1 macrophages to improve tumor immunosuppressive microenvironment. The outer EV-antigens that carry 4T1 tumor-associated antigens directly stimulate dendritic cells maturation to activate different types of tumor-specific T cells in overcoming tumor heterogeneity. In addition, blocking Siglec-10 reversed macrophage exhaustion for enhanced antitumor ability. This study presents that a combination of PDT, immune checkpoints, and EV-antigens can greatly improve the efficiency of tumor immunotherapy and is expected to serve as an emerging strategy to improve tumor immunosuppressive microenvironment and overcome immune escape.


Assuntos
Vesículas Extracelulares , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio , Imunoterapia , Macrófagos , Fenótipo , Microambiente Tumoral , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Neoplasias/terapia , Linhagem Celular Tumoral
20.
Cytokine ; 177: 156558, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412768

RESUMO

BACKGROUND: The pathogenesis and treatment strategies for chronic obstructive pulmonary disease (COPD) require further exploration. Abnormal neutrophil inflammation and the overexpression of neutrophil extracellular traps (NETs) are closely associated with acute exacerbations of COPD (AECOPD). Siglec-9, a specific receptor expressed on neutrophils that inhibits their function, prompted us to investigate its relationship with NETs found in induced sputum and the severity of the disease. METHODS: We collected clinical data from patients with AECOPD and assessed the expression of Siglec-9 in peripheral blood neutrophils and the presence of NETs in induced sputum. We then observed the correlation between Siglec-9, the inflammatory response, and the severity of AECOPD. RESULTS: We observed an increase in the expression of Siglec-9 in the peripheral blood neutrophils of patients with AECOPD. Concurrently, these patients exhibited more severe clinical symptoms, higher systemic inflammation levels, and a reduced quality of life compared to those with induced sputum NET expression. Further subgroup analysis of AECOPD patients with high Siglec-9 expression revealed worsened quality of life and more severe inflammation, particularly in indicators such as the BODE index, CRP, peripheral blood neutrophil count, IL-6, IL-8, TNF-α expression, and others. Furthermore, we noted a significant increase in NET-specific expression in the sputum of patients with high Siglec-9 expression levels. In comparison to patients with low Siglec-9 expression, those with high expression experienced more systemic inflammatory reactions and a lower quality of life. Correlation analysis of the aforementioned indicators revealed that the expression ratio of Siglec-9 in the peripheral blood of patients correlated with lung function, quality of life, and NETs in the induced sputum of patients with AECOPD. CONCLUSION: The increased expression of Siglec-9 in peripheral blood neutrophils of AECOPD patients leads to elevated NET expression in induced sputum, exacerbating the systemic inflammatory response and worsening lung function and quality of life in these patients.


Assuntos
Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Progressão da Doença , Inflamação/metabolismo , Neutrófilos/metabolismo , Gravidade do Paciente , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Qualidade de Vida , Escarro/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/sangue , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Antígenos CD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA